
M A N N I N G

Boris Paskhaver

Pandas in Action

ii

Pandas in Action

BORIS PASKHAVER

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Sarah Miller
20 Baldwin Road Technical development editor: Al Krinker
PO Box 761 Review editor: Aleks Dragosavljević
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Keir Simpson
Proofreader: Jason Everett

Technical proofreader: Mathijs Affourtit
Typesetter and cover designer: Marija Tudor

ISBN 9781617297434
Printed in the United States of America

http://www.manning.com
http://www.manning.com

For Meredith Edwards, my ray of sunshine

vi

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xx
about the cover illustration xxi

PART 1 CORE PANDAS .. 1

1 Introducing pandas 3
1.1 Data in the 21st century 4
1.2 Introducing pandas 4

Pandas vs. graphical spreadsheet applications 6 ■ Pandas vs. its
competitors 8

1.3 A tour of pandas 9
Importing a data set 9 ■ Manipulating a DataFrame 11
Counting values in a Series 14 ■ Filtering a column by one or more
criteria 15 ■ Grouping data 18

2 The Series object 22
2.1 Overview of a Series 23

Classes and instances 24 ■ Populating the Series with values 24
Customizing the Series index 26 ■ Creating a Series with missing
values 29
vii

CONTENTSviii
2.2 Creating a Series from Python objects 30
2.3 Series attributes 32
2.4 Retrieving the first and last rows 34
2.5 Mathematical operations 36

Statistical operations 36 ■ Arithmetic operations 43
Broadcasting 45

2.6 Passing the Series to Python’s built-in functions 48
2.7 Coding challenge 50

Problems 50 ■ Solutions 50

3 Series methods 54
3.1 Importing a data set with the read_csv function 55
3.2 Sorting a Series 60

Sorting by values with the sort_values method 60 ■ Sorting by
index with the sort_index method 62 ■ Retrieving the smallest and
largest values with the nsmallest and nlargest methods 64

3.3 Overwriting a Series with the inplace parameter 65
3.4 Counting values with the value_counts method 66
3.5 Invoking a function on every Series value with the apply

method 72
3.6 Coding challenge 75

Problems 75 ■ Solutions 76

4 The DataFrame object 79
4.1 Overview of a DataFrame 80

Creating a DataFrame from a dictionary 80 ■ Creating a
DataFrame from a NumPy ndarray 81

4.2 Similarities between Series and DataFrames 83
Importing a DataFrame with the read_csv function 83
Shared and exclusive attributes of Series and DataFrames 84
Shared methods of Series and DataFrames 87

4.3 Sorting a DataFrame 90
Sorting by a single column 90 ■ Sorting by multiple
columns 92

4.4 Sorting by index 94
Sorting by row index 94 ■ Sorting by column index 95

4.5 Setting a new index 95

CONTENTS ix
4.6 Selecting columns and rows from a DataFrame 96
Selecting a single column from a DataFrame 96 ■ Selecting
multiple columns from a DataFrame 97

4.7 Selecting rows from a DataFrame 99
Extracting rows by index label 99 ■ Extracting rows by
index position 101 ■ Extracting values from specific
columns 103

4.8 Extracting values from Series 106
4.9 Renaming columns or rows 106

4.10 Resetting an index 108
4.11 Coding challenge 109

Problems 109 ■ Solutions 109

5 Filtering a DataFrame 113
5.1 Optimizing a data set for memory use 114

Converting data types with the astype method 116

5.2 Filtering by a single condition 120
5.3 Filtering by multiple conditions 124

The AND condition 124 ■ The OR condition 125
Inversion with ~ 126 ■ Methods for Booleans 127

5.4 Filtering by condition 127
The isin method 127 ■ The between method 128
The isnull and notnull methods 130 ■ Dealing with null
values 132

5.5 Dealing with duplicates 134
The duplicated method 134 ■ The drop_duplicates method 136

5.6 Coding challenge 139
Problems 139 ■ Solutions 140

PART 2 APPLIED PANDAS .. 145

6 Working with text data 147
6.1 Letter casing and whitespace 148
6.2 String slicing 151
6.3 String slicing and character replacement 153
6.4 Boolean methods 155

CONTENTSx
6.5 Splitting strings 157
6.6 Coding challenge 162

Problems 162 ■ Solutions 162

6.7 A note on regular expressions 163

7 MultiIndex DataFrames 165
7.1 The MultiIndex object 166
7.2 MultiIndex DataFrames 170
7.3 Sorting a MultiIndex 175
7.4 Selecting with a MultiIndex 179

Extracting one or more columns 179 ■ Extracting one or more rows
with loc 182 ■ Extracting one or more rows with iloc 186

7.5 Cross-sections 188
7.6 Manipulating the Index 189

Resetting the index 189 ■ Setting the index 193

7.7 Coding challenge 194
Problems 194 ■ Solutions 195

8 Reshaping and pivoting 198
8.1 Wide vs. narrow data 199
8.2 Creating a pivot table from a DataFrame 200

The pivot_table method 201 ■ Additional options for pivot
tables 205

8.3 Stacking and unstacking index levels 207
8.4 Melting a data set 209
8.5 Exploding a list of values 213
8.6 Coding challenge 214

Problems 214 ■ Solutions 215

9 The GroupBy object 220
9.1 Creating a GroupBy object from scratch 221
9.2 Creating a GroupBy object from a data set 222
9.3 Attributes and methods of a GroupBy object 225
9.4 Aggregate operations 229
9.5 Applying a custom operation to all groups 232
9.6 Grouping by multiple columns 233

CONTENTS xi
9.7 Coding challenge 235
Problems 235 ■ Solutions 235

10 Merging, joining, and concatenating 239
10.1 Introducing the data sets 241

10.2 Concatenating data sets 243

10.3 Missing values in concatenated DataFrames 245

10.4 Left joins 247

10.5 Inner joins 249

10.6 Outer joins 251

10.7 Merging on index labels 253

10.8 Coding challenge 254
Problems 256 ■ Solutions 256

11 Working with dates and times 260
11.1 Introducing the Timestamp object 261

How Python works with datetimes 261 ■ How pandas works
with datetimes 264

11.2 Storing multiple timestamps in a DatetimeIndex 266

11.3 Converting column or index values to datetimes 268

11.4 Using the DatetimeProperties object 269

11.5 Adding and subtracting durations of time 273

11.6 Date offsets 275

11.7 The Timedelta object 277

11.8 Coding challenge 282
Problems 282 ■ Solutions 283

12 Imports and exports 289
12.1 Reading from and writing to JSON files 290

Loading a JSON file Into a DataFrame 292 ■ Exporting a
DataFrame to a JSON file 298

12.2 Reading from and writing to CSV files 299

12.3 Reading from and writing to Excel workbooks 301
Installing the xlrd and openpyxl libraries in an Anaconda
environment 301 ■ Importing Excel workbooks 302
Exporting Excel workbooks 305

CONTENTSxii
12.4 Coding challenge 306
Problems 307 ■ Solutions 307

13 Configuring pandas 310
13.1 Getting and setting pandas options 311
13.2 Precision 315
13.3 Maximum column width 316
13.4 Chop threshold 316
13.5 Option context 317

14 Visualization 319
14.1 Installing matplotlib 320
14.2 Line charts 320
14.3 Bar graphs 325
14.4 Pie charts 327

appendix A Installation and setup 329

appendix B Python crash course 347

appendix C NumPy crash course 383

appendix D Generating fake data with Faker 391

appendix E Regular expressions 397

index 409

preface
Truth be told, I discovered pandas entirely by luck.

 In 2015, I interviewed for a data operations analyst position at Indeed.com, the
world’s largest jobs site. For my final technical challenge, I was asked to derive insights
from an internal data set, using the Microsoft Excel spreadsheet software. Eager to
impress, I pulled out as many tricks as I could from my data analysis toolbox: column
sorts, text manipulations, pivot tables, and of course the iconic VLOOKUP function.
(OK, maybe iconic is a bit of an exaggeration.)

 Strange as it may sound, at the time I didn’t realize that there were any tools for
data analysis besides Excel. Excel was ubiquitous: my parents used it, my teachers used
it, and my colleagues used it. It felt like an established standard. So when I received a
job offer, I immediately bought about $100 worth of Excel books and started studying.
It was time to become a spreadsheet specialist!

 I showed up for my first day of work with a printout of the 50 most-used Excel func-
tions. Barely after I finished logging into my work computer, my manager pulled me
into a conference room and informed me that priorities had shifted. The team’s data
sets had ballooned to a size that Excel could no longer support. My teammates were
also looking for ways to automate the redundant steps in their daily and weekly
reports. Luckily, my manager had figured out a solution to both problems. He asked
me whether I’d heard of pandas.

 “The furry animal?” I asked, perplexed.
 “No,” he said. “The Python data analysis library.”
 After all my prep, it was time to learn a new technology from scratch. I was a little

nervous; I’d never written a line of code before. I was an Excel guy, wasn’t I? Was I
capable of doing this? There was only one way to find out. I started diving into the offi-
xiii

PREFACExiv
cial pandas documentation, into YouTube videos, books, workshops, Stack Overflow
questions, and whatever data sets I could get my hands on. I was relieved to discover
how easy and joyful it was to get started with pandas. The code felt intuitive and
straightforward. The library was fast. The features were well-developed and expansive.
With pandas, I could accomplish a lot of data manipulation with a little code.

 Stories like mine are common in the Python community. The language’s astro-
nomical growth over the past decade is often attributed to the ease with which new
developers can pick it up. I am confident that if you’re in a position similar to mine,
you can learn pandas just as well. If you’re looking to expand your data analysis skills
beyond Excel spreadsheets, this book is your invitation.

 When I felt comfortable with pandas, I continued to explore Python and then
other programming languages. In many ways, pandas spearheaded my transition into
full-time software engineering. I owe a lot to this powerful library, and I’m excited to
pass on the torch of knowledge to you. I hope that you discover the magic of what
code can do for you.

acknowledgments
It took a lot to get Pandas in Action to the finish line, and I want to express my utmost
gratitude to the people who supported me in its two-year writing process.

 First and foremost, a warm thank you to my wonderful girlfriend, Meredith. From
the first sentence, she was steadfast in her support. She’s a vivacious, funny, and kind
soul who always picked me up when the going got tough. This book is better because
of her. Thank you, Merbear.

 Thank you to my parents, Irina and Dmitriy, for providing a welcoming home
where I can always find respite.

 Thank you to my twin sisters, Mary and Alexandra. They’re remarkably clever,
inquisitive, and hard-working for their age, and I couldn’t be prouder of them. Good
luck at college!

 Thanks to Watson, our golden retriever. He’s not much of a Python expert, but he
makes up for it with his entertaining and friendly demeanor.

 A big thank you to my editor, Sarah Miller, who was an absolute joy to work with. I
am grateful for her patience and insights throughout the process. She was the true
captain of the ship, and she kept everything sailing smoothly.

 I would not be a software engineer without the opportunities I was given at Indeed.
I want to offer my former manager, Srdjan Bodruzic, a hearty thank you for his gener-
osity and mentorship (and for hiring me!). Thanks to my CX teammates—Tommy
Winschel, Danny Moncada, JP Schultz, and Travis Wright—for their wisdom and
humor. Thanks to other Indeedians who offered a helping hand during my tenure:
Matthew Morin, Chris Hatton, Chip Borsi, Nicole Saglimbene, Danielle Scoli, Blairr
Swayne, and George Improglou. Thanks to anybody I’ve shared a dinner with at
Sophie’s Cuban Cuisine!
xv

ACKNOWLEDGMENTSxvi
 I started writing this book as a software engineer at Stride Consulting. I want to
thank many Striders for their support throughout the process: David “The Domina-
tor” DiPanfilo, Min Kwak, Ben Blair, Kirsten Nordine, Michael “Bobby” Nunez, Jay
Lee, James Yoo, Ray Veliz, Nathan Riemer, Julia Berchem, Dan Plain, Nick Char, Grant
Ziolkowski, Melissa Wahnish, Dave Anderson, Chris Aporta, Michael Carlson, John
Galioto, Sean Marzug-McCarthy, Travis Vander Hoop, Steve Solomon, and Jan
Mlčoch.

 Thank you to the friendly faces I’ve had the opportunity to work with as a software
engineer and consultant: Francis Hwang, Inhak Kim, Liana Lim, Matt Bambach, Bren-
ton Morris, Ian McNally, Josh Philips, Artem Kochnev, Andrew Kang, Andrew Fader,
Karl Smith, Bradley Whitwell, Brad Popiolek, Eddie Wharton, Jen Kwok, and my favor-
ite coffee crew: Adam McAmis and Andy Fritz.

 Thank you to the following people for all they add to my life: Nick Bianco, Cam
Stier, Keith David, Michael Cheung, Thomas Philippeau, Nicole DiAndrea, and James
Rokeach.

 Thanks to my favorite band, New Found Glory, for providing the soundtrack to
many writing sessions. Pop punk’s not dead!

 Thank you to the Manning staff who shepherded the project to completion and
helped with marketing efforts: Jennifer Houle, Aleksandar Dragosavljević, Radmila
Ercegovac, Candace Gillhoolley, Stjepan Jureković, and Lucas Weber. Thanks also to
the Manning staff who oversaw the content: Sarah Miller, my developmental editor;
Deirdre Hiam, my product manager; Keir Simpson, my copyeditor; and Jason Everett,
my proofreader.

 Thanks to the technical reviewers who helped me iron out the kinks: Al Pezewski,
Alberto Ciarlanti, Ben McNamara, Björn Neuhaus, Christopher Kottmyer, Dan
Sheikh, Dragos Manailoiu, Erico Lendzian, Jeff Smith, Jérôme Bâton, Joaquin Bel-
tran, Jonathan Sharley, Jose Apablaza, Ken W. Alger, Martin Czygan, Mathijs Affourtit,
Matthias Busch, Mike Cuddy, Monica E. Guimaraes, Ninoslav Cerkez, Rick Prins, Syed
Hasany, Viton Vitanis, and Vybhavreddy Kammireddy Changalreddy. I am a better
writer and educator thanks to your efforts.

 Finally, to the city of Hoboken, my home for the past six years. I wrote many parts
of this manuscript in its public library, local cafes, and bubble tea shops. I made many
forward strides in my life in this town, and it is forever etched into my history. Thank
you, Hoboken!

about this book
Who should read this book

Pandas in Action is a comprehensive introduction to the pandas library for data analy-
sis. Pandas enables you to perform a multitude of data manipulations with ease: sort-
ing, joining, pivoting, cleaning, deduping, aggregating, and more. The book
approaches the subject matter incrementally. It introduces pandas one piece at a time,
starting with its smaller building blocks and proceeding to its larger data structures.

 Pandas in Action is written for data analysts who have intermediate experience with
spreadsheet software (such as Microsoft Excel, Google Sheets, and Apple Numbers)
and/or alternative data analysis tools (such as R and SAS). It is also a fitting title for
Python developers who are curious to learn more about data analysis.

How this book is organized: A road map

Pandas in Action consists of 14 chapters spread across two parts.
 Part 1, “Core pandas,” introduces the base mechanics of the pandas library in an

incremental manner:

 Chapter 1 analyzes a sample dataset with pandas to present a big-picture over-
view of what the library is capable of.

 Chapter 2 introduces the Series object, a core pandas data structure that stores
a collection of ordered data.

 Chapter 3 dives into the Series object in greater depth. We explore various
Series operations, including sorting values, dropping duplicates, extracting
minimums and maximums, and more.

 Chapter 4 introduces the DataFrame, a two-dimensional table of data. We apply
concepts from the previous chapters to the new data structure and introduce
additional manipulations.
xvii

ABOUT THIS BOOKxviii
 Chapter 5 shows you how to filter subsets of rows from a DataFrame by using var-
ious logical conditions: equality, inequality, comparison, inclusion, exclusion,
and more.

Part 2, “Applied pandas,” focuses on more-advanced pandas features and the prob-
lems they solve in real-world datasets:

 Chapter 6 teaches you how to work with imperfect text data in pandas. We dis-
cuss how to solve issues such as removing whitespace, fixing character casing,
and extracting multiple values from a single column.

 Chapter 7 discusses the MultiIndex, which allows us to combine multiple col-
umn values into a single identifier for a row of data.

 Chapter 8 describes how to aggregate our data in a pivot table, shift headers
from the row axis to the column axis, and convert our data from wide format to
narrow format.

 Chapter 9 explores how to group rows into buckets and aggregate the resulting
collections via the GroupBy object.

 Chapter 10 walks you through combining multiple data sets into a single one by
using various joins.

 Chapter 11 demonstrates how to work with dates and times in pandas. It covers
topics such as sorting dates, calculating durations, and determining whether a
date falls at the start of a month or quarter.

 Chapter 12 shows you how to import additional file types into pandas, including
Excel and JSON. We also learn how to export data from pandas.

 Chapter 13 focuses on configuring the library’s settings. We dive into how to
modify the number of displayed rows, alter the precision of floating-point num-
bers, round values below a threshold, and more.

 Chapter 14 explores data visualization using the matplotlib library. We see how
to use pandas data to create line charts, bar graphs, pie charts, and more.

Each chapter builds upon the preceding one. For those who are learning pandas from
scratch, I recommend proceeding through the chapters in linear order. Simultane-
ously, to ensure that the book is helpful as a reference guide, I’ve written each chapter
as an independent tutorial with its own data sets. We start writing our code from
scratch at the beginning of each chapter, so you can start with any chapter you like.

 Most chapters conclude with a coding challenge that allows you to practice its con-
cepts. I strongly recommend taking a shot at these exercises.

 Pandas is built on the Python programing language, and basic knowledge of the lan-
guage’s mechanics is recommended before you get started. For those who have limited
experience in Python, appendix B offers a hearty introduction to the language.

About the code

This book contains many examples of source code, which is formatted in a fixed-width
font like this to separate it from ordinary text.

ABOUT THIS BOOK xix
 The source code for the book’s examples is available at the following GitHub
repository: https://github.com/paskhaver/pandas-in-action. For those who are new
to Git and GitHub, look for a Download Zip button on the repository page. Those
who are experienced with Git and GitHub are welcome to clone the repo from the
command line.

 The repository also includes the complete data sets for the text. When I was learn-
ing pandas, one of my biggest frustrations was that tutorials loved to rely on randomly
generated data. There was no consistency, no context, no story, no fun. In this book,
we’ll work with many real-world data sets that cover everything from basketball play-
ers’ salaries to Pokémon types to restaurant health inspections. Data is everywhere
around us, and pandas is one of the best tools available today to make sense of it. I
hope that you enjoy the casual focus of the data sets.

liveBook discussion forum

Purchase of Pandas in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/#!/book/pandas-in-action/discussion. You can
also learn more about Manning’s forums and the rules of conduct at https://live
book.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking the author some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

Other online resources

 The official pandas documentation is available at https://pandas.pydata.org
/docs.

 In my spare time, I create technical video courses on Udemy. You can find the
courses at https://www.udemy.com/user/borispaskhaver; they include a 20-
hour pandas course and a 60-hour Python course.

 Feel free to reach out to me via Twitter (https://twitter.com/borispaskhaver) or
LinkedIn (https://www.linkedin.com/in/boris-paskhaver).

https://livebook.manning.com/#!/book/pandas-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://github.com/paskhaver/pandas-in-action
https://pandas.pydata.org/docs
https://pandas.pydata.org/docs
https://pandas.pydata.org/docs
https://www.udemy.com/user/borispaskhaver
https://twitter.com/borispaskhaver
https://www.linkedin.com/in/boris-paskhaver

about the author
BORIS PASKHAVER is a full-stack software engineer, consultant, and online educator
based in New York City. He has six courses on the e-learning platform Udemy with
over 140 hours of videos, 300,000 students, 20,000 reviews, and 1 million minutes of
content consumed monthly. Before becoming a software engineer, Boris worked as a
data analyst and systems administrator. He graduated from New York University in
2013 with a double major in business economics and marketing.

xx

about the cover illustration
The figure on the cover of Pandas in Action is captioned “Dame de Calais,” or Lady
from Calais. The illustration is taken from a collection of dress costumes from various
countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents
Pays, published in France in 1797. Each illustration is finely drawn and colored by
hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were only 200 years ago. Isolated
from one another, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify by their dress alone where they lived and what
their trade or station in life was.

 The way we dress has changed since then, and diversity by region, so abundant at
the time, has faded away. Now it is hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the deep diversity of regional life of two centuries ago, brought back to life
by Grasset de Saint-Sauveur’s pictures.

xxi

ABOUT THE COVER ILLUSTRATIONxxii

Part 1

Core pandas

Welcome! In this section, we’ll familiarize ourselves with the core
mechanics of pandas and its two primary data structures: the one-dimensional
Series and the two-dimensional DataFrame. Chapter 1 begins with an analysis
of a data set with pandas so you can immediately get a sense of what is possible
with the library. From there, we proceed to an in-depth exploration of the
Series in chapters 2 and 3. We learn how to create a Series from scratch;
import it from an external data set; and apply a slew of mathematical, statistical,
and logical operations to it. In chapter 4, we introduce the tabular DataFrame
and various ways to extract rows, columns, and values from its data. Finally, chap-
ter 5 focuses on extracting subsets of DataFrame rows by applying logical crite-
ria. Along the way, we’ll work through eight datasets that cover everything from
box-office grosses to NBA players to Pokémon.

 This part covers the essentials of pandas, the fundamentals you need to know
to work effectively with the library. I’ve made every effort to start from square
one, from the smallest building blocks possible, and proceed to the larger and
more complex elements. The following five chapters build the foundation for
your mastery of pandas. Good luck!

2 CHAPTER

Introducing pandas
Welcome to Pandas in Action! Pandas is a library for data analysis built on top of the
Python programming language. A library (also called a package) is a collection of
code for solving problems in a specific field of endeavor. Pandas is a toolbox for
data manipulation operations: sorting, filtering, cleaning, deduping, aggregating,
pivoting, and more. The epicenter of Python’s vast data science ecosystem, pandas
pairs well with other libraries for statistics, natural language processing, machine
learning, data visualization, and more.

 In this introductory chapter, we’ll explore the history and evolution of modern
data analytics tools. We’ll see how pandas grew from one financial analyst’s pet

This chapter covers
 The growth of data science in the 21st century

 The history of the pandas library for data analysis

 The pros and cons of pandas and its competitors

 Data analysis in Excel versus data analysis with a
programming language

 A tour of the library’s features through a working
example
3

4 CHAPTER 1 Introducing pandas
project to an industry standard used by companies such as Stripe, Google, and J.P.
Morgan. We’ll compare the library with its competitors, including Excel and R. We’ll
discuss the differences between working with a programming language and working
with a graphical spreadsheet application. Finally, we’ll use pandas to analyze a real-
world data set. Consider this chapter to be a sneak preview of the concepts you’ll mas-
ter throughout the book. Let’s dive in!

1.1 Data in the 21st century
“It is a capital mistake to theorize before one has data,” Sherlock Holmes advises his
assistant John Watson in “A Scandal in Bohemia,” the first of Sir Arthur Conan Doyle’s
classic short stories pairing the duo. “Insensibly one begins to twist facts to suit theo-
ries, instead of theories to suit facts.”

 The wise detective’s words continue to ring true more than a century after the pub-
lication of Doyle’s work, in a world in which data is becoming increasingly prevalent in
every facet of our lives. “The world’s most valuable resource is no longer oil, but data,”
declared The Economist in a 2017 opinion piece. Data is evidence, and evidence is critical
to businesses, governments, institutions, and individuals solving increasingly complex
problems in our interconnected world. Across a breadth of industries, the world’s
most successful companies, from Facebook to Amazon to Netflix, cite data as the most
prized asset in their portfolios. United Nations Secretary-General António Guterres
called accurate data “the lifeblood of good policy and decision-making.” Data powers
everything from movie recommendations to medical treatments, from supply chain
logistics to poverty-reduction initiatives. The success of communities, companies, and
even countries in the 21st century will depend on their ability to acquire, aggregate,
and analyze data.

1.2 Introducing pandas
The technological ecosystem of tools for working with data has grown tremendously
over the past decade. Today, the open source pandas library is one of the most popular
solutions available for data analysis and manipulation. Open source means that the
library’s source code is publicly available to download, use, modify, and distribute. Its
license grants users more permissions than proprietary software such as Excel. Pandas
is free to use. A global team of volunteer software developers maintains the library, and
you can find its complete source code on GitHub (https://github.com/pandas-dev/
pandas).

 Pandas is comparable to Microsoft’s Excel spreadsheet software and Google’s in-
browser Sheets application. In all three technologies, a user interacts with tables con-
sisting of rows and columns of data. A row represents a record or, equivalently, one
collection of values for the columns. Transformations are applied to coax the data
into the desired state.

 Figure 1.1 displays a sample transformation of a data set. The analyst applies an
operation to the four-row data set on the left to arrive at the two-row data set on the

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas

5Introducing pandas
right. They may select rows that fit a criterion, for example, or remove duplicate rows
from the original data set.

 What makes pandas unique is the balance it strikes between processing power and
user productivity. By relying on lower-level languages such as C for many of its calcula-
tions, the library can efficiently transform million-row data sets in milliseconds. At the
same time, it maintains a simple and intuitive set of commands. It is easy to accom-
plish a lot with a little code in pandas.

 Figure 1.2 shows some sample pandas code that imports and sorts a CSV data set.
Don’t worry about the code yet, but take a second to notice that the entire operation
takes only two lines of code.

Figure 1.2 A sample of code that imports and sorts a data set in pandas

Pandas works seamlessly with numbers, text, dates, times, missing data, and more.
We’ll explore its incredible versatility as we proceed through the more than 30 data
sets included with this book.

 The first version of pandas was developed in 2008 by software developer Wes
McKinney, who was working at New York’s AQR Capital Management investment firm.
Dissatisfied with both Excel and the statistical programming language R, McKinney
searched for a tool that would make it easy to solve common data problems in the

Figure 1.1 A sample transformation of a tabular data set

6 CHAPTER 1 Introducing pandas
financial industry, particularly cleanup and aggregation. Unable to find an ideal prod-
uct, he decided to build one himself. At the time, Python was far from the powerhouse
it is today, but the beauty of the language inspired McKinney to build his library on
top of its foundation. “I loved [Python] for its economy of expressions,” he stated in
Quartz (http://mng.bz/w0Na). “You can express complicated ideas in Python with
very little code, and it is very easy to read.”

 Pandas has seen continual, extensive growth since its release to the public in
December 2009. User counts are estimated to be between five and ten million.1 As of
June 2021, pandas has been downloaded more than 750 million times from PyPi, the
centralized online repository of Python packages (https://pepy.tech/project/pandas).
Its GitHub code repository has more than 30,000 stars (a star is equivalent to a “like” on
the platform). Pandas questions make up a growing percentage of questions on the
question-answer aggregator Stack Overflow, suggesting increased user interest.

 I would argue that we can even credit pandas for the astronomical growth of
Python itself. The language has exploded in popularity because of its prevalence in
data science, a field to which pandas contributes greatly. Python is now the most com-
mon first language taught at colleges and universities. The TIOBE index, a ranking of
programming language popularity by search engine traffic, declared Python to be the
fastest-growing language of 2018.2 “If Python can keep this pace, it will probably
replace C and Java in 3 to 4 years’ time, thus becoming the most popular program-
ming language of the world,” wrote TIOBE in a press release. As you learn pandas,
you’ll also be learning Python, which is another perk of the library.

1.2.1 Pandas vs. graphical spreadsheet applications

Pandas requires a different mindset from a graphical spreadsheet app such as Excel.
Programming is inherently more verbal than it is visual. We communicate with the
computer through commands, not clicks. Because it makes fewer assumptions about
what you’re trying to accomplish, a programming language tends to be more unfor-
giving. It needs to be told what to do with no uncertainty. We need to issue the correct
instructions with the correct inputs in the correct order; otherwise, the program will
not work.

 Due to these stricter requirements, pandas has a steeper learning curve than Excel
or Sheets. But if you have limited experience in Python or programming in general,
there’s no need to worry! When you’re fiddling with functions such as SUMIF and
VLOOKUP in Excel, you’re already thinking like a programmer. The process is the
same: identify the correct function to use and then supply the right inputs in the
proper order. Pandas requires an identical set of skills; the difference is that we’re
communicating with the computer in a more verbose language.

1 See “What’s the future of the pandas library?,” Data School, https://www.dataschool.io/future-of-pandas.
2 See Oliver Peckham, “TIOBE Index: Python Reaches Another All-Time High,” HPC Wire, http://mng.bz/

w0XP.

https://pepy.tech/project/pandas
https://www.dataschool.io/future-of-pandas
http://mng.bz/w0XP
http://mng.bz/w0XP
http://mng.bz/w0Na

7Introducing pandas
 When you become familiar with its complexities, pandas grants you greater power
and flexibility in your data manipulations. In addition to extending the range of your
available procedures, programming allows you to automate them. You can write a
piece of code once and reuse it across multiple files—perfect for those pesky daily and
weekly reports. It’s important to note that Excel comes bundled with Visual Basic for
Applications (VBA), a programming language that also enables you to automate
spreadsheet procedures. I would argue, however, that Python is easier to pick up than
VBA and has uses beyond data analysis, making it a better investment of your time.

 There are additional benefits to making the jump from Excel to Python. Jupyter
Notebook, the coding environment often paired with pandas, allows for more
dynamic, interactive, and comprehensive reports. A Jupyter Notebook consists of cells,
each of which contains a chunk of executable code. An analyst can integrate these
cells with headers, charts, descriptions, annotations, images, videos, diagrams, and
more. Readers can follow the analyst’s step-by-step logic to see how they reached their
conclusion, not only their final result.

 Another advantage of pandas is Python’s large data science ecosystem. Pandas inte-
grates easily with libraries for statistics, natural language processing, machine learn-
ing, web scraping, data visualization, and more. New libraries appear yearly.
Experimentation is welcomed. Innovation is constant. These robust tools sometimes
remain underdeveloped in corporate competitors, which lack the support of a large,
global community of contributors.

 Graphical spreadsheet applications also begin to struggle as data sets grow; pandas
is significantly more powerful than Excel in this aspect. The capacity of the library is
limited only by the computer’s memory and processing power. On most modern
machines, pandas plays well with multigigabyte data sets with millions of rows, espe-
cially when a developer knows how to exploit all its performance optimizations. In a
blog post describing the limitations of the library, creator Wes McKinney wrote, “Now-
adays, my rule of thumb for pandas is that you should have 5 to 10 times more RAM as
the size of your data set” (http://mng.bz/qeK6).

 Part of the challenge in choosing the best tool for the job is defining what terms
such as data analysis and big data mean to your organization and your project. Excel,
which is used by approximately 750 million working professionals globally, limits its
spreadsheets to 1,048,576 rows of data.3 For some analysts, 1 million rows of data are
more than any report requires; for others, 1 million rows only scratch the surface.

 I would advise you to look at pandas as being not the best data analysis solution but
a powerful option to use alongside other modern technologies. Excel is still an excel-
lent choice for quick, easy data manipulations. A spreadsheet application usually
makes assumptions about your intent, which is why it takes only a few clicks to import
a CSV file or sort a column of 100 values. There’s no real advantage to using pandas
for simple tasks like these (although it’s more than capable of doing them). But what

3 See Andy Patrizio, “Excel: Your entry into the world of data analytics,” Computer World, http://mng.bz/qe6r.

http://mng.bz/qe6r
http://mng.bz/qeK6

8 CHAPTER 1 Introducing pandas
do you use when you need to clean text values in two data sets of ten million rows
each, remove their duplicate records, join them, and replicate that logic for 100
batches of files? For those scenarios, it’s easier and less time-consuming to do the work
with Python and pandas.

1.2.2 Pandas vs. its competitors

Data science enthusiasts frequently compare pandas with the open source program-
ming language R and the proprietary software suite SAS. Each solution has its own
community of advocates.

 R is a specialized language with a foundation in statistics, whereas Python is a gen-
eralist language used in multiple technical domains. Predictably, the two languages
tend to attract users with expertise in specific fields. Hadley Wickham, a prominent
developer in the R community who built a collection of data science packages called
tidyverse, advises users to see the two languages as collaborators rather than rivals.
“These things exist independently and are both awesome in different ways,” he said in
Quartz (http://mng.bz/Jv9V). “A pattern that I see is that the data science team in a
company uses R and the data engineering team uses Python. The Python people tend
to have a background in software engineering and are very confident about their pro-
gramming skills. . . . [The R users] really like R, but can’t argue with the engineering
team because they don’t have the language to make that argument.” One language
may have an advanced feature that the other does not, but the two have achieved near
parity when it comes to common tasks in data analysis. Developers and data scientists
simply gravitate to what they know best.

 A suite of complementary software tools that supports statistics, data mining,
econometrics, and more, SAS is a commercial product developed by the North Caro-
lina-based SAS Institute. It charges an annual user subscription fee that varies based
on the bundle of selected software. The advantages conferred by a corporate-backed
product include technical and visual consistency across tools, robust documentation,
and a product road map geared towards enterprise clients’ needs. Open source tech-
nology like pandas enjoys a more free-for-all approach; developers work for their
needs and for other developers’ needs, which sometimes miss market trends.

 Certain technologies share features with pandas but serve intrinsically different
purposes. SQL is one example. SQL (Structured Query Language) is a language for
communicating with relational databases. A relational database consists of tables of data
linked by common keys. We can use SQL for basic data manipulations such as extract-
ing columns from tables and filtering rows by a criterion, but its functionalities are
greater in scope and fundamentally revolve around data management. Databases are
built to store data; data analysis is a secondary use case. SQL can create new tables,
update existing records with new values, delete existing records, and so on. By com-
parison, pandas is built entirely for data analysis: statistical calculations, data wran-
gling, data merges, and more. In a typical work environment, the two tools often serve
as complements. An analyst might use SQL to extract an initial cluster of data and
then use pandas to manipulate it.

http://mng.bz/Jv9V

9A tour of pandas
 In summary, pandas is not the only tool in town, but it is a powerful, popular, and
valuable solution for solving most data analysis problems. Again, Python truly shines
in its focus on brevity and productivity. As its creator, Guido van Rossum, remarked,
“The joy of coding Python should be in seeing short, concise, readable [data struc-
tures] that express a lot of action in a small amount of clear code” (http://mng.bz/
7jo7). Pandas lives up to that standard and is an excellent next step for spreadsheet
analysts who are eager to grow their programming skills with a powerful, modern data
analysis toolkit.

1.3 A tour of pandas
The best way to grasp the power of pandas is to see it in action. Let’s take a quick tour
of the library by analyzing a data set of the 700 highest-grossing movies of all time. I
hope you are pleasantly surprised by how intuitive the syntax of pandas can be, even if
you are new to programming.

 As you proceed through the rest of the chapter, try not to overanalyze the code
samples; you don’t even need to copy them. Our goal right now is to get a bird’s-eye
view of the features and functionalities of pandas. Think about what the library can
do; we’ll worry about how in greater detail later.

 We’ll be using the Jupyter Notebook development environment to write our code
throughout the book. If you need help setting up pandas and Jupyter Notebook on
your computer, see appendix A. You can download all data sets and completed Jupyter
Notebooks at https://www.github.com/paskhaver/pandas-in-action.

1.3.1 Importing a data set

Let’s get started! First, we’ll create a new Jupyter Notebook inside the same directory
as the movies.csv file; then we’ll import the pandas library to gain access to its features:

In [1] import pandas as pd

The box to the left of the code (displaying the number 1 in the previous example)
marks the cell’s execution order relative to the launch or restart of the Jupyter Note-
book. You can execute the cells in any order, and you can execute the same cell multi-
ple times.

 As you read through the book, you are encouraged to experiment by executing dif-
ferent snippets of code in your Jupyter cells. Thus, it is OK if your execution numbers
do not match those in the text.

 Our data is stored in a single movies.csv file. A CSV (comma-separated values) file
is a plain-text file that separates each row of data with a line break and each row value
with a comma. The first row in the file holds the column headers for the data. Here’s
a preview of the first three rows of movies.csv:

Rank,Title,Studio,Gross,Year
1,Avengers: Endgame,Buena Vista,"$2,796.30",2019
2,Avatar,Fox,"$2,789.70",2009

https://www.github.com/paskhaver/pandas-in-action
http://mng.bz/7jo7
http://mng.bz/7jo7

10 CHAPTER 1 Introducing pandas
The first row lists the five columns in the data set: Rank, Title, Studio, Gross, and Year.
The second row holds the first record or, equivalently, the data for the first movie. The
film has a Rank of 1, a Title of "Avengers: Endgame", a Studio of "Buena Vista", a
Gross of "$2,796.30", and a Year of 2019. The next line holds the values for the
next movie, and the pattern repeats for the remaining 750-plus rows in the data set.

 Pandas can import various file types, each of which has an associated import func-
tion at the top level of the library. A function in pandas is equivalent to a function in
Excel. It’s a command that we issue, either to the library or an entity within it. In this
scenario, we’ll use the read_csv function to import the movies.csv file:

In [2] pd.read_csv("movies.csv")

Out [2]

 Rank Title Studio Gross Year

 0 1 Avengers: Endgame Buena Vista $2,796.30 2019
 1 2 Avatar Fox $2,789.70 2009
 2 3 Titanic Paramount $2,187.50 1997
 3 4 Star Wars: The Force Awakens Buena Vista $2,068.20 2015
 4 5 Avengers: Infinity War Buena Vista $2,048.40 2018
 … … … … … …
777 778 Yogi Bear Warner Brothers $201.60 2010
778 779 Garfield: The Movie Fox $200.80 2004
779 780 Cats & Dogs Warner Brothers $200.70 2001
780 781 The Hunt for Red October Paramount $200.50 1990
781 782 Valkyrie MGM $200.30 2008

782 rows × 5 columns

Pandas imports the CSV file’s contents into an object called a DataFrame. Think of
an object as a container for storing data. Different objects are optimized for different
types of data, and we interact with them in different ways. Pandas uses one type of
object (the DataFrame) to store multicolumn data sets and another type of object
(the Series) to store single-column data sets. A DataFrame is comparable to a multi-
column table in Excel.

 To avoid cluttering the screen, pandas displays only the first five and last five rows
of the DataFrame. A row of ellipses (. . .) marks where the data gap occurs.

 This DataFrame consists of five columns (Rank, Title, Studio, Gross, Year) and an
index. The index is the range of ascending numbers on the left side of the Data-
Frame. Index labels serve as identifiers for rows of data. We can set any column as the
index of the DataFrame. When we do not explicitly tell pandas which column to use,
the library generates a numeric index starting from 0.

 What column is a good candidate for the index? It’s one whose values can act as a
primary identifier or point of reference for each row. Among our five columns, Rank
and Title are the two best options. Let’s swap the autogenerated numeric index with
the values from the Title column. We can do so directly during the CSV import:

11A tour of pandas
In [3] pd.read_csv("movies.csv", index_col = "Title")

Out [3]

 Rank Studio Gross Year
Title

 Avengers: Endgame 1 Buena Vista $2,796.30 2019
 Avatar 2 Fox $2,789.70 2009
 Titanic 3 Paramount $2,187.50 1997
Star Wars: The Force Awakens 4 Buena Vista $2,068.20 2015
 Avengers: Infinity War 5 Buena Vista $2,048.40 2018
 … … … … …
 Yogi Bear 778 Warner Brothers $201.60 2010
 Garfield: The Movie 779 Fox $200.80 2004
 Cats & Dogs 780 Warner Brothers $200.70 2001
 The Hunt for Red October 781 Paramount $200.50 1990
 Valkyrie 782 MGM $200.30 2008

782 rows × 4 columns

Next, we’ll assign the DataFrame to a movies variable so that we can reference it else-
where in our program. A variable is a user-assigned name for an object in the program:

In [4] movies = pd.read_csv("movies.csv", index_col = "Title")

For more on variables, check out appendix B.

1.3.2 Manipulating a DataFrame

We can look at the DataFrame from a variety of angles. We can extract a few rows
from the beginning:

In [5] movies.head(4)

Out [5]

 Rank Studio Gross Year
Title

Avengers: Endgame 1 Buena Vista $2,796.30 2019
Avatar 2 Fox $2,789.70 2009
Titanic 3 Paramount $2,187.50 1997
Star Wars: The Force Awakens 4 Buena Vista $2,068.20 2015

Or we can peek at the end of the data set instead:

In [6] movies.tail(6)

Out [6]

 Rank Studio Gross Year
Title

21 Jump Street 777 Sony $201.60 2012
Yogi Bear 778 Warner Brothers $201.60 2010
Garfield: The Movie 779 Fox $200.80 2004
Cats & Dogs 780 Warner Brothers $200.70 2001
The Hunt for Red October 781 Paramount $200.50 1990
Valkyrie 782 MGM $200.30 2008

12 CHAPTER 1 Introducing pandas
We can find out how many rows the DataFrame has:

In [7] len(movies)

Out [7] 782

We can ask pandas for the number of rows and columns in the DataFrame. This data
set has 782 rows and 4 columns:

In [8] movies.shape

Out [8] (782, 4)

We can inquire about the total number of cells:

In [9] movies.size

Out [9] 3128

We can ask for the data types of the four columns. In the following output, int64
denotes an integer column, and object denotes a text column:

In [10] movies.dtypes

Out [10]

Rank int64
Studio object
Gross object
Year int64
dtype: object

We can extract a row from the data set by its numeric order in line, also called its index
position. In most programming languages, the index starts counting at 0. Thus, if we
wanted to pull out the 500th movie in the data set, we would target index position 499:

In [11] movies.iloc[499]

Out [11] Rank 500
 Studio Fox
 Gross $288.30
 Year 2018
 Name: Maze Runner: The Death Cure, dtype: object

Pandas returns a new object here called a Series, a one-dimensional labeled array of
values. Think of it as a single column of data with an identifier for each row. Notice
that the Series’ index labels (Rank, Studio, Gross, and Year) are the four columns
from the movies DataFrame. Pandas has altered the presentation of the original
row’s values.

 We can also use an index label to access a DataFrame row. As a reminder, our
DataFrame index holds the films’ titles. Let’s extract the row values for everyone’s
favorite tearjerker, Forrest Gump. The next example extracts a row by its index label
rather than its numeric position:

13A tour of pandas
In [12] movies.loc["Forrest Gump"]

Out [12] Rank 119
 Studio Paramount
 Gross $677.90
 Year 1994
 Name: Forrest Gump, dtype: object

Index labels can contain duplicates. Two movies in the DataFrame have the title "101
Dalmatians", for example (the 1961 original and the 1996 remake):

In [13] movies.loc["101 Dalmatians"]

Out [13]

 Rank Studio Gross Year
Title

101 Dalmatians 425 Buena Vista $320.70 1996
101 Dalmatians 708 Buena Vista $215.90 1961

Although pandas permits duplicates, I recommend keeping index labels unique if
possible. A unique collection of labels accelerates the speed at which pandas can
locate and extract a specific row.

 The films in the CSV are sorted by values in the Rank column. What if we wanted
to see the five movies with the most recent release date? We can sort the DataFrame
by the values in another column, such as Year:

In [14] movies.sort_values(by = "Year", ascending = False).head()

Out [14]

 Rank Studio Gross Year
Title

Avengers: Endgame 1 Buena Vista 2796.3 2019
John Wick: Chapter 3 - Parab... 458 Lionsgate 304.7 2019
The Wandering Earth 114 China Film Corporation 699.8 2019
Toy Story 4 198 Buena Vista 519.8 2019
How to Train Your Dragon: Th... 199 Universal 519.8 2019

We can also sort DataFrames by values across multiple columns. Let’s sort movies
first by the Studio column’s values and then by the Year column’s values. Now we can
see the films organized alphabetically by both studio and release date:

In [15] movies.sort_values(by = ["Studio", "Year"]).head()

Out [15]

 Rank Studio Gross Year
Title

The Blair Witch Project 588 Artisan $248.60 1999
101 Dalmatians 708 Buena Vista $215.90 1961
The Jungle Book 755 Buena Vista $205.80 1967
Who Framed Roger Rabbit 410 Buena Vista $329.80 1988
Dead Poets Society 636 Buena Vista $235.90 1989

14 CHAPTER 1 Introducing pandas
We can also sort the index, which is helpful if we want to see the movies in alphabeti-
cal order:

In [16] movies.sort_index().head()

Out [16]

 Rank Studio Gross Year
Title

10,000 B.C. 536 Warner Brothers $269.80 2008
101 Dalmatians 708 Buena Vista $215.90 1961
101 Dalmatians 425 Buena Vista $320.70 1996
2 Fast 2 Furious 632 Universal $236.40 2003
2012 93 Sony $769.70 2009

The operations we’ve performed so far return new DataFrame objects. Pandas has not
altered the original movies DataFrame from the CSV file. The nondestructive nature
of these operations is beneficial; it actively encourages experimentation. We can
always confirm that a result is correct before making it permanent.

1.3.3 Counting values in a Series

Let’s try a more sophisticated analysis. What if we wanted to find out which movie stu-
dio had the greatest number of highest-grossing films? To solve this problem, we’ll
need to count the number of times each studio appears in the Studio column.

 We can extract a single column of data from a DataFrame as a Series. Notice
that pandas preserves the DataFrame’s index, the movie titles, in the Series:

In [17] movies["Studio"]

Out [17] Title
 Avengers: Endgame Buena Vista
 Avatar Fox
 Titanic Paramount
 Star Wars: The Force Awakens Buena Vista
 Avengers: Infinity War Buena Vista
 ...
 Yogi Bear Warner Brothers
 Garfield: The Movie Fox
 Cats & Dogs Warner Brothers
 The Hunt for Red October Paramount
 Valkyrie MGM
 Name: Studio, Length: 782, dtype: object

If a Series has a large number of rows, pandas truncates the data set to show only the
first five and the last five rows.

 Now that we’ve isolated the Studio column, we can count each unique value’s
number of occurrences. Let’s limit our results to the top 10 studios:

In [18] movies["Studio"].value_counts().head(10)

Out [18] Warner Brothers 132
 Buena Vista 125
 Fox 117

15A tour of pandas
 Universal 109
 Sony 86
 Paramount 76
 Dreamworks 27
 Lionsgate 21
 New Line 16
 MGM 11
 Name: Studio, dtype: int64

The return value above is yet another Series object! This time around, pandas uses
the studios from the Studio column as the index labels and their counts as the
Series values.

1.3.4 Filtering a column by one or more criteria

You’ll often want to extract a subset of rows based on one or more criteria. Excel
offers the Filter tool for this exact purpose.

 What if we wanted to find only the films released by Universal Studios? We can
accomplish this task with one line of code in pandas:

In [19] movies[movies["Studio"] == "Universal"]

Out [19]

 Rank Studio Gross Year
Title

Jurassic World 6 Universal $1,671.70 2015
Furious 7 8 Universal $1,516.00 2015
Jurassic World: Fallen Kingdom 13 Universal $1,309.50 2018
The Fate of the Furious 17 Universal $1,236.00 2017
Minions 19 Universal $1,159.40 2015
 … … … … …
The Break-Up 763 Universal $205.00 2006
Everest 766 Universal $203.40 2015
Patch Adams 772 Universal $202.30 1998
Kindergarten Cop 775 Universal $202.00 1990
Straight Outta Compton 776 Universal $201.60 2015

109 rows × 4 columns

We can assign the filtering condition to a variable to provide context for readers:

In [20] released_by_universal = (movies["Studio"] == "Universal")
 movies[released_by_universal].head()

Out [20]

 Rank Studio Gross Year
Title

Jurassic World 6 Universal $1,671.70 2015
Furious 7 8 Universal $1,516.00 2015
Jurassic World: Fallen Kingdom 13 Universal $1,309.50 2018
The Fate of the Furious 17 Universal $1,236.00 2017
Minions 19 Universal $1,159.40 2015

16 CHAPTER 1 Introducing pandas
We can also filter DataFrame rows by multiple criteria. The next example targets all
movies released by Universal Studios and released in 2015:

In [21] released_by_universal = movies["Studio"] == "Universal"
 released_in_2015 = movies["Year"] == 2015
 movies[released_by_universal & released_in_2015]

Out [21]

 Rank Studio Gross Year
Title

Jurassic World 6 Universal $1,671.70 2015
Furious 7 8 Universal $1,516.00 2015
Minions 19 Universal $1,159.40 2015
Fifty Shades of Grey 165 Universal $571.00 2015
Pitch Perfect 2 504 Universal $287.50 2015
Ted 2 702 Universal $216.70 2015
Everest 766 Universal $203.40 2015
Straight Outta Compton 776 Universal $201.60 2015

The previous example includes rows that satisfied both conditions. We can also filter
for films that fit either condition: released by Universal or released in 2015. The result-
ing DataFrame is longer because more films have a chance of satisfying one of the
two conditions instead of both:

In [22] released_by_universal = movies["Studio"] == "Universal"
 released_in_2015 = movies["Year"] == 2015
 movies[released_by_universal | released_in_2015]

Out [22]

 Rank Studio Gross Year
Title

Star Wars: The Force Awakens 4 Buena Vista $2,068.20 2015
Jurassic World 6 Universal $1,671.70 2015
Furious 7 8 Universal $1,516.00 2015
Avengers: Age of Ultron 9 Buena Vista $1,405.40 2015
Jurassic World: Fallen Kingdom 13 Universal $1,309.50 2018
 … … … … …
The Break-Up 763 Universal $205.00 2006
Everest 766 Universal $203.40 2015
Patch Adams 772 Universal $202.30 1998
Kindergarten Cop 775 Universal $202.00 1990
Straight Outta Compton 776 Universal $201.60 2015

140 rows × 4 columns

Pandas provides additional ways to filter a DataFrame. We can target column values
less than or greater than a specific value, for example. Here, we target movies released
before 1975:

17A tour of pandas
In [23] before_1975 = movies["Year"] < 1975
 movies[before_1975]

Out [23]

 Rank Studio Gross Year
Title

The Exorcist 252 Warner Brothers $441.30 1973
Gone with the Wind 288 MGM $402.40 1939
Bambi 540 RKO $267.40 1942
The Godfather 604 Paramount $245.10 1972
101 Dalmatians 708 Buena Vista $215.90 1961
The Jungle Book 755 Buena Vista $205.80 1967

We can also specify a range between which all values must fall. The next example pulls
out movies released between 1983 and 1986:

In [24] mid_80s = movies["Year"].between(1983, 1986)
 movies[mid_80s]

Out [24]

 Rank Studio Gross Year
Title

Return of the Jedi 222 Fox $475.10 1983
Back to the Future 311 Universal $381.10 1985
Top Gun 357 Paramount $356.80 1986
Indiana Jones and the Temple of Doom 403 Paramount $333.10 1984
Crocodile Dundee 413 Paramount $328.20 1986
Beverly Hills Cop 432 Paramount $316.40 1984
Rocky IV 467 MGM $300.50 1985
Rambo: First Blood Part II 469 TriStar $300.40 1985
Ghostbusters 485 Columbia $295.20 1984
Out of Africa 662 Universal $227.50 1985

We can also use the DataFrame index to filter rows. The next example lowercases the
movie titles in the index and finds all movies with the word "dark" in their title:

In [25] has_dark_in_title = movies.index.str.lower().str.contains("dark")
 movies[has_dark_in_title]

Out [25]

 Rank Studio Gross Year
Title

Transformers: Dark of the Moon 23 Paramount $1,123.80 2011
The Dark Knight Rises 27 Warner Brothers $1,084.90 2012
The Dark Knight 39 Warner Brothers $1,004.90 2008
Thor: The Dark World 132 Buena Vista $644.60 2013
Star Trek Into Darkness 232 Paramount $467.40 2013
Fifty Shades Darker 309 Universal $381.50 2017
Dark Shadows 600 Warner Brothers $245.50 2012
Dark Phoenix 603 Fox $245.10 2019

Notice that pandas finds all movies containing the word "dark" irrespective of where
the text appears in the title.

18 CHAPTER 1 Introducing pandas
1.3.5 Grouping data

Our next challenge is the most complex one yet. We might be curious which studio
had the highest total grosses across all films. Let’s aggregate the values in the Gross
column by studio.

 Our first dilemma is that the Gross column’s values are stored as text rather than as
numbers. Pandas imported the column’s values as text to preserve the dollar signs and
comma symbols in the original CSV. We can convert the column’s values to decimal
numbers, but only if we remove both of those characters. The next example replaces
all occurrences of "$" and "," with empty text. This operation is similar to Find and
Replace in Excel:

In [26] movies["Gross"].str.replace(
 "$", "", regex = False
).str.replace(",", "", regex = False)

Out [26] Title
 Avengers: Endgame 2796.30
 Avatar 2789.70
 Titanic 2187.50
 Star Wars: The Force Awakens 2068.20
 Avengers: Infinity War 2048.40
 ...
 Yogi Bear 201.60
 Garfield: The Movie 200.80
 Cats & Dogs 200.70
 The Hunt for Red October 200.50
 Valkyrie 200.30
 Name: Gross, Length: 782, dtype: object

With the symbols gone, we can convert the Gross column’s values from text to float-
ing-point numbers:

In [27] (
 movies["Gross"]
 .str.replace("$", "", regex = False)
 .str.replace(",", "", regex = False)
 .astype(float)
)

Out [27] Title
 Avengers: Endgame 2796.3
 Avatar 2789.7
 Titanic 2187.5
 Star Wars: The Force Awakens 2068.2
 Avengers: Infinity War 2048.4
 ...
 Yogi Bear 201.6
 Garfield: The Movie 200.8
 Cats & Dogs 200.7
 The Hunt for Red October 200.5
 Valkyrie 200.3
 Name: Gross, Length: 782, dtype: float64

19A tour of pandas
Once again, these operations are temporary and do not modify the original Gross
Series. In all the previous examples, pandas created a copy of the original data struc-
ture, performed the operation, and returned a new object. The next example explic-
itly overwrites the Gross column in movies with a new column of decimal-point
numbers. Now the transformation is permanent:

In [28] movies["Gross"] = (
 movies["Gross"]
 .str.replace("$", "", regex = False)
 .str.replace(",", "", regex = False)
 .astype(float)
)

Our data type conversion opens the door to more calculations and manipulations.
The next example calculates the average box-office gross of the movies:

In [29] movies["Gross"].mean()

Out [29] 439.0308184143222

Let’s return to our original problem: calculating the aggregate box-office grosses per
film studio. First, we’ll need to identify the studios and bucket the movies (or rows)
that belong to each one. This process is called grouping. In the next example, we
group the DataFrame’s rows based on values in the Studio column:

In [30] studios = movies.groupby("Studio")

We can ask pandas to count the number of films per studio:

In [31] studios["Gross"].count().head()

Out [31] Studio
 Artisan 1
 Buena Vista 125
 CL 1
 China Film Corporation 1
 Columbia 5
 Name: Gross, dtype: int64

The previous results are sorted alphabetically by studio name. We can instead sort the
Series by count of films, from most to least:

In [32] studios["Gross"].count().sort_values(ascending = False).head()

Out [32] Studio
 Warner Brothers 132
 Buena Vista 125
 Fox 117
 Universal 109
 Sony 86
 Name: Gross, dtype: int64

20 CHAPTER 1 Introducing pandas
Next, let’s add the values of the Gross column per studio. Pandas will identify the sub-
set of movies that belong to each studio, pull out their row’s respective Gross values,
and sum them together:

In [33] studios["Gross"].sum().head()

Out [33] Studio
 Artisan 248.6
 Buena Vista 73585.0
 CL 228.1
 China Film Corporation 699.8
 Columbia 1276.6
 Name: Gross, dtype: float64

Again, pandas sorts the results by studio name. We want to identify the studios with
the highest grosses, so let’s sort the Series values in descending order. Here are the
five studios with the greatest grosses:

In [34] studios["Gross"].sum().sort_values(ascending = False).head()

Out [34] Studio
 Buena Vista 73585.0
 Warner Brothers 58643.8
 Fox 50420.8
 Universal 44302.3
 Sony 32822.5
 Name: Gross, dtype: float64

With a few lines of code, we can derive some fun insights from this complex data set.
The Warner Brothers studio, for example, has more movies in the list than Buena Vista,
but Buena Vista has a higher cumulative gross for all films. This fact indicates that the
average gross of a Buena Vista film is greater than that of a Warner Brothers film.

 We have barely scratched the surface of what pandas is capable of doing. I hope
that these examples have shed light on the diverse ways we can manipulate and trans-
form data with this powerful library. We’ll discuss all the code used in this chapter in
much greater detail throughout the book. Next, we’ll dive into a core building block
of pandas: the Series object.

Summary
 Pandas is a data analysis library built on top of the Python programming lan-

guage.
 Pandas excels at performing complex operations on large data sets with a terse

syntax.
 Competitors to pandas include the graphical spreadsheet application Excel, the

statistical programming language R, and the SAS software suite.
 Programming requires a different skill set than working with Excel or Sheets.
 Pandas can import a variety of file formats. A popular format is CSV, which sep-

arates rows with line breaks and row values with commas.

21Summary
 The DataFrame is the primary data structure in pandas. It is effectively a table
of data with multiple columns.

 The Series is a one-dimensional labeled array. Think of it as a single column
of data.

 We can access a row in a Series or DataFrame by its row number or index
label.

 We can sort a DataFrame by values across one or more columns.
 We can use logical conditions to extract subsets of data from a DataFrame.
 We bucket DataFrame rows based on a column’s values. We can also perform

aggregate operations such as sums on the resulting groups.

The Series object
One of pandas’ core data structures, the Series is a one-dimensional labeled array
for homogeneous data. An array is an ordered collection of values comparable to a
Python list. The term homogeneous means that the values are of the same data type
(all integers or all Booleans, for example).

 Pandas assigns each Series value a label—an identifier we can use to locate the
value. The library also assigns each Series value an order—a position in line. The
order starts counting from 0; the first Series value occupies position 0, the second

This chapter covers
 Instantiating Series objects from lists,

dictionaries, tuples, and more

 Setting a custom index on a Series

 Accessing attributes and invoking methods on
a Series

 Performing mathematical operations on one
or more Series

 Passing the Series to Python’s built-in
functions
22

23Overview of a Series
value occupies position 1, and so on. The Series is a one-dimensional data structure
because we need one reference point to access a value: either a label or a position.

 A Series combines and expands the best features of Python’s native data struc-
tures. Like a list, it holds its values in a sequenced order. Like a dictionary, it assigns a
key/label to each value. We gain the benefits of both of those objects plus more than
180 methods for data manipulation.

 In this chapter, we’ll familiarize ourselves with the mechanics of a Series object,
learn how to calculate the sum and average of Series values, apply mathematical
operations to each Series value, and more. As a building block of pandas, the
Series is a perfect starting point for our exploration of the library.

2.1 Overview of a Series
Let’s create some Series objects, shall we? We’ll begin by importing the pandas and
NumPy packages with the import keyword; we’ll use the latter library in section 2.1.4.
The popular community aliases for pandas and numpy are pd and np. We can assign
an alias to an import with the as keyword:

In [1] import pandas as pd
 import numpy as np

The pd namespace holds the top-level exports of the pandas package, a bundle of
more than 100 classes, functions, exceptions, constants, and more. For more informa-
tion on these concepts, see appendix B.

 Think of pd as being the lobby to the library—an entrance room where we can
access pandas’ available features. The library’s exports are available as attributes on
pd. We can access an attribute with dot syntax:

pd.attribute

Jupyter Notebook provides a convenient autocomplete feature for use in searching
for attributes. Enter the library’s name, add a dot, and press the Tab key to reveal a
modal of the package’s exports. As you type additional characters, the Notebook fil-
ters the results to those that match your search term.

 Figure 2.1 shows the autocomplete
feature in action. After entering the cap-
ital letter S, we can press Tab to reveal all
pd exports starting with that character.
Note that the search is case-sensitive. If
the autocomplete feature is not working,
add the following code to a cell in your
Notebook, execute it, and try searching
again:

%config Completer.use_jedi = False

Figure 2.1 Using Jupyter Notebook’s
autocomplete features to show pandas exports
that start with S

24 CHAPTER 2 The Series object
We can use our keyboard’s up- and down-arrow keys to navigate the modal’s search
results. Luckily, the Series class is our first search result. Press the Enter key to auto-
complete its name.

2.1.1 Classes and instances

A class is a blueprint for a Python object. The pd.Series class is a template, and the
next step is to create a concrete instance of it. We instantiate an object from a class
with a pair of opening and closing parentheses. Let’s create a Series object from the
Series class:

In [2] pd.Series()

Out [2] Series([], dtype: float64)

A warning might appear in a red box alongside the output:

DeprecationWarning: The default dtype for empty Series will be 'object'
instead of 'float64' in a future version. Specify a dtype explicitly to
silence this warning.

Because we did not provide any values to store, pandas could not infer the data type
that the Series should hold. No need to worry; the warning is expected behavior.

 We’ve successfully created our first Series object! Unfortunately, it stores no data.
Let’s populate our Series with some values.

2.1.2 Populating the Series with values

A constructor is a method that builds an object from a class. When we wrote pd.Series()
in section 2.1.1, we used the Series constructor to create a new Series object.

 When we create an object, we’ll often want to define its starting state. We can think
of an object’s starting state as being its initial configuration—its “settings.” We can
often set state by passing arguments to the constructor that we use to create the
object. An argument is an input we pass to a method.

 Let’s practice creating some Series from manual data. The goal is to get comfort-
able with the look and feel of the data structure. In the future, we’ll use an imported
data set to populate our Series’ values.

 The first argument to the Series constructor is an iterable object whose values
will populate the Series. We can pass various inputs, including lists, dictionaries,
tuples, and NumPy ndarrays.

 Let’s create a Series object with data from a Python list. The next example
declares a list of four strings, assigns the list to an ice_cream_flavors variable, and
then passes the list to the Series constructor:

In [3] ice_cream_flavors = [
 "Chocolate",
 "Vanilla",
 "Strawberry",
 "Rum Raisin",
]

25Overview of a Series
 pd.Series(ice_cream_flavors)

Out [3] 0 Chocolate
 1 Vanilla
 2 Strawberry
 3 Rum Raisin
 dtype: object

Excellent—we’ve created a new Series with the four values from our ice_cream_
flavors list. Notice that pandas preserves the order of the strings from the input list.
We’ll come back to the numbers on the left of the Series in a moment.

 A parameter is a name given to an expected input to a function or method. Behind
the scenes, Python matches every argument we pass to a constructor with a parameter.
We can view a constructor’s parameters directly in Jupyter Notebook. Enter
pd.Series() in a new cell, place the mouse cursor between the parentheses, and
press Shift+Tab. Figure 2.2 shows the documentation modal that appears.

Figure 2.2 A documentation modal with the parameters and default arguments for a
Series constructor

Press Shift+Tab repeatedly to reveal more information. Eventually, Jupyter will fix the
documentation panel to the bottom of the screen.

 The Series constructor defines six parameters: data, index, dtype, name, copy,
and fastpath. We can use these parameters to set the object’s initial state. We can
think of the parameters as being configuration options for the Series.

 The documentation displays each parameter alongside its default argument. A
default argument is a fallback value that Python uses if we do not provide an argument
for the parameter. If we do not pass a value for the name parameter, for example,
Python will use None. A parameter with a default argument is inherently optional. It
will always have some argument, either explicitly from its invocation or implicitly from
its definition. We were able to instantiate a Series without arguments earlier because
all six of its constructor’s parameters are optional.

 The Series constructor’s first parameter, data, expects the object whose values
will populate the Series. If we pass arguments to the constructor without parameter
names, Python will assume that we are passing them sequentially. In the preceding

26 CHAPTER 2 The Series object
code example, we passed the ice_cream_flavors list as the first argument to the
constructor; thus, Python matched it with data, the first constructor parameter.
Python also fell back to default arguments of None for the index, dtype, and name
parameters and False for the copy and fastpath parameters.

 We can connect parameters and arguments explicitly with keyword arguments (see
appendix B). Enter the parameter, followed by an equal sign and its argument. In the
following example, the first line uses positional arguments, and the second one uses
keyword arguments, but the result is the same:

In [4] # The two lines below are equivalent
 pd.Series(ice_cream_flavors)
 pd.Series(data = ice_cream_flavors)

Out [4] 0 Chocolate
 1 Vanilla
 2 Strawberry
 3 Rum Raisin
 dtype: object

Keyword arguments are advantageous because they provide context for what each
constructor argument represents. The second line in the example better communi-
cates that ice_cream_flavors represents the data for the Series.

2.1.3 Customizing the Series index

Let’s take a closer look at our Series:

0 Chocolate
1 Vanilla
2 Strawberry
3 Rum Raisin
dtype: object

Earlier, we mentioned that pandas assigns a position in line to each Series value.
The collection of incrementing integers on the left side of the output is called the
index. Each number signifies a value’s order within the Series. The index starts
counting from 0. The string "Chocolate" occupies index 0, the string "Vanilla"
occupies index 1, and so on. In graphical spreadsheet applications, the first row of
data starts counting at 1—an important difference between pandas and Excel.

 The term index describes both the collection of identifiers and an individual iden-
tifier. Both of these two expressions are valid: “The index of the Series consists of
integers” and “The value 'Strawberry' is found at index 2 in the Series.”

 The last index position will always be 1 less than the total number of values. The
current Series has four ice cream flavors, so the index counts up to 3.

 In addition to an index position, we can assign each Series value an index label.
Index labels can be of any immutable data type: strings, tuples, datetimes, and more.
This flexibility makes a Series powerful: we can reference a value by its order or by a
key/label. In a sense, each value has two identifiers.

27Overview of a Series
 The Series constructor’s second parameter, index, sets the index labels of the
Series. If we do not pass an argument to the parameter, pandas defaults to a
numeric index starting from 0. With this type of index, the label and the position
identifiers are one and the same.

 Let’s construct a Series with a custom index. We can pass objects of different data
types to the data and index parameters, but they must have the same length so that
pandas can associate their values. The next example passes a list of strings for the
data parameter and a tuple of strings to the index parameter. Both the list and the
tuple have a length of 4:

In [5] ice_cream_flavors = [
 "Chocolate",
 "Vanilla",
 "Strawberry",
 "Rum Raisin",
]

 days_of_week = ("Monday", "Wednesday", "Friday", "Saturday")

 # The two lines below are equivalent
 pd.Series(ice_cream_flavors, days_of_week)
 pd.Series(data = ice_cream_flavors, index = days_of_week)

Out [5] Monday Chocolate
 Wednesday Vanilla
 Friday Strawberry
 Saturday Rum Raisin
 dtype: object

Pandas uses shared index positions to associate the values from the ice_cream_
flavors list and the days_of_week tuple. The library sees "Rum Raisin" and
"Saturday" at index position 3 in their respective objects, for example; thus, it ties
them together in the Series.

 Even though the index consists of string labels, pandas still assigns each Series
value an index position. In other words, we can access the value "Vanilla" either by
the index label "Wednesday" or by index position 1. We’ll explore how to access
Series elements by row and label in chapter 4.

 The index permits duplicates, a detail that distinguishes a Series from a Python
dictionary. In the next example, the string "Wednesday" appears twice in the
Series’ index labels:

In [6] ice_cream_flavors = [
 "Chocolate",
 "Vanilla",
 "Strawberry",
 "Rum Raisin",
]

 days_of_week = ("Monday", "Wednesday", "Friday", "Wednesday")

28 CHAPTER 2 The Series object
 # The two lines below are equivalent
 pd.Series(ice_cream_flavors, days_of_week)
 pd.Series(data = ice_cream_flavors, index = days_of_week)

Out [6] Monday Chocolate
 Wednesday Vanilla
 Friday Strawberry
 Wednesday Rum Raisin
 dtype: object

Although pandas permits duplicates, it is ideal to avoid them whenever possible,
because a unique index allows the library to locate index labels more quickly.

 One additional advantage of keyword arguments is that they permit us to pass
parameters in any order. By comparison, sequential/positional arguments require us
to pass arguments in the order in which the constructor expects them. The next
example swaps the order of the index and data keyword parameters. Pandas creates
the same Series:

In [7] pd.Series(index = days_of_week, data = ice_cream_flavors)

Out [7] Monday Chocolate
 Wednesday Vanilla
 Friday Strawberry
 Wednesday Rum Raisin
 dtype: object

There’s one piece of the output that we haven’t discussed yet: the dtype statement at
the bottom reflects the data type of the values in the Series. For most data types,
pandas will display a predictable type (such as bool, float, or int). For strings and
more-complex objects (such as nested data structures), pandas will show dtype:
object.1

 The next examples create Series objects from lists of Boolean, integer, and float-
ing-point values. Observe the similarities and differences in the Series:

In [8] bunch_of_bools = [True, False, False]
 pd.Series(bunch_of_bools)

Out [8] 0 True
 1 False
 2 False
 dtype: bool

In [9] stock_prices = [985.32, 950.44]
 time_of_day = ["Open", "Close"]
 pd.Series(data = stock_prices, index = time_of_day)

Out [9] Open 985.32
 Close 950.44
 dtype: float64

1 See http://mng.bz/7j6v for a discussion of why pandas lists “object” as the dtype for strings.

http://mng.bz/7j6v

29Overview of a Series
In [10] lucky_numbers = [4, 8, 15, 16, 23, 42]
 pd.Series(lucky_numbers)

Out [10] 0 4
 1 8
 2 15
 3 16
 4 23
 5 42
 dtype: int64

The float64 and int64 data types indicate that each floating-point/integer value in
the Series occupies 64 bits (8 bytes) of your computer’s RAM. Bits and bytes are stor-
age units for memory. We don’t need to dive extensively into these computer science
concepts right now to work effectively with pandas.

 Pandas does its best to infer an appropriate data type for the Series from the
data parameter’s values. We can force coercion to a different type via the construc-
tor’s dtype parameter. The next example passes an integer list to the constructor but
asks for a floating-point Series:

In [11] lucky_numbers = [4, 8, 15, 16, 23, 42]
 pd.Series(lucky_numbers, dtype = "float")

Out [11] 0 4.0
 1 8.0
 2 15.0
 3 16.0
 4 23.0
 5 42.0
 dtype: float64

The previous example used both positional arguments and keyword arguments. We
passed the lucky_numbers list sequentially to the data parameter. We also passed
the dtype parameter explicitly with keyword arguments. The Series constructor
expects the dtype parameter to be third in line, so we cannot pass it directly after
lucky_numbers; we have to use keyword arguments.

2.1.4 Creating a Series with missing values

So far, so good. Our Series so far have been simple and complete. It’s easy to have
perfect data when we’re crafting our own data sets. In the real world, data is a lot
messier. Perhaps the most frequent problem that analysts encounter is missing values.

 When pandas sees a missing value during a file import, the library substitutes
NumPy’s nan object. The acronym nan is short for not a number and is a catch-all term
for an undefined value. In other words, nan is a placeholder object that represents
nullness or absence.

 Let’s sneak a missing value into a Series. We assigned the NumPy library to the
alias np when we imported it earlier. The nan attribute is available as a top-level export
of the library. The next example nestles a np.nan inside a list of temperatures that we

30 CHAPTER 2 The Series object
pass to the Series constructor. Notice the NaN at index position 2 in the output. Get
used to this trio of letters; we’re going to be seeing them a lot throughout the book:

In [12] temperatures = [94, 88, np.nan, 91]
 pd.Series(data = temperatures)

Out [12] 0 94.0
 1 88.0
 2 NaN
 3 91.0
 dtype: float64

Notice that the Series dtype is float64. Pandas automatically converts numeric
values from integers to floating-points when it spots a nan value; this internal techni-
cal requirement allows the library to store numeric values and missing values in the
same homogeneous Series.

2.2 Creating a Series from Python objects
The Series constructor’s data parameter accepts various inputs, including native
Python data structures and objects from other libraries. In this section, we’ll explore
how the Series constructor deals with dictionaries, tuples, sets, and NumPy arrays.
The Series object that pandas returns operates the same way irrespective of its data
source.

 A dictionary is a collection of key-value pairs (see appendix B). When passed a dic-
tionary, the constructor sets each key as a corresponding index label in the Series:

In [13] calorie_info = {
 "Cereal": 125,
 "Chocolate Bar": 406,
 "Ice Cream Sundae": 342,
 }

 diet = pd.Series(calorie_info)
 diet

Out [13] Cereal 125
 Chocolate Bar 406
 Ice Cream Sundae 342
 dtype: int64

A tuple is an immutable list. We cannot add, remove, or replace elements in a tuple
after creating it (see appendix B). When passed a tuple, the constructor populates the
Series in an expected manner:

In [14] pd.Series(data = ("Red", "Green", "Blue"))

Out [14] 0 Red
 1 Green
 2 Blue
 dtype: object

31Creating a Series from Python objects
To create a Series that stores tuples, wrap the tuples in a list. Tuples work well for
row values that consist of multiple parts or components, such as an address:

In [15] rgb_colors = [(120, 41, 26), (196, 165, 45)]
 pd.Series(data = rgb_colors)

Out [15] 0 (120, 41, 26)
 1 (196, 165, 45)
 dtype: object

A set is an unordered collection of unique values. We can declare it with a pair of curly
braces, exactly like a dictionary. Python uses the presence of key-value pairs to distin-
guish between the two data structures (see appendix B).

 If we pass a set to the Series constructor, pandas raises a TypeError exception. A
set has neither the concept of order (such as a list) nor the concept of association
(such as a dictionary). Thus, the library cannot assume an order in which to store the
set’s values:2

In [16] my_set = {"Ricky", "Bobby"}
 pd.Series(my_set)

TypeError Traceback (most recent call last)
<ipython-input-16-bf85415a7772> in <module>
 1 my_set = { "Ricky", "Bobby" }
----> 2 pd.Series(my_set)

TypeError: 'set' type is unordered

If your program involves a set, transform it to an ordered data structure before pass-
ing it to the Series constructor. The next example converts my_set to a list by using
Python’s built-in list function:

In [17] pd.Series(list(my_set))

Out [17] 0 Ricky
 1 Bobby
 dtype: object

Because a set is unordered, we cannot guarantee the order of list elements (or the
Series elements).

 The Series constructor’s data parameter also accepts a NumPy ndarray object.
Many data science libraries use NumPy arrays, which are common storage formats for
moving data around. The next example feeds the Series constructor an ndarray
generated by NumPy’s randint function (see appendix C):

2 See “Constructing a Series with a set returns a set and not a Series,” https://github.com/pandas-dev/pandas/
issues/1913.

https://github.com/pandas-dev/pandas/issues/1913
https://github.com/pandas-dev/pandas/issues/1913

32 CHAPTER 2 The Series object
In [18] random_data = np.random.randint(1, 101, 10)
 random_data

Out [18] array([27, 16, 13, 83, 3, 38, 34, 19, 27, 66])

In [19] pd.Series(random_data)

Out [19] 0 27
 1 16
 2 13
 3 83
 4 3
 5 38
 6 34
 7 19
 8 27
 9 66
 dtype: int64

As with all other inputs, pandas preserves the order of the ndarray’s values in the
Series.

2.3 Series attributes
An attribute is a piece of data belonging to an object. Attributes reveal information
about the object’s internal state. An attribute’s value may be another object. See
appendix B for an in-depth overview.

 A Series is composed of several smaller objects. Think of these objects as being
puzzle pieces that join to make a greater whole. Consider the calorie_info Series
from section 2.2:

Cereal 125
Chocolate Bar 406
Ice Cream Sundae 342
dtype: int64

This Series uses the NumPy library’s ndarray object to store the calorie counts and
the pandas library’s Index object to store the food names in the index. We can access
these nested objects through Series attributes. The values attribute, for example,
exposes the ndarray object that stores the values:

In [20] diet.values

Out [20] array([125, 406, 342])

If we’re ever uncertain what type an object is or what library it comes from, we can
pass the object to Python’s built-in type function. The function will return the class
from which the object was instantiated:

In [21] type(diet.values)

Out [21] numpy.ndarray

33Series attributes
Let’s pause here to reflect for a second. Pandas delegates the responsibility of storing
Series values to an object from a different library. That’s why NumPy is a depen-
dency of pandas. The ndarray object optimizes for speed and efficiency by relying on
the lower-level C programming language for many of its calculations. In many ways,
the Series is a wrapper—an additional layer of functionality around a core NumPy
library object.

 Pandas has its own objects, of course. The index attribute, for example, returns
the Index object that stores the Series labels:

In [22] diet.index

Out [22] Index(['Cereal', 'Chocolate Bar', 'Ice Cream Sundae'],
 dtype='object')

Index objects such as Index are built into pandas:

In [23] type(diet.index)

Out [23] pandas.core.indexes.base.Index

Some attributes reveal helpful details about the object. dtype, for example, returns
the data type of the Series’ values:

In [24] diet.dtype

Out [24] dtype('int64')

The size attribute returns the number of values in the Series:

In [25] diet.size

Out [25] 3

The complementary shape attribute returns a tuple with the dimensions of a pandas
data structure. For the one-dimensional Series, the tuple’s only value will be the
Series’ size. The comma after the 3 is a standard visual output for one-element
tuples in Python:

In [26] diet.shape

Out [26] (3,)

The is_unique attribute returns True if all Series values are unique:

In [27] diet.is_unique

Out [27] True

The is_unique attribute returns False if the Series contains duplicates:

In [28] pd.Series(data = [3, 3]).is_unique

Out [28] False

34 CHAPTER 2 The Series object
The is_monotonic attribute returns True if each Series value is greater than the
previous one. The increments between values do not have to be equal:

In [29] pd.Series(data = [1, 3, 6]).is_monotonic

Out [29] True

The is_monotonic attribute returns False if any element is smaller than the previ-
ous one:

In [30] pd.Series(data = [1, 6, 3]).is_monotonic

Out [30] False

In summary, attributes ask an object for information on its internal state. Attributes
reveal nested objects, which can have their own functionalities. In Python, everything
is an object, including integers, strings, and Booleans. Thus, an attribute that returns
a number is no technically different from one that returns a complex object such as
an ndarray.

2.4 Retrieving the first and last rows
By now, you should feel comfortable creating Series objects. It’s OK if the technical
terminology is a bit overwhelming; we’ve presented a lot of information up front, and
we’ll review it many times throughout the book. In this section, we’ll start exploring
what we can do with Series objects.

 A Python object has both attributes and methods. An attribute is a piece of data
belonging to an object—a characteristic or detail that the data structure can reveal
about itself. In section 2.3, we accessed Series attributes such as size, shape, val-
ues, and index.

 By comparison, a method is a function that belongs to an object—an action or com-
mand that we ask the object to perform. Methods typically involve some analysis, cal-
culation, or manipulation of the object’s attributes. Attributes define an object’s state,
and methods define an object’s behavior.

 Let’s create our largest Series yet. We’ll use Python’s built-in range function to
generate a sequence of all numbers between a starting point and an endpoint. The
range function’s three arguments are a lower bound, the upper bound, and a step
sequence (the interval between every two numbers).

 The next example generates a 100-value range of numbers between 0 and 500 in
increments of 5 and then pass the range object into the Series constructor:

In [31] values = range(0, 500, 5)
 nums = pd.Series(data = values)
 nums

Out [31] 0 0
 1 5
 2 10
 3 15
 4 20

35Retrieving the first and last rows
 ...
 95 475
 96 480
 97 485
 98 490
 99 495
 Length: 100, dtype: int64

Now we have a Series with 100 values. Fancy! Take note of the ellipses (the three
dots) that appear in the middle of the output. Pandas is telling us that it condensed
the output by hiding some rows. The library conveniently truncates the Series to
show only the first five and the last five rows. Too many rows of printed data can slow
Jupyter Notebook.

 We invoke a method with a pair of parentheses after its name. Let’s invoke some
simple Series methods. We’ll start with the head method, which returns rows from
the beginning or top of the data set. It accepts a single argument n, which sets the
number of rows to extract:

In [32] nums.head(3)

Out [32] 0 0
 1 5
 2 10
 dtype: int64

We can pass keyword arguments in method calls, as in constructors and functions.
The following code produces the same result as the preceding code:

In [33] nums.head(n = 3)

Out [33] 0 0
 1 5
 2 10
 dtype: int64

Like functions, methods can declare default arguments for their parameters. The
head method’s n parameter has a default argument of 5. If we do not pass an explicit
argument for n, pandas returns five rows (a design decision of the pandas develop-
ment team):

In [34] nums.head()

Out [34] 0 0
 1 5
 2 10
 3 15
 4 20
 dtype: int64

The complementary tail method returns rows from the bottom or end of a
Series:

36 CHAPTER 2 The Series object
In [35] nums.tail(6)

Out [35] 94 470
 95 475
 96 480
 97 485
 98 490
 99 495
 dtype: int64

The tail method’s n parameter also has a default argument of 5:

In [36] nums.tail()

Out [36] 95 475
 96 480
 97 485
 98 490
 99 495
 dtype: int64

head and tail are the two methods I use most frequently; we can use them to pre-
view the beginning and end of a data set quickly. Next, let’s dive into some more-
advanced Series methods.

2.5 Mathematical operations
A Series object includes plenty of statistical and mathematical methods. Let’s see a
few of these methods in action. Feel free to breeze through this section and revisit it
when you need to track down a specific function.

2.5.1 Statistical operations

We’ll begin by creating a Series from a list of ascending numbers, sneaking in an
np.nan value in the middle. Remember that if a data source has even a single missing
value, pandas will coerce the integers to floating-point values:

In [37] numbers = pd.Series([1, 2, 3, np.nan, 4, 5])
 numbers

Out [37] 0 1.0
 1 2.0
 2 3.0
 3 NaN
 4 4.0
 5 5.0
 dtype: float64

The count method counts the number of non-null values:

In [38] numbers.count()

Out [38] 5

37Mathematical operations
The sum method adds the Series’ values together:

In [39] numbers.sum()

Out [39] 15.0

Most mathematical methods ignore missing values by default. We can pass an argu-
ment of False to the skipna parameter to force the inclusion of missing values.

 The next example invokes the sum method with the parameter. Pandas returns a
nan because it cannot add the unknown nan value at index 3 to the cumulative sum:

In [40] numbers.sum(skipna = False)

Out [40] nan

The sum method’s min_count parameter sets the minimum number of valid values a
Series must hold for pandas to calculate its sum. Our six-element numbers Series
contains five present values and one nan value

 In the next example, the Series meets the threshold of three present values, so
pandas returns the sum:

In [41] numbers.sum(min_count = 3)

Out [41] 15.0

By comparison, the next invocation demands a minimum of six values for pandas to
calculate the sum. The threshold is unmet, so the sum method returns nan:

In [42] numbers.sum(min_count = 6)

Out [42] nan

TIP If you’re ever curious about a method’s parameters, press Shift+Tab
between a method’s parentheses to bring up the documentation in Jupyter
Notebook.

The product method multiplies all Series values together:

In [43] numbers.product()

Out [43] 120.0

The method also accepts skipna and min_count parameters. Here, we ask pandas to
include nan values in the calculation:

In [44] numbers.product(skipna = False)

Out [44] nan

The next example asks for the product of all Series values if it has at least three pres-
ent ones:

In [45] numbers.product(min_count = 3)

Out [45] 120.0

38 CHAPTER 2 The Series object
The cumsum (cumulative sum) method returns a new Series with a rolling sum of
values. Each index position holds the sum of values up to and including the value at
that index. A cumulative sum helps determine which values contribute most to the
total:

In [46] numbers

Out [46] 0 1.0
 1 2.0
 2 3.0
 3 NaN
 4 4.0
 5 5.0
 dtype: float64

In [47] numbers.cumsum()

Out [47] 0 1.0
 1 3.0
 2 6.0
 3 NaN
 4 10.0
 5 15.0
 dtype: float64

Let’s walk through some of the calculations in the result:

 The cumulative sum at index 0 is 1.0, the first value in the numbers Series.
There is nothing to add yet.

 The cumulative sum at index 1 is 3.0, the sum of 1.0 at index 0 and 2.0 at index
position 1.

 The cumulative sum at index 2 is 6.0, the sum of 1.0, 2.0, and 3.0.
 The numbers Series has a nan at index 3. Pandas cannot add a missing value

to the cumulative sum, so it places a nan at the same index in the returned
Series.

 The cumulative sum at index 4 is 10.0. Pandas adds the previous cumulative
sum with the current index’s value (1.0 + 2.0 + 3.0 + 4.0).

If we pass the skipna an argument of False, the Series will list the cumulative sum
up to the index with the first missing value and then NaN for the remaining values:

In [48] numbers.cumsum(skipna = False)

Out [48] 0 1.0
 1 3.0
 2 6.0
 3 NaN
 4 NaN
 5 NaN
 dtype: float64

39Mathematical operations
The pct_change (percent change) method returns the percentage difference from
one Series value to the next. At each index, pandas adds the last index’s value and
the current index’s value and then divides the sum by the last index’s value. Pandas
can calculate a percentage difference only if both indexes have valid values.

 The pct_change method defaults to a forward-fill strategy for missing values. With
this strategy, pandas replaces a nan with the last valid value it encountered. Let’s
invoke the method and then walk through the calculations:

In [49] numbers

Out [49] 0 1.0
 1 2.0
 2 3.0
 3 NaN
 4 4.0
 5 5.0
 dtype: float64

In [50] numbers.pct_change()

Out [50] 0 NaN
 1 1.000000
 2 0.500000
 3 0.000000
 4 0.333333
 5 0.250000
 dtype: float64

Here’s how pandas operates:

 At index 0, pandas cannot compare the value 1.0 in the numbers Series with
any previous value. Thus, index 0 in the returned Series has a NaN value.

 At index 1, pandas compares index 1’s value of 2.0 with index 0’s value of 1.0.
The percentage change between 2.0 and 1.0 is 100 (double), which translates to
1.00000 at index 1 in the returned Series.

 At index 2, pandas repeats the same operation.
 At index 3, the numbers Series has a NaN missing value. Pandas substitutes

the last encountered value (3.0 from index 2) in its place. The percentage
change between the substituted 3.0 at index 3 and the 3.0 at index 2 is 0.

 At index 4, pandas compares index 4’s value of 4.0 with the previous row’s
value. It again substitutes the nan with the last valid value it saw, 3.0. The per-
centage change between 4 and 3 is 0.333333 (a 33 percent increase).

Figure 2.3 shows a visual representation of a forward-fill percentage-change calcula-
tion. The Series on the left is the starting point. The Series in the middle shows
the intermediate calculations that pandas performs. The Series on the right is the
final result.

40 CHAPTER 2 The Series object

Figure 2.3 A walkthrough of how the pct_change method calculates values with a forward-fill solution

The fill_method parameter customizes the protocol by which pct_change substi-
tutes NaN values. This parameter is available across many methods, so it’s worth taking
the time to familiarize yourself with it. As mentioned earlier, with the default forward-
fill strategy, pandas replaces a nan value with the last valid observation. We can pass
the fill_method parameter an explicit argument of "pad" or "ffill" to achieve
the same result:

In [51] # The three lines below are equivalent
 numbers.pct_change()
 numbers.pct_change(fill_method = "pad")
 numbers.pct_change(fill_method = "ffill")

Out [51] 0 NaN
 1 1.000000
 2 0.500000
 3 0.000000
 4 0.333333
 5 0.250000
 dtype: float64

An alternative strategy for dealing with missing values is a backfill solution. With this
option, pandas replaces a nan value with the next valid observation. Let’s pass the
fill_method parameter a value of "bfill" to see the results and then walk through
them step by step:

In [52] # The two lines below are equivalent
 numbers.pct_change(fill_method = "bfill")
 numbers.pct_change(fill_method = "backfill")

Out [52] 0 NaN
 1 1.000000
 2 0.500000
 3 0.333333
 4 0.000000
 5 0.250000
 dtype: float64

Notice that the values at index positions 3 and 4 differ between the forward-fill and
backfill solutions. Here’s how pandas arrives at the previous calculations:

41Mathematical operations
 At index 0, pandas cannot compare the value 1.0 in the numbers Series with
any previous value. Thus, index 0 in the returned Series has a NaN value.

 At index 3, pandas runs into a NaN in the numbers Series. Pandas substitutes
the next valid value (4.0 at index 4) in its place. The percentage change
between 4.0 at index 3 and 3.0 at index 2 in numbers is 0.33333.

 At index 4, pandas compares 4.0 with index 3’s value. It again replaces the NaN
at index 3 with 4.0, the next valid value available in the numbers Series. The
percentage change between 4 and 4 is 0.0.

Figure 2.4 shows a visual representation of a backfill percentage-change calculation.
The Series on the left is the starting point. The Series in the middle shows the inter-
mediate calculations that pandas performs. The Series on the right is the final result.

Figure 2.4 A walkthrough of how the pct_change method calculates values with a backfill solution

The mean method returns the average of the values in the Series. An average is the
result of dividing the sum of values by the count of values:

In [53] numbers.mean()

Out [53] 3.0

The median method returns the middle number in a sorted Series of values. Half of
the Series values will be below the median, and half of the values will be above the
median:

In [54] numbers.median()

Out [54] 3.0

The std method returns the standard deviation, a measure of the variation in the data:

In [55] numbers.std()

Out [55] 1.5811388300841898

The max and min methods retrieve the largest and smallest value from the Series:

In [56] numbers.max()

Out [56] 5.0

42 CHAPTER 2 The Series object
In [57] numbers.min()

Out [57] 1.0

Pandas sorts a string Series alphabetically. The “smallest” string is the one closest to
the start of the alphabet, and the “largest” string is the one closest to the end of the
alphabet. Here’s a simple example with a small Series:

In [58] animals = pd.Series(["koala", "aardvark", "zebra"])
 animals

Out [58] 0 koala
 1 aardvark
 2 zebra
 dtype: object

In [59] animals.max()

Out [59] 'zebra'

In [60] animals.min()

Out [60] 'aardvark'

If you’re looking for a single method to summarize a Series effectively, the powerful
describe method does the trick. It returns a Series of statistical evaluations, includ-
ing count, mean, and standard deviation:

In [61] numbers.describe()

Out [61] count 5.000000
 mean 3.000000
 std 1.581139
 min 1.000000
 25% 2.000000
 50% 3.000000
 75% 4.000000
 max 5.000000
 dtype: float64

The sample method selects a random assortment of values from the Series. It is pos-
sible for the order of values to differ between the new Series and the original
Series. In the next example, notice that the lack of NaN values from the random
selection allows pandas to return a Series of integers. If NaN was even one of the val-
ues, pandas would return a Series of floats instead:

In [62] numbers.sample(3)

Out [62] 1 2
 3 4
 2 3
 dtype: int64

The unique method returns a NumPy ndarray of unique values from the Series.
In the next example, the string "Orwell" appears twice in the authors Series but
only once in the returned ndarray:

43Mathematical operations
In [63] authors = pd.Series(
 ["Hemingway", "Orwell", "Dostoevsky", "Fitzgerald", "Orwell"]
)

 authors.unique()

Out [63] array(['Hemingway', 'Orwell', 'Dostoevsky', 'Fitzgerald'],
 dtype=object)

The complementary nunique method returns the number of unique values in the
Series:

In [64] authors.nunique()

Out [64] 4

The nunique method’s return value will be equal to the length of the array that the
unique method returns.

2.5.2 Arithmetic operations

In section 2.5.1, we practiced invoking numerous mathematical methods on our
Series objects. Pandas gives us additional ways to perform arithmetic calculations
with a Series. Let’s start by creating a Series of integers with one missing value:

In [65] s1 = pd.Series(data = [5, np.nan, 15], index = ["A", "B", "C"])
 s1

Out [65] A 5.0
 B NaN
 C 15.0
 dtype: float64

We can perform arithmetic on a Series with Python’s standard mathematical
operators:

 + for addition
 - for subtraction
 * for multiplication
 / for division

The syntax is intuitive: treat the Series as a regular operand on one side of a mathe-
matical operator. Place the complementary value on the other side of the operator.
Note that any mathematical operation with a nan yields another nan. The next exam-
ple adds 3 to each value in the s1 Series:

In [66] s1 + 3

Out [66] A 8.0
 B NaN
 C 18.0
 dtype: float64

44 CHAPTER 2 The Series object
Some software developers might find the result surprising. How can we add an integer
to a data structure? The types are seemingly incompatible. Behind the scenes, pandas
is smart enough to parse our syntax and understand that we’d like to add an integer to
every value in the Series, not to the Series object itself.

 If you prefer a method-based approach, the add method achieves the same result:

In [67] s1.add(3)

Out [67] A 8.0
 B NaN
 C 18.0
 dtype: float64

The next three examples show the complementary syntax options for subtraction (-),
multiplication (*), and division (/). Often, there are multiple ways to accomplish the
same operation in pandas:

In [68] # The three lines below are equivalent
 s1 - 5
 s1.sub(5)
 s1.subtract(5)

Out [68] A 0.0
 B NaN
 C 10.0
 dtype: float64

In [69] # The three lines below are equivalent
 s1 * 2
 s1.mul(2)
 s1.multiply(2)

Out [69] A 10.0
 B NaN
 C 30.0
 dtype: float64

In [70] # The three lines below are equivalent
 s1 / 2
 s1.div(2)
 s1.divide(2)

Out [70] A 2.5
 B NaN
 C 7.5
 dtype: float64

The floor division operator (//) performs a division and removes any digits after the
decimal point in the result. The regular division of 15 by 4, for example, yields 3.75.
By comparison, the floor division of 15 by 4 yields 3. We can apply the operator to a
Series; the alternative is to invoke the floordiv method:

45Mathematical operations
In [71] # The two lines below are equivalent
 s1 // 4
 s1.floordiv(4)

Out [71] A 1.0
 B NaN
 C 3.0
 dtype: float64

The modulo operator (%) returns the remainder of a division. Here’s an example:

In [72] # The two lines below are equivalent
 s1 % 3
 s1.mod(3)

Out [72] A 2.0
 B NaN
 C 0.0
 dtype: float64

In the previous example,

 Pandas divides the value of 5.0 at index label A by 3 and leaves a remainder of
2.0.

 Pandas cannot divide the NaN at index label B.
 Pandas divides the value of 15.0 at index label C by 3 and leaves a reminder of

0.0.

2.5.3 Broadcasting

Recall that pandas stores its Series values in a NumPy ndarray under the hood.
When we use syntax such as s1 + 3 or s1 - 5, pandas delegates the mathematical cal-
culations to NumPy.

 The NumPy documentation uses the term broadcasting to describe the derivation of
one array of values from another. Without diving too much into the technical details
(you don’t need to understand NumPy’s complexities to work effectively with pandas),
the term broadcasting comes from a radio broadcast tower, which transmits the same
signal to all recipients listening in. Syntax like s1 + 3 means “Apply the same opera-
tion (add 3) to each value in the Series.” Each Series value gets the same message,
much as every person listening to the same radio station at the same time hears the
same song.

 Broadcasting also describes mathematical operations between multiple Series
objects. As a rule of thumb, pandas uses shared index labels to align values across dif-
ferent data structures. Let’s demonstrate this concept through an example. Let’s
instantiate two Series with the same three-element index:

In [73] s1 = pd.Series([1, 2, 3], index = ["A", "B", "C"])
 s2 = pd.Series([4, 5, 6], index = ["A", "B", "C"])

46 CHAPTER 2 The Series object
When we use the + operator with the two Series as operands, pandas adds the values
at the same index positions:

 At index A, pandas adds the values 1 and 4 to arrive at 5.
 At index B, pandas adds the values 2 and 5 to arrive at 7.
 At index C, pandas adds the values 3 and 6 to arrive at 9.

In [74] s1 + s2

Out [74] A 5
 B 7
 C 9
 dtype: int64

Figure 2.5 offers a visualization of how pandas aligns the two Series.

Figure 2.5 Pandas aligns Series by shared index labels when performing a mathematical operation.

Here’s another example of how pandas uses shared index labels to align data. Let’s
create another two Series with the standard numeric index. We’ll add a missing
value to each collection:

In [75] s1 = pd.Series(data = [3, 6, np.nan, 12])
 s2 = pd.Series(data = [2, 6, np.nan, 12])

Python’s equality operator (==) compares the equality of two objects. We can use this
operator to compare values across two Series, as in the following example. Note that
pandas considers a nan value to be unequal to another nan; it cannot assume that an
absent value is equal to another absent value. The method equivalent for the equality
operator is eq:

In [76] # The two lines below are equivalent
 s1 == s2
 s1.eq(2)

Out [76] 0 False
 1 True
 2 False
 3 True
 dtype: bool

The inequality operator (!=) confirms whether two values are unequal. Its method
equivalent is ne:

47Mathematical operations
In [77] # The two lines below are equivalent
 s1 != s2
 s1.ne(s2)

Out [77] 0 True
 1 False
 2 True
 3 False
 dtype: bool

Comparison operations between Series become trickier when the indices differ.
One index may have a greater or smaller number of labels, or there may be a mis-
match between the labels themselves.

 The next example creates two Series that share only two index labels, B and C:

In [78] s1 = pd.Series(
 data = [5, 10, 15], index = ["A", "B", "C"]
)

 s2 = pd.Series(
 data = [4, 8, 12, 14], index = ["B", "C", "D", "E"]
)

What happens when we try to add s1 and s2? Pandas adds the values at the B and C
labels and returns NaN values for the remaining indices (A, D, and E). As a reminder,
any arithmetic operation with a NaN value always results in a NaN:

In [79] s1 + s2

Out [79] A NaN
 B 14.0
 C 23.0
 D NaN
 E NaN
 dtype: float64

Figure 2.6 shows how pandas aligns the s1 and s2 Series and then adds their associ-
ated index values.

Figure 2.6 Pandas returns NaN whenever the Series do not share an index label.

In summary, pandas aligns data by shared index labels across two Series, substituting
NaNs where needed.

48 CHAPTER 2 The Series object
2.6 Passing the Series to Python’s built-in functions
Python’s developer community likes to rally around certain design principles to
ensure consistency across codebases. One example is seamless integration between
library objects and Python’s built-in functions. Pandas is no exception. We can pass a
Series to any of Python’s built-in functions and yield a predictable result. Let’s create
a small Series of cities in the United States:

In [80] cities = pd.Series(
 data = ["San Francisco", "Los Angeles", "Las Vegas", np.nan]
)

The len function returns the number of rows in a Series. The count includes miss-
ing values (NaNs):

In [81] len(cities)

Out [81] 4

As we saw earlier, the type function returns the class of an object. Use this function
when you’re uncertain about the data structure you’re working with or the library it’s
coming from:

In [82] type(cities)

Out [82] pandas.core.series.Series

The dir function returns a list of an object’s attributes and methods as strings. Note
that the next example displays an abbreviated version of the output:

In [83] dir(cities)

Out [83] ['T',
 '_AXIS_ALIASES',
 '_AXIS_IALIASES',
 '_AXIS_LEN',
 '_AXIS_NAMES',
 '_AXIS_NUMBERS',
 '_AXIS_ORDERS',
 '_AXIS_REVERSED',
 '_HANDLED_TYPES',
 '__abs__',
 '__add__',
 '__and__',
 '__annotations__',
 '__array__',
 '__array_priority__',
 #...
]

A Series’ values can populate a native Python data structure. The next example cre-
ates a list from our cities Series by using Python’s list function:

In [84] list(cities)

Out [84] ['San Francisco', 'Los Angeles', 'Las Vegas', nan]

49Passing the Series to Python’s built-in functions
We can pass the Series to Python’s built-in dict function to create a dictionary. Pan-
das maps the Series’ index labels and values to the dictionary’s keys and values:

In [85] dict(cities)

Out [85] {0: 'San Francisco', 1: 'Los Angeles', 2: 'Las Vegas', 3: nan}

In Python, we use the in keyword to check for inclusion. In pandas, we can use the in
keyword to check whether a given value exists in the Series’ index. Here’s a
reminder of what cities looks like:

In [86] cities

Out [86] 0 San Francisco
 1 Los Angeles
 2 Las Vegas
 3 NaN
 dtype: object

The next two examples query for "Las Vegas" and 2 in the Series’ index:

In [87] "Las Vegas" in cities

Out [87] False

In [88] 2 in cities

Out [88] True

To check for inclusion among the Series’ values, we can pair the in keyword with
the values attribute. Remember that values exposes the ndarray object that holds
the data itself:

In [89] "Las Vegas" in cities.values

Out [89] True

We can use the inverse not in operator to check for exclusion. The operator returns
True if pandas cannot find the value in the Series:

In [90] 100 not in cities

Out [90] True

In [91] "Paris" not in cities.values

Out [91] True

A pandas object will often integrate with Python’s built-in functions and offer its own
attribute/method to return the same data. Choose the syntax option that works best
for you.

50 CHAPTER 2 The Series object
2.7 Coding challenge
Welcome to the book’s first coding challenge! The goal of these exercises is to help
you apply and review the concepts introduced throughout the chapter. You’ll find the
solutions immediately after the questions. Good luck!

2.7.1 Problems

Suppose that you’re given these two data structures:

In [92] superheroes = [
 "Batman",
 "Superman",
 "Spider-Man",
 "Iron Man",
 "Captain America",
 "Wonder Woman"
]

In [93] strength_levels = (100, 120, 90, 95, 110, 120)

Here are your challenges:

1 Use the list of superheroes to populate a new Series object.
2 Use the tuple of strengths to populate a new Series object.
3 Create a Series with the superheroes as index labels and the strength levels as

the values. Assign the Series to a heroes variable.
4 Extract the first two rows of the heroes Series.
5 Extract the last four rows of the heroes Series.
6 Determine the number of unique values in your heroes Series.
7 Calculate the average strength of the superheroes in heroes.
8 Calculate the maximum and minimum strengths in heroes.
9 Calculate what each superhero’s strength level would be if it doubled.

10 Convert the heroes Series to a Python dictionary.

2.7.2 Solutions

Let’s explore the solutions to the problems in section 2.7.1:

1 To create a new Series object, we can use the Series constructor at the
top level of the pandas library. Pass in the source of data as the first positional
argument:

In [94] pd.Series(superheroes)

Out [94] 0 Batman
 1 Superman
 2 Spider-Man
 3 Iron Man
 4 Captain America
 5 Wonder Woman
 dtype: object

51Coding challenge
2 The solution to this problem is identical to the previous one; we only have to
pass in our tuple of strengths to the Series constructor. This time around, let’s
write out the data keyword parameter explicitly:

In [95] pd.Series(data = strength_levels)

Out [95] 0 100
 1 120
 2 90
 3 95
 4 110
 5 120
 dtype: int64

3 To create a Series with a custom index, we can pass the index parameter to
the constructor. Here, we set the strength levels as the Series’ values and the
superhero names as the index labels:

In [96] heroes = pd.Series(
 data = strength_levels, index = superheroes
)

 heroes

Out [96] Batman 100
 Superman 120
 Spider-Man 90
 Iron Man 95
 Captain America 110
 Wonder Woman 120
 dtype: int64

4 As a reminder, a method is an action or a command we can give to an object. We
can use the head method to extract rows from the top of a pandas data struc-
ture. The method’s only parameter, n, sets the number of rows to pull out. The
head method returns a new Series:

In [97] heroes.head(2)

Out [97] Batman 100
 Superman 120
 dtype: int64

5 The complementary tail method extracts rows from the end of a pandas data
structure. To target the last four rows, we’ll pass in an argument of 4:

In [98] heroes.tail(4)

Out [98] Spider-Man 90
 Iron Man 95
 Captain America 110
 Wonder Woman 120
 dtype: int64

52 CHAPTER 2 The Series object
6 To identify the number of unique values in a Series, we can invoke the
nunique method. The heroes Series has six total values and five unique val-
ues; the value 120 appears twice:

In [99] heroes.nunique()

Out [99] 5

7 To calculate the average of a Series’ values, we can invoke the mean method:

In [100] heroes.mean()

Out [100] 105.83333333333333

8 The next challenge is to identify the largest and smallest values in the Series.
The max and min methods do the trick:

In [101] heroes.max()

Out [101] 120

In [102] heroes.min()

Out [102] 90

9 How can we double each superhero’s strength level? We can multiply each
Series value by 2. The following solution uses the multiplication operator, but
the mul and multiply methods are also suitable options:

In [103] heroes * 2

Out [103] Batman 200
 Superman 240
 Spider-Man 180
 Iron Man 190
 Captain America 220
 Wonder Woman 240
 dtype: int64

10 The last challenge is to convert the heroes Series to a Python dictionary. To
solve this problem, we can pass the data structure into Python’s dict construc-
tor/function. Pandas sets the index labels as the dictionary keys and the
Series values as the dictionary values:

In [104] dict(heroes)

Out [104] {'Batman': 100,
 'Superman': 120,
 'Spider-Man': 90,
 'Iron Man': 95,
 'Captain America': 110,
 'Wonder Woman': 120}

Congratulations on completing your first coding challenge!

53Summary
Summary
 A Series is a one-dimensional homogeneous labeled array that holds values

and an index.
 A Series’ values can be of any data type. The index labels can be of any

immutable data type.
 Pandas assigns both an index position and an index label to each Series value.
 We can populate a Series with data from lists, dictionaries, tuples, NumPy

arrays, and more.
 The head method retrieves the first rows of a Series.
 The tail method retrieves the last rows of a Series.
 A Series supports common statistical operations such as sum, mean, median,

and standard deviation.
 Pandas uses shared index labels to apply arithmetic operations across multiple

Series.
 A Series plays friendly with Python’s built-in functions, including dict, list,

and len.

Series methods
In chapter 2, we began exploring the Series object, a one-dimensional labeled
array of homogeneous values. We populated our Series with data from different
sources, including lists, dictionaries, and NumPy ndarrays. We observed how pan-
das assigned each Series value an index label and an index position. We learned
how to apply mathematical operations to Series.

 With the basics under our belt, we’re ready to explore some real-world data sets!
In this chapter, we’ll introduce lots of advanced Series operations, including sort-
ing, counting, and bucketing. We’ll also start to see how these methods can help us
derive insights from our data. Let’s dive in.

This chapter covers
 Importing CSV data sets with the read_csv function

 Sorting Series values in ascending and descending
order

 Retrieving the largest and smallest values in a
Series

 Counting occurrences of unique values in a Series

 Invoking a function with every value in a Series
54

55Importing a data set with the read_csv function
3.1 Importing a data set with the read_csv function
A CSV is a plain-text file that separates each row of data with a line break and each row
value with a comma. The first row in the file holds the column headers for the data.
This chapter has three CSV files for us to play with:

 pokemon.csv—A list of more than 800 Pokémon, the cartoon monsters from Nin-
tendo’s popular media franchise. Each Pokémon has one or more associated
types, such as Fire, Water, and Grass.

 google_stock.csv—A collection of daily stock prices in U.S. dollars for the technol-
ogy company Google from its market debut in August 2004 to October 2019.

 revolutionary_war.csv—A record of battles during the American Revolutionary
War. Each skirmish is associated with a start date and a U.S. state.

Let’s begin by importing the data sets. As we proceed, we’ll talk through some optimi-
zations we can make to pave the way for easier analysis.

 Our first step is spinning up a new Jupyter Notebook and importing the pandas
library. Make sure to create the notebook in the same directory as the CSV files:

In [1] import pandas as pd

Pandas has more than a dozen import functions to load various file formats. The func-
tions are available at the library’s top level and begin with the prefix read. In our
case, to import a CSV, we want the read_csv function. The function’s first parameter,
filepath_or_buffer, expects a string with the filename. Make sure that the string
includes the .csv extension ("pokemon.csv", for example, instead of "pokemon").
By default, pandas looks for the file in the same directory as the Notebook:

In [2] # The two lines below are equivalent
 pd.read_csv(filepath_or_buffer = "pokemon.csv")
 pd.read_csv("pokemon.csv")

Out [2]

 Pokemon Type

0 Bulbasaur Grass / Poison
1 Ivysaur Grass / Poison
2 Venusaur Grass / Poison
3 Charmander Fire
4 Charmeleon Fire
… … …
804 Stakataka Rock / Steel
805 Blacephalon Fire / Ghost
806 Zeraora Electric
807 Meltan Steel
808 Melmetal Steel

809 rows × 2 columns

56 CHAPTER 3 Series methods
Regardless of the number of columns in a data set, the read_csv function always
imports the data into a DataFrame, a two-dimensional pandas data structure that
supports multiple rows and columns. We’ll introduce this object in greater detail in
chapter 4. There’s nothing wrong with using the DataFrame, but we want to practice
a bit more with the Series, so let’s store the CSV’s data in the smaller data structure.

 Our first issue is that the data set has two columns (Pokemon and Type), but a
Series supports only one column of data. One simple solution is setting one of the
data set’s columns as the Series index. We can use the index_col parameter to set
the index column. Be mindful of case sensitivity: the string must match the header in
the data set. Let’s pass "Pokemon" as the argument to index_col:

In [3] pd.read_csv("pokemon.csv", index_col = "Pokemon")

Out [3]

 Type
Pokemon

Bulbasaur Grass / Poison
Ivysaur Grass / Poison
Venusaur Grass / Poison
Charmander Fire
Charmeleon Fire
 … …
Stakataka Rock / Steel
Blacephalon Fire / Ghost
Zeraora Electric
Meltan Steel
Melmetal Steel

809 rows × 1 columns

We’ve successfully set the Pokemon column as the Series index, but pandas still
defaults to importing the data into a DataFrame. After all, a container capable of
holding multiple columns of data can technically hold one column of data. To force
pandas to use a Series, we need to add another parameter called squeeze and pass
it an argument of True. The squeeze parameter coerces a one-column DataFrame
into a Series:

In [4] pd.read_csv("pokemon.csv", index_col = "Pokemon", squeeze = True)

Out [4] Pokemon
 Bulbasaur Grass / Poison
 Ivysaur Grass / Poison
 Venusaur Grass / Poison
 Charmander Fire
 Charmeleon Fire
 ...
 Stakataka Rock / Steel
 Blacephalon Fire / Ghost
 Zeraora Electric
 Meltan Steel
 Melmetal Steel
 Name: Type, Length: 809, dtype: object

57Importing a data set with the read_csv function
We officially have a Series. Hooray! The index labels are the Pokémon names, and
the values are the Pokémon types.

 The output below the values reveals some important details:

 Pandas has assigned the Series a name of Type, the column’s name from the
CSV file.

 The Series has 809 values.
 dtype: object tells us that it’s a Series of string values. object is pandas’

internal lingo for strings and more-complex data structures.

The final step is assigning the Series to a variable. pokemon feels suitable here:

In [5] pokemon = pd.read_csv(
 "pokemon.csv", index_col = "Pokemon", squeeze = True
)

The remaining two data sets carry some additional complexity. Let’s take a peek at
google_stock.csv:

In [6] pd.read_csv("google_stocks.csv").head()

Out [6]

 Date Close

0 2004-08-19 49.98
1 2004-08-20 53.95
2 2004-08-23 54.50
3 2004-08-24 52.24
4 2004-08-25 52.80

When importing a data set, pandas infers the most suitable data type for each column.
Sometimes, the library plays it safe and avoids making assumptions about our data.
google_stocks.csv, for example, includes a Date column with datetime values in YYYY-
MM-DD format (such as 2010-08-04). Unless we tell pandas to treat the values as date-
times, the library defaults to importing them as strings. A string is a more generic and
versatile data type; it can represent any value.

 Let’s explicitly tell pandas to convert the values in the Date column to datetimes.
Although we won’t cover datetimes until chapter 11, it’s considered to be a best prac-
tice to store each column’s data in the most accurate type. When pandas knows that it
has datetimes, it enables additional methods that are not available on plain strings,
such as calculating the weekday of a date.

 The read_csv function’s parse_dates parameter accepts a list of strings denot-
ing the columns whose text values pandas should convert to datetimes. The next
example passes a list containing "Date":

In [7] pd.read_csv("google_stocks.csv", parse_dates = ["Date"]).head()

Out [7]

 Date Close

0 2004-08-19 49.98
1 2004-08-20 53.95

58 CHAPTER 3 Series methods
2 2004-08-23 54.50
3 2004-08-24 52.24
4 2004-08-25 52.80

There is no visual difference in the output, but pandas is storing a different data type
for the Date column under the hood. Let’s set the Date column as the Series index
with the index_col parameter; a Series works fine with datetime indexes. Finally,
let’s add the squeeze parameter to force a Series object instead of a DataFrame:

In [8] pd.read_csv(
 "google_stocks.csv",
 parse_dates = ["Date"],
 index_col = "Date",
 squeeze = True
).head()

Out [8] Date
 2004-08-19 49.98
 2004-08-20 53.95
 2004-08-23 54.50
 2004-08-24 52.24
 2004-08-25 52.80
 Name: Close, dtype: float64

Looks good. We have a Series of datetime index labels and floating-point values.
Let’s save this Series to a google variable:

In [9] google = pd.read_csv(
 "google_stocks.csv",
 parse_dates = ["Date"],
 index_col = "Date",
 squeeze = True
)

We have one more data set to import: Revolutionary War battles. This time around,
let’s preview the last five rows on import. We’ll chain the tail method to the Data-
Frame returned by the read_csv function:

In [10] pd.read_csv("revolutionary_war.csv").tail()

Out [10]

 Battle Start Date State

227 Siege of Fort Henry 9/11/1782 Virginia
228 Grand Assault on Gibraltar 9/13/1782 NaN
229 Action of 18 October 1782 10/18/1782 NaN
230 Action of 6 December 1782 12/6/1782 NaN
231 Action of 22 January 1783 1/22/1783 Virginia

Take a look at the State column. Uh-oh—this data set has some missing values. As a
reminder, pandas uses the NaN (not a number) designation to mark absent values.
NaN is a NumPy object used to represent nothingness or the absence of a value. This
data set contains missing/absent values for battles without a definitive start date or
those fought outside U.S. territory.

59Importing a data set with the read_csv function
 Let’s set the Start Date column as the index. We’ll again use the index_col param-
eter to set the index and the parse_dates parameter to convert the Start Date strings
to datetime values. Pandas can recognize this data set’s date format (M/D/YYYY):

In [11] pd.read_csv(
 "revolutionary_war.csv",
 index_col = "Start Date",
 parse_dates = ["Start Date"],
).tail()

Out [11]

 Battle State
Start Date

1782-09-11 Siege of Fort Henry Virginia
1782-09-13 Grand Assault on Gibraltar NaN
1782-10-18 Action of 18 October 1782 NaN
1782-12-06 Action of 6 December 1782 NaN
1783-01-22 Action of 22 January 1783 Virginia

By default, the read_csv function imports all columns from a CSV. We’ll have to limit
the import to two columns if we want a Series: one column for the index and the
other for the values. The squeeze parameter by itself is insufficient in this scenario;
pandas will ignore the parameter if there is more than one column of data.

 The read_csv function’s usecols parameter accepts a list of columns that pan-
das should import. Let’s include only Start Date and State:

In [12] pd.read_csv(
 "revolutionary_war.csv",
 index_col = "Start Date",
 parse_dates = ["Start Date"],
 usecols = ["State", "Start Date"],
 squeeze = True
).tail()

Out [12] Start Date
 1782-09-11 Virginia
 1782-09-13 NaN
 1782-10-18 NaN
 1782-12-06 NaN
 1783-01-22 Virginia
 Name: State, dtype: object

Perfect! We have a Series consisting of a datetime index and string values. Let’s
assign this one to a battles variable:

In [13] battles = pd.read_csv(
 "revolutionary_war.csv",
 index_col = "Start Date",
 parse_dates = ["Start Date"],
 usecols = ["State", "Start Date"],
 squeeze = True
)

60 CHAPTER 3 Series methods
Now that we’ve imported our data sets into Series objects, let’s see what we can do
with them.

3.2 Sorting a Series
We can sort a Series by its values or its index, in ascending or descending order.

3.2.1 Sorting by values with the sort_values method

Suppose that we’re curious about the lowest and highest stock prices that Google has
had. The sort_values method returns a new Series with the values sorted in
ascending order. Ascending means increasing in size—in other words, smallest to great-
est. The index labels move with their value counterparts:

In [14] google.sort_values()

Out [14] Date
 2004-09-03 49.82
 2004-09-01 49.94
 2004-08-19 49.98
 2004-09-02 50.57
 2004-09-07 50.60
 ...
 2019-04-23 1264.55
 2019-10-25 1265.13
 2018-07-26 1268.33
 2019-04-26 1272.18
 2019-04-29 1287.58
 Name: Close, Length: 3824, dtype: float64

Pandas sorts a Series of strings in alphabetical order. Ascending means from the start
of the alphabet to the end of the alphabet:

In [15] pokemon.sort_values()

Out [15] Pokemon
 Illumise Bug
 Silcoon Bug
 Pinsir Bug
 Burmy Bug
 Wurmple Bug
 ...
 Tirtouga Water / Rock
 Relicanth Water / Rock
 Corsola Water / Rock
 Carracosta Water / Rock
 Empoleon Water / Steel
 Name: Type, Length: 809, dtype: object

Pandas sorts uppercase characters before lowercase characters. Thus, a capital "Z"
comes before a lowercase "a". In the next example, notice that the string "adam"
appears after "Ben":

61Sorting a Series
In [16] pd.Series(data = ["Adam", "adam", "Ben"]).sort_values()

Out [16] 0 Adam
 2 Ben
 1 adam
 dtype: object

The ascending parameter sets the sort order, and it has a default argument of True.
To sort Series values in descending order (largest to smallest), pass the parameter
an argument of False:

In [17] google.sort_values(ascending = False).head()

Out [17] Date
 2019-04-29 1287.58
 2019-04-26 1272.18
 2018-07-26 1268.33
 2019-10-25 1265.13
 2019-04-23 1264.55
 Name: Close, dtype: float64

A descending sort will arrange a Series of strings in reverse alphabetical order.
Descending means from the end of the alphabet to the start of the alphabet:

In [18] pokemon.sort_values(ascending = False).head()

Out [18] Pokemon
 Empoleon Water / Steel
 Carracosta Water / Rock
 Corsola Water / Rock
 Relicanth Water / Rock
 Tirtouga Water / Rock
 Name: Type, dtype: object

The na_position parameter configures the placement of NaN values in the returned
Series and has a default argument of "last". By default, pandas places missing val-
ues at the end of a sorted Series:

In [19] # The two lines below are equivalent
 battles.sort_values()
 battles.sort_values(na_position = "last")

Out [19] Start Date
 1781-09-06 Connecticut
 1779-07-05 Connecticut
 1777-04-27 Connecticut
 1777-09-03 Delaware
 1777-05-17 Florida
 ...
 1782-08-08 NaN
 1782-08-25 NaN
 1782-09-13 NaN
 1782-10-18 NaN
 1782-12-06 NaN
 Name: State, Length: 232, dtype: object

62 CHAPTER 3 Series methods
To display the missing values first, pass the na_position parameter an argument of
"first". The resulting Series shows all NaNs first, followed by the sorted values:

In [20] battles.sort_values(na_position = "first")

Out [20] Start Date
 1775-09-17 NaN
 1775-12-31 NaN
 1776-03-03 NaN
 1776-03-25 NaN
 1776-05-18 NaN
 ...
 1781-07-06 Virginia
 1781-07-01 Virginia
 1781-06-26 Virginia
 1781-04-25 Virginia
 1783-01-22 Virginia
 Name: State, Length: 232, dtype: object

What if we wanted to remove NaN values? The dropna method returns a Series with
all missing values removed. Note that the method targets only NaNs in the Series’ val-
ues, not the index. The next example filters our battles to those with a present location:

In [21] battles.dropna().sort_values()

Out [21] Start Date
 1781-09-06 Connecticut
 1779-07-05 Connecticut
 1777-04-27 Connecticut
 1777-09-03 Delaware
 1777-05-17 Florida
 ...
 1782-08-19 Virginia
 1781-03-16 Virginia
 1781-04-25 Virginia
 1778-09-07 Virginia
 1783-01-22 Virginia
 Name: State, Length: 162, dtype: object

The previous Series is predictably shorter than battles. Pandas has removed 70
NaN values from battles.

3.2.2 Sorting by index with the sort_index method

Sometimes, our area of focus may lie in the index rather than the values. Luckily, we
can sort a Series by index as well with the sort_index method. With this option,
the values move alongside their index counterparts. Like sort_values, sort_index
accepts an ascending parameter, and its default argument is also True:

In [22] # The two lines below are equivalent
 pokemon.sort_index()
 pokemon.sort_index(ascending = True)

63Sorting a Series
Out [22] Pokemon
 Abomasnow Grass / Ice
 Abra Psychic
 Absol Dark
 Accelgor Bug
 Aegislash Steel / Ghost
 ...
 Zoroark Dark
 Zorua Dark
 Zubat Poison / Flying
 Zweilous Dark / Dragon
 Zygarde Dragon / Ground
 Name: Type, Length: 809, dtype: object

When sorting a collection of datetimes in ascending order, pandas sorts from the ear-
liest date to the latest. The battles Series offers a great opportunity to see this sort
in action:

In [23] battles.sort_index()

Out [23] Start Date
 1774-09-01 Massachusetts
 1774-12-14 New Hampshire
 1775-04-19 Massachusetts
 1775-04-19 Massachusetts
 1775-04-20 Virginia
 ...
 1783-01-22 Virginia
 NaT New Jersey
 NaT Virginia
 NaT NaN
 NaT NaN
 Name: State, Length: 232, dtype: object

We see a new type of value toward the end of the sorted Series. Pandas uses another
NumPy object, NaT, in place of missing date values (NaT stands for not a time). The
NaT object maintains data integrity with the index’s datetime type.

 The sort_index method also includes the na_position parameter for altering
the placement of NaN values. The next example displays the missing values first, fol-
lowed by the sorted datetimes:

In [24] battles.sort_index(na_position = "first").head()

Out [24] Start Date
 NaT New Jersey
 NaT Virginia
 NaT NaN
 NaT NaN
 1774-09-01 Massachusetts
 Name: State, dtype: object

64 CHAPTER 3 Series methods
To sort in descending order, we can pass the ascending parameter an argument of
False. A descending sort displays dates from latest to earliest:

In [25] battles.sort_index(ascending = False).head()

Out [25] Start Date
 1783-01-22 Virginia
 1782-12-06 NaN
 1782-10-18 NaN
 1782-09-13 NaN
 1782-09-11 Virginia
 Name: State, dtype: object

The data set’s earliest battle took place on January 22, 1783, in Virginia.

3.2.3 Retrieving the smallest and largest values with the nsmallest and
nlargest methods

Suppose that we wanted to find the five dates on which Google’s stock performed
best. One option is to sort the Series in descending order and then limit the results
to the first five rows:

In [26] google.sort_values(ascending = False).head()

Out [26] Date
 2019-04-29 1287.58
 2019-04-26 1272.18
 2018-07-26 1268.33
 2019-10-25 1265.13
 2019-04-23 1264.55
 Name: Close, dtype: float64

The operation is fairly common, so pandas offers a helper method to save us a few
characters. The nlargest method returns the largest values from a Series. Its first
parameter, n, sets the number of records to return. The n parameter has a default
argument of 5. Pandas sorts the values in descending order in the returned Series:

In [27] # The two lines below are equivalent
 google.nlargest(n = 5)
 google.nlargest()

Out [27] Date
 2019-04-29 1287.58
 2019-04-26 1272.18
 2018-07-26 1268.33
 2019-10-25 1265.13
 2019-04-23 1264.55
 Name: Close, dtype: float64

The complementary nsmallest method returns the smallest values from a Series,
sorted in ascending order. Its n parameter also has a default argument of 5:

In [28] # The two lines below are equivalent
 google.nsmallest(n = 5)
 google.nsmallest(5)

65Overwriting a Series with the inplace parameter
Out [28] Date
 2004-09-03 49.82
 2004-09-01 49.94
 2004-08-19 49.98
 2004-09-02 50.57
 2004-09-07 50.60
 2004-08-30 50.81
 Name: Close, dtype: float64

Note that neither of these methods works on Series of strings.

3.3 Overwriting a Series with the inplace parameter
All the methods that we’ve invoked in this chapter return new Series objects. The
original Series objects referenced by our pokemon, google, and battles variables
have remained unaffected throughout our operations thus far. As an example, let’s
observe battles before and after a method call; the Series does not change:

In [29] battles.head(3)

Out [29] Start Date
 1774-09-01 Massachusetts
 1774-12-14 New Hampshire
 1775-04-19 Massachusetts
 Name: State, dtype: object

In [30] battles.sort_values().head(3)

Out [30] Start Date
 1781-09-06 Connecticut
 1779-07-05 Connecticut
 1777-04-27 Connecticut
 Name: State, dtype: object

In [31] battles.head(3)

Out [31] Start Date
 1774-09-01 Massachusetts
 1774-12-14 New Hampshire
 1775-04-19 Massachusetts
 Name: State, dtype: object

What if we wanted to modify the battles Series? Many methods in pandas include
an inplace parameter that, when passed an argument of True, appears to modify
the object on which the method is invoked.

 Compare the previous example with the next one. Here, we once again invoke the
sort_values method, but this time around, we pass an argument of True to the
inplace parameter. If we use inplace, the method returns None, leading to no out-
put in Jupyter Notebook. When we output battles, we can see that it has changed:

In [32] battles.head(3)

Out [32] Start Date
 1774-09-01 Massachusetts
 1774-12-14 New Hampshire
 1775-04-19 Massachusetts
 Name: State, dtype: object

66 CHAPTER 3 Series methods
In [33] battles.sort_values(inplace = True)

In [34] battles.head(3)

Out [34] Start Date
 1781-09-06 Connecticut
 1779-07-05 Connecticut
 1777-04-27 Connecticut
 Name: State, dtype: object

The inplace parameter is a frequent point of confusion. Its name suggests that it
modifies or mutates the existing object rather than creating a copy. Developers are
tempted to use inplace because reducing the number of copies we create decreases
memory use. But even with the inplace parameter, pandas creates a copy of an
object whenever we invoke a method. The library always creates a duplicate; the
inplace parameter reassigns our existing variable to the new object. Thus, contrary
to popular belief, the inplace parameter does not offer any performance benefits.
These two lines are technically equivalent:

battles.sort_values(inplace = True)
battles = battles.sort_values()

Why did the pandas developers choose this implementation? What advantage do we
gain from always creating copies? You can find more detailed explanations online, but
the short answer is that immutable data structures tend to lead to fewer bugs. Remem-
ber that an immutable object is incapable of change. We can copy an immutable
object and manipulate the copy, but we can’t alter the original object. A Python string
is an example. An immutable object is less likely to enter a corrupted or invalid state;
it is also easier to test.

 The pandas development team has discussed removing the inplace parameter
from the library in future versions. My recommendation is to avoid using it if possible.
The alternative solution is to reassign a method’s return value to the same variable or
create a separate, more descriptive variable. We can assign the sort_values method
return value to a variable such as sorted_battles, for example.

3.4 Counting values with the value_counts method
Here’s a reminder of what the pokemon Series looks like:

In [35] pokemon.head()

Out [35] Pokemon
 Bulbasaur Grass / Poison
 Ivysaur Grass / Poison
 Venusaur Grass / Poison
 Charmander Fire
 Charmeleon Fire
 Name: Type, dtype: object

How can we find out the most common types of Pokémon? We need to group the val-
ues into buckets and count the number of elements in each bucket. The

67Counting values with the value_counts method
value_counts method, which counts the number of occurrences of each Series
value, solves the problem perfectly:

In [36] pokemon.value_counts()

Out [36] Normal 65
 Water 61
 Grass 38
 Psychic 35
 Fire 30
 ..
 Fire / Dragon 1
 Dark / Ghost 1
 Steel / Ground 1
 Fire / Psychic 1
 Dragon / Ice 1
 Name: Type, Length: 159, dtype: int64

The value_counts method returns a new Series object. The index labels are the
pokemon Series’ values, and the values are their respective counts. Sixty-five of the
Pokémon are classified as Normal, 61 are classified as Water, and so on. For those who
are curious, “Normal” Pokémon are those that excel in physical attacks.

 The length of the value_counts Series is equal to the number of unique values
in the pokemon Series. As a reminder, the nunique method returns this piece of
information:

In [37] len(pokemon.value_counts())

Out [37] 159

In [38] pokemon.nunique()

Out [38] 159

Data integrity is paramount in situations like these. The presence of an extra space or
the different casing of a character will cause pandas to deem two values unequal and
count them separately. We’ll discuss data cleanup in chapter 6.

 The value_counts method’s ascending parameter has a default argument of
False. Pandas sorts the values in descending order, from most occurrences to least
occurrences. To sort the values in ascending order, pass the ascending parameter a
value of True:

In [39] pokemon.value_counts(ascending = True)

Out [39] Rock / Poison 1
 Ghost / Dark 1
 Ghost / Dragon 1
 Fighting / Steel 1
 Rock / Fighting 1
 ..
 Fire 30
 Psychic 35
 Grass 38
 Water 61
 Normal 65

68 CHAPTER 3 Series methods
We may be more interested in the ratio of a Pokémon type relative to all the types. Set
the value_counts method’s normalize parameter to True to return the frequen-
cies of each unique value. A value’s frequency is the portion of the data set that the
value makes up:

In [40] pokemon.value_counts(normalize = True).head()

Out [40] Normal 0.080346
 Water 0.075402
 Grass 0.046972
 Psychic 0.043263
 Fire 0.037083

We can multiply the values in the frequency Series by 100 to get the percentage each
Pokémon type contributes to the whole. Do you recall the syntax from chapter 2? We
can use a plain mathematical operator like a multiplication symbol with a Series.
Pandas will apply the operation to each value:

In [41] pokemon.value_counts(normalize = True).head() * 100

Out [41] Normal 8.034611
 Water 7.540173
 Grass 4.697157
 Psychic 4.326329
 Fire 3.708282

Normal Pokémon make up 8.034611% of the data set, Water Pokémon make up
7.540173%, and so on. Interesting!

 Let’s say we wanted to limit the precision of the percentages. We can round a
Series’ values with the round method. The method’s first parameter, decimals,
sets the number of digits to leave after the decimal point. The next example rounds
the values to two digits; it wraps code from the previous example in parentheses to
avoid a syntactical error. We want to make sure that pandas first multiplies each value
by 100 and then invokes round on the resulting Series:

In [42] (pokemon.value_counts(normalize = True) * 100).round(2)

Out [42] Normal 8.03
 Water 7.54
 Grass 4.70
 Psychic 4.33
 Fire 3.71
 ...
 Rock / Fighting 0.12
 Fighting / Steel 0.12
 Ghost / Dragon 0.12
 Ghost / Dark 0.12
 Rock / Poison 0.12
 Name: Type, Length: 159, dtype: float64

The value_counts method operates identically on a numeric Series. The next
example counts the occurrences of each unique stock price in the google Series. It
turns out that no stock price appears more than three times in the data set:

69Counting values with the value_counts method
In [43] google.value_counts().head()

Out [43] 237.04 3
 288.92 3
 287.68 3
 290.41 3
 194.27 3

To identify trends in numeric data sets, it can be more beneficial to group values into
predefined intervals rather than count distinct values. Let’s begin by determining the
difference between the smallest and largest values within the google Series. The
Series’ max and min methods work well here. An alternative option is passing the
Series into Python’s built-in max and min functions:

In [44] google.max()

Out [44] 1287.58

In [45] google.min()

Out [45] 49.82

We have a range of ~1,250 between the smallest and largest values. Let’s group the
stock prices into buckets of 200, starting at 0 and working up to 1,400. We can define
these intervals as values in a list and pass the list to the value_counts method’s bins
parameter. Pandas will use every two subsequent list values as the lower and upper
ends of an interval:

In [46] buckets = [0, 200, 400, 600, 800, 1000, 1200, 1400]
 google.value_counts(bins = buckets)

Out [46] (200.0, 400.0] 1568
 (-0.001, 200.0] 595
 (400.0, 600.0] 575
 (1000.0, 1200.0] 406
 (600.0, 800.0] 380
 (800.0, 1000.0] 207
 (1200.0, 1400.0] 93
 Name: Close, dtype: int64

The output tells us that Google’s stock price was between $200 and $400 for 1,568 val-
ues in the data set.

 Note that pandas sorted the previous Series in descending order by the number
of values in each bucket. What if we wanted to sort the results by the intervals instead?
We simply have to mix and match a few pandas methods. The intervals are the index
labels in the returned Series, so we can use the sort_index method to sort them.
This technique of invoking multiple methods in sequence is called method chaining :

In [47] google.value_counts(bins = buckets).sort_index()

Out [47] (-0.001, 200.0] 595
 (200.0, 400.0] 1568
 (400.0, 600.0] 575
 (600.0, 800.0] 380

70 CHAPTER 3 Series methods
 (800.0, 1000.0] 207
 (1000.0, 1200.0] 406
 (1200.0, 1400.0] 93
 Name: Close, dtype: int64

We can achieve an identical result by passing a value of False to the sort parameter
of the value_counts method:

In [48] google.value_counts(bins = buckets, sort = False)

Out [48] (-0.001, 200.0] 595
 (200.0, 400.0] 1568
 (400.0, 600.0] 575
 (600.0, 800.0] 380
 (800.0, 1000.0] 207
 (1000.0, 1200.0] 406
 (1200.0, 1400.0] 93
 Name: Close, dtype: int64

Notice that the first interval includes the value -0.001 instead of 0. When pandas orga-
nizes the Series’ values into buckets, it may extend any bin’s range up to .1% in
either direction. The symbols around intervals have significance:

 A parenthesis marks a value as excluded from the interval.
 A square bracket marks a value as included in the interval.

Consider the interval (-0.001, 200.0]. -0.001 is excluded, and 200 is included.
Thus, the interval captures all values greater than -0.001 and less than or equal to
200.0.

 A closed interval includes both endpoints. An example is [5, 10] (greater than or
equal to 5, less than or equal to 10).

 An open interval excludes both endpoints. An example is (5, 10) (greater than 5,
less than 10).

 The value_counts method with a bin parameter returns half-open intervals. Pan-
das will include one of the endpoints and exclude the other.

 The value_counts method’s bins parameter also accepts an integer argument.
Pandas will automatically calculate the difference between the maximum and mini-
mum values in the Series and divide the range into the specified number of bins.
The next example splits the stock prices in google into six bins. Note that the bins/
buckets may not be perfectly equal in size (due to the possible .1% extension of any
interval in any direction) but will be reasonably close:

In [49] google.value_counts(bins = 6, sort = False)

Out [49] (48.581, 256.113] 1204
 (256.113, 462.407] 1104
 (462.407, 668.7] 507
 (668.7, 874.993] 380
 (874.993, 1081.287] 292
 (1081.287, 1287.58] 337
 Name: Close, dtype: int64

71Counting values with the value_counts method
What about our battles data set? We haven’t seen it for a while:

In [50] battles.head()

Out [50] Start Date
 1781-09-06 Connecticut
 1779-07-05 Connecticut
 1777-04-27 Connecticut
 1777-09-03 Delaware
 1777-05-17 Florida
 Name: State, dtype: object

We can use the value_counts method to see which states had the most battles in the
Revolutionary War:

In [51] battles.value_counts().head()

Out [51] South Carolina 31
 New York 28
 New Jersey 24
 Virginia 21
 Massachusetts 11
 Name: State, dtype: int64

Pandas will exclude NaN values from the value_counts Series by default. Pass the
dropna parameter an argument of False to count null values as a distinct category:

In [52] battles.value_counts(dropna = False).head()

Out [52] NaN 70
 South Carolina 31
 New York 28
 New Jersey 24
 Virginia 21
 Name: State, dtype: int64

A Series index also supports the value_counts method. We have to access the
index object via the index attribute before invoking the method. Let’s find out which
dates had the most battles during the Revolutionary War:

In [53] battles.index

Out [53]

DatetimeIndex(['1774-09-01', '1774-12-14', '1775-04-19', '1775-04-19',
 '1775-04-20', '1775-05-10', '1775-05-27', '1775-06-11',
 '1775-06-17', '1775-08-08',
 ...
 '1782-08-08', '1782-08-15', '1782-08-19', '1782-08-26',
 '1782-08-25', '1782-09-11', '1782-09-13', '1782-10-18',
 '1782-12-06', '1783-01-22'],
 dtype='datetime64[ns]', name='Start Date', length=232,
 freq=None)

72 CHAPTER 3 Series methods
In [54] battles.index.value_counts()

Out [54] 1775-04-19 2
 1781-05-22 2
 1781-04-15 2
 1782-01-11 2
 1780-05-25 2
 ..
 1778-05-20 1
 1776-06-28 1
 1777-09-19 1
 1778-08-29 1
 1777-05-17 1
 Name: Start Date, Length: 217, dtype: int64

It looks as though no date saw more than two battles.

3.5 Invoking a function on every Series value with the
apply method
A function is a first-class object in Python, which means that the language treats it like
any other data type. A function may feel like a more abstract entity, but it’s as valid a
data structure as any other.

 Here’s the simplest way to think about first-class objects. Anything that you can do
with a number, you can do with a function. You can do all the following things, for
example:

 Store a function in a list.
 Assign a function as a value for a dictionary key.
 Pass a function into another function as an argument.
 Return a function from another function.

It’s important to distinguish between a function and a function invocation. A function
is a sequence of instructions that produces an output; it is a “recipe” that has not been
cooked yet. By comparison, a function invocation is the actual execution of the instruc-
tions; it is the cooking of the recipe.

 The next example declares a funcs list that stores three Python built-in functions.
The len, max, and min functions are not invoked within the list. The list stores refer-
ences to the functions themselves:

In [55] funcs = [len, max, min]

The next example iterates over the funcs list with a for loop. Over three iterations,
the current_func iterator variable represents the uninvoked len, max, and min
functions. During each iteration, the loop invokes the dynamic current_func func-
tion, passes in the google Series, and prints the return value:

In [56] for current_func in funcs:
 print(current_func(google))

Out [56] 3824
 1287.58
 49.82

73Invoking a function on every Series value with the apply method
The output includes the sequential return values of the three functions: the length of
the Series, the maximum value in the Series, and the minimum value in the
Series.

 The key takeaway here is that we can treat a function like any other object in
Python. So how does this fact apply to pandas? Suppose that we want to round each
floating-point value in our google Series up or down to the closest integer. Python
has a convenient round function for this purpose. The function rounds a value above
0.5 up and any value below 0.5 down:

In [57] round(99.2)

Out [57] 99

In [58] round(99.49)

Out [58] 99

In [59] round(99.5)

Out [59] 100

Wouldn’t it be great if we could apply this round function to every value in our
Series? We’re in luck. The Series has a method called apply that invokes a func-
tion once for each Series value and returns a new Series consisting of the return
values of the function invocations. The apply method expects the function it will
invoke as its first parameter, func. The next example passes Python’s built-in round
function:

In [60] # The two lines below are equivalent
 google.apply(func = round)
 google.apply(round)

Out [60] Date
 2004-08-19 50
 2004-08-20 54
 2004-08-23 54
 2004-08-24 52
 2004-08-25 53
 ...
 2019-10-21 1246
 2019-10-22 1243
 2019-10-23 1259
 2019-10-24 1261
 2019-10-25 1265
 Name: Close, Length: 3824, dtype: int64

We’ve rounded every Series value!
 Again, please take a moment to notice that we’re passing the apply method the

uninvoked round function. We’re passing in the recipe. Somewhere in the internals
of pandas, the apply method knows to invoke our function on every Series value.
Pandas abstracts away the complexity of the operation.

74 CHAPTER 3 Series methods
 The apply method also accepts custom functions. Define the function to accept a
single parameter and have it return the value that you’d like pandas to store in the
aggregated Series.

 Let’s say we wanted to find out how many of our Pokémon have one type (such as
Fire) and how many have two or more types. We need to apply the same logic, the cat-
egorization of a Pokémon, to each Series value. A function is an ideal container for
encapsulating that logic. Let’s define a utility function called single_or_multi that
accepts a single Pokémon type and determines whether it has one or several types. If a
Pokémon has multiple types, the string separates them with a slash ("Fire /
Ghost"). We can use Python’s in operator to check for the inclusion of a forward
slash in the argument string. The if statement executes a block only if its condition
evaluates to True. In our case, if a / is present, the function will return the string
"Multi"; otherwise, it’ll return "Single":

In [61] def single_or_multi(pokemon_type):
 if "/" in pokemon_type:
 return "Multi"

 return "Single"

Now we can pass the single_or_multi function to the apply method. Here’s a
quick refresher on what pokemon looks like:

In [62] pokemon.head(4)

Out [62] Pokemon
 Bulbasaur Grass / Poison
 Ivysaur Grass / Poison
 Venusaur Grass / Poison
 Charmander Fire
 Name: Type, dtype: object

The next example calls the apply method with the single_or_multi function as its
argument. Pandas invokes the single_or_multi function for every Series value:

In [63] pokemon.apply(single_or_multi)

Out [63] Pokemon
 Bulbasaur Multi
 Ivysaur Multi
 Venusaur Multi
 Charmander Single
 Charmeleon Single
 ...
 Stakataka Multi
 Blacephalon Multi
 Zeraora Single
 Meltan Single
 Melmetal Single
 Name: Type, Length: 809, dtype: object

75Coding challenge
Our first specimen, Bulbasaur, is classified as a Grass / Poison Pokémon, so the
single_or_multi function returns "Multi". By comparison, our fourth specimen,
Charmander, is classified as a Fire Pokémon, so the function returns "Single". The
same logic repeats for the remaining pokemon values.

 We have a new Series object! Let’s find out how many Pokémon fall into each
classification by invoking value_counts:

In [64] pokemon.apply(single_or_multi).value_counts()

Out [64] Multi 405
 Single 404
 Name: Type, dtype: int64

It turns out that there’s a fairly even split of single-power and multipower Pokémon. I
hope that this knowledge will prove to be useful at some point in your life.

3.6 Coding challenge
Let’s tackle a challenge that combines several ideas introduced in this chapter and
chapter 2.

3.6.1 Problems

Suppose that a historian reaches out to us and asks us to determine which day of the
week saw the most battles during the Revolutionary War. The final output should be a
Series with the days (Sunday, Monday, and so on) as index labels and a count of bat-
tles on each day as the values. Starting from scratch, import the revolutionary_war.csv
data set, and perform the necessary operations to arrive at the following data:

Saturday 39
Friday 39
Wednesday 32
Thursday 31
Sunday 31
Tuesday 29
Monday 27

You’ll need one additional piece of Python knowledge to solve this problem. If you have
a single datetime object, you can invoke the strftime method on it with an argument
of "%A" to return the day of a week a date falls on (such as "Sunday"). See the follow-
ing example and appendix B for a more-extensive overview of a datetime object:

In [65] import datetime as dt
 today = dt.datetime(2020, 12, 26)
 today.strftime("%A")

Out [65] 'Saturday'

HINT Declaring a custom function to calculate a date’s day of the week may
prove to be helpful.

Good luck!

76 CHAPTER 3 Series methods
3.6.2 Solutions

Let’s reimport the revolutionary_war.csv data set and remind ourselves of its original
shape:

In [66] pd.read_csv("revolutionary_war.csv").head()

Out [66]
 Battle Start Date State

0 Powder Alarm 9/1/1774 Massachusetts
1 Storming of Fort William and Mary 12/14/1774 New Hampshire
2 Battles of Lexington and Concord 4/19/1775 Massachusetts
3 Siege of Boston 4/19/1775 Massachusetts
4 Gunpowder Incident 4/20/1775 Virginia

We do not need the Battle and State columns for this analysis. You’re welcome to use
either column as the index or stick with the default numeric one.

 The critical step is coercing the string values in the Start Date column to datetimes.
If we’re working with dates, we can invoke date-related methods such as strftime.
We do not have the same power with plain strings. Let’s select the Start Date column
with the usecols parameter and convert its values to datetimes with the parse_
dates parameter. Finally, remember to pass True to the squeeze parameter to cre-
ate a Series instead of a DataFrame:

In [67] days_of_war = pd.read_csv(
 "revolutionary_war.csv",
 usecols = ["Start Date"],
 parse_dates = ["Start Date"],
 squeeze = True,
)

 days_of_war.head()

Out [67] 0 1774-09-01
 1 1774-12-14
 2 1775-04-19
 3 1775-04-19
 4 1775-04-20
 Name: Start Date, dtype: datetime64[ns]

Our next challenge is extracting the day of the week for each date. One solution
(using only the tools we know now) is to pass each Series value to a function that will
return that date’s day of the week. Let’s declare that function now:

In [68] def day_of_week(date):
 return date.strftime("%A")

How can we invoke the day_of_week function once for each Series value? We can
pass the day_of_week function as the argument to the apply method. We expect to
get the days of the week, except that...

77Summary
In [69] days_of_war.apply(day_of_week)

ValueError Traceback (most recent call last)
<ipython-input-411-c133befd2940> in <module>
----> 1 days_of_war.apply(day_of_week)

ValueError: NaTType does not support strftime

Uh-oh—our Start Date column has missing values. Unlike a datetime object, a NaT
object does not have a strftime method, so pandas runs into trouble when passing it
into the day_of_week function. The simple solution is to drop all missing datetime
values from the Series before we call the apply method. We can do so with the
dropna method:

In [70] days_of_war.dropna().apply(day_of_week)

Out [70] 0 Thursday
 1 Wednesday
 2 Wednesday
 3 Wednesday
 4 Thursday
 ...
 227 Wednesday
 228 Friday
 229 Friday
 230 Friday
 231 Wednesday
 Name: Start Date, Length: 228, dtype: object

Now we’re getting somewhere! We need a way to count the number of occurrences for
each weekday. The value_counts method does the trick:

In [71] days_of_war.dropna().apply(day_of_week).value_counts()

Out [71] Saturday 39
 Friday 39
 Wednesday 32
 Thursday 31
 Sunday 31
 Tuesday 29
 Monday 27
 Name: Start Date, dtype: int64

Perfect! The result is a tie between Friday and Saturday. Congratulations on complet-
ing the coding challenge!

Summary
 The read_csv function imports a CSV’s contents into a pandas data structure.
 The read_csv function’s parameters can customize the imported columns, the

index, the data types, and more.

78 CHAPTER 3 Series methods
 The sort_values method sorts a Series’ values in ascending or descending
order.

 The sort_index method sorts a Series’ index in ascending or descending
order.

 We can use the inplace parameter to reassign the copy returned from a
method to the original variable holding an object. There are no performance
benefits to using inplace.

 The value_counts method counts the occurrences of each unique value in a
Series.

 The apply method invokes a function on each Series value and returns the
results in a new Series.

The DataFrame object
The pandas DataFrame is a two-dimensional table of data with rows and columns.
As with a Series, pandas assigns an index label and an index position to each
DataFrame row. Pandas also assigns a label and a position to each column. The
DataFrame is two-dimensional because it requires two points of reference—a row
and a column—to isolate a value from the data set. Figure 4.1 displays a visual
example of a pandas DataFrame.

This chapter covers
 Instantiating DataFrame objects from

dictionaries and NumPy ndarrays

 Importing DataFrames from CSV files with the
read_csv function

 Sorting DataFrame columns

 Accessing rows and columns in a DataFrame

 Setting and resetting a DataFrame index

 Renaming columns and index labels in a
DataFrame
79

80 CHAPTER 4 The DataFrame object
The DataFrame is the workhorse of the pandas library and the data structure you’ll
be working with most on a daily basis, so we’ll be spending the remainder of this book
exploring its vast features.

4.1 Overview of a DataFrame
As always, let’s spin up a new Jupyter Notebook and import pandas. We also need the
NumPy library, which we’ll use in section 4.1.2 to generate random data. NumPy is
usually assigned the alias np:

In [1] import pandas as pd
 import numpy as np

The DataFrame class constructor is available at the top level of pandas. The syntax for
instantiating a DataFrame object is identical to the one for instantiating a Series.
We access the DataFrame class and instantiate with a pair of parentheses: pd.Data-
Frame().

4.1.1 Creating a DataFrame from a dictionary

The constructor’s first parameter, data, expects the data that will populate the Data-
Frame. One suitable input is a Python dictionary in which the keys are column names
and the values are column values. The next example passes a dictionary of string keys
and list values. Pandas returns a DataFrame with three columns. Each list element
becomes a value in its respective column:

In [2] city_data = {
 "City": ["New York City", "Paris", "Barcelona", "Rome"],
 "Country": ["United States", "France", "Spain", "Italy"],
 "Population": [8600000, 2141000, 5515000, 2873000]
 }

 cities = pd.DataFrame(city_data)
 cities

Out [2]

 City Country Population

0 New York City United States 8600000
1 Paris France 2141000
2 Barcelona Spain 5515000
3 Rome Italy 2873000

Figure 4.1 A visual representation
of a pandas DataFrame with five
rows and two columns

81Overview of a DataFrame
We officially have a DataFrame! Notice that the data structure is rendered differently
from a Series.

 A DataFrame holds an index of row labels. We did not provide the constructor a
custom index, so pandas generated a numeric one starting at 0. The logic operates the
same way it does on a Series.

 A DataFrame can hold multiple columns of data. It’s helpful to think of the col-
umn headers as a second index. City, Country, and Population are three index labels
on the column axis; pandas assigns them the index positions 0, 1, and 2, respectively.

 What if we wanted to swap the column headers with the index labels? Two options
are available here. We can invoke the transpose method on the DataFrame or
access its T attribute:

In [3] # The two lines below are equivalent
 cities.transpose()
 cities.T

Out [3]

 0 1 2 3

City New York City Paris Barcelona Rome
Country United States France Spain Italy
Population 8600000 2141000 5515000 2873000

The previous example serves as a reminder that pandas can store index labels of dif-
ferent data types. In the previous output, the columns use the same value for index
labels and index positions. The rows have different labels (City, Country, Population)
and positions (0, 1, and 2).

4.1.2 Creating a DataFrame from a NumPy ndarray

Let’s try one more example. The DataFrame constructor’s data parameter also
accepts a NumPy ndarray. We can generate an ndarray of any size with the rand-
int function in NumPy’s random module. The next example creates a 3 x 5 ndarray
of integers between 1 and 101 (exclusive):

In [4] random_data = np.random.randint(1, 101, [3, 5])
 random_data

Out [4] array([[25, 22, 80, 43, 42],
 [40, 89, 7, 21, 25],
 [89, 71, 32, 28, 39]])

If you’d like more information on random data generation in NumPy, see appen-
dix C.

 Next, let’s pass our ndarray into the DataFrame constructor. The ndarray has
neither row labels nor column labels. Thus, pandas uses a numeric index for both the
row axis and column axis:

82 CHAPTER 4 The DataFrame object
In [5] pd.DataFrame(data = random_data)

Out [5]

 0 1 2 3 4

0 25 22 80 43 42
1 40 89 7 21 25
2 89 71 32 28 39

We can manually set the row labels with the DataFrame constructor’s index parame-
ter, which accepts any iterable object, including a list, tuple, or ndarray. Note that
the iterable’s length must be equal to the data set’s number of rows. We’re passing a
3 x 5 ndarray, so we must provide three row labels:

In [6] row_labels = ["Morning", "Afternoon", "Evening"]
 temperatures = pd.DataFrame(
 data = random_data, index = row_labels
)
 temperatures

Out [6]

 0 1 2 3 4

Morning 25 22 80 43 42
Afternoon 40 89 7 21 25
Evening 89 71 32 28 39

We can set the column names with the constructor’s columns parameter. The ndar-
ray includes five columns, so we must pass an iterable with five items. The next exam-
ple passes the column names in a tuple:

In [7] row_labels = ["Morning", "Afternoon", "Evening"]
 column_labels = (
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
)

 pd.DataFrame(
 data = random_data,
 index = row_labels,
 columns = column_labels,
)

Out [7]

 Monday Tuesday Wednesday Thursday Friday

Morning 25 22 80 43 42
Afternoon 40 89 7 21 25
Evening 89 71 32 28 39

Pandas permits duplicates in the row and column indices. In the next example,
"Morning" appears twice in the rows’ index labels, and "Tuesday" appears twice in
the columns’ index labels:

83Similarities between Series and DataFrames
In [8] row_labels = ["Morning", "Afternoon", "Morning"]
 column_labels = [
 "Monday",
 "Tuesday",
 "Wednesday",
 "Tuesday",
 "Friday"
]

 pd.DataFrame(
 data = random_data,
 index = row_labels,
 columns = column_labels,
)

Out [8]

 Monday Tuesday Wednesday Tuesday Friday

Morning 25 22 80 43 42
Afternoon 40 89 7 21 25
Evening 89 71 32 28 39

As we mentioned in earlier chapters, it’s ideal to have unique indices when possible. If
there are no duplicates, it is easier for pandas to extract a specific row or column.

4.2 Similarities between Series and DataFrames
Many Series attributes and methods are also available on DataFrames. Their imple-
mentations can vary; pandas must account for multiple columns and two separate axes
now.

4.2.1 Importing a DataFrame with the read_csv function

The nba.csv data set is a list of professional basketball players in the National Basket-
ball Association (NBA) during the 2019–20 season. Each row includes a player’s
name, team, position, birthday, and salary. A good mix of data types is scattered
throughout, making this data set excellent for exploring the basics of DataFrames.

 Let’s use the read_csv function at the top level of pandas to import the file (we
introduced this function in chapter 3). The function accepts a filename as its first argu-
ment and returns a DataFrame by default. Before you execute the following code,
please make sure that the data set is in the same directory as your Jupyter Notebook:

In [9] pd.read_csv("nba.csv")

Out [9]

 Name Team Position Birthday Salary

0 Shake Milton Philadelphia 76ers SG 9/26/96 1445697
1 Christian Wood Detroit Pistons PF 9/27/95 1645357
2 PJ Washington Charlotte Hornets PF 8/23/98 3831840
3 Derrick Rose Detroit Pistons PG 10/4/88 7317074
4 Marial Shayok Philadelphia 76ers G 7/26/95 79568
 … … … … … …
445 Austin Rivers Houston Rockets PG 8/1/92 2174310
446 Harry Giles Sacramento Kings PF 4/22/98 2578800

84 CHAPTER 4 The DataFrame object
447 Robin Lopez Milwaukee Bucks C 4/1/88 4767000
448 Collin Sexton Cleveland Cavaliers PG 1/4/99 4764960
449 Ricky Rubio Phoenix Suns PG 10/21/90 16200000

450 rows × 5 columns

At the bottom of the output, pandas informs us that the data has 450 rows and 5
columns.

 Before we assign the DataFrame to a variable, let’s make one optimization. Pandas
imports the Birthday column values as strings rather than as datetimes, limiting the
number of operations we can perform on them. We can use the parse_dates param-
eter to coerce the values into datetimes:

In [10] pd.read_csv("nba.csv", parse_dates = ["Birthday"])

Out [10]

 Name Team Position Birthday Salary

0 Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
1 Christian Wood Detroit Pistons PF 1995-09-27 1645357
2 PJ Washington Charlotte Hornets PF 1998-08-23 3831840
3 Derrick Rose Detroit Pistons PG 1988-10-04 7317074
4 Marial Shayok Philadelphia 76ers G 1995-07-26 79568
 … … … … … …
445 Austin Rivers Houston Rockets PG 1992-08-01 2174310
446 Harry Giles Sacramento Kings PF 1998-04-22 2578800
447 Robin Lopez Milwaukee Bucks C 1988-04-01 4767000
448 Collin Sexton Cleveland Cavaliers PG 1999-01-04 4764960
449 Ricky Rubio Phoenix Suns PG 1990-10-21 16200000

450 rows × 5 columns

Much better! Now we have a column of datetimes. Pandas displays the datetime values
in conventional YYYY-MM-DD format. I’m happy with the import, so we can assign the
DataFrame to a variable like nba:

In [11] nba = pd.read_csv("nba.csv", parse_dates = ["Birthday"])

It’s helpful to think of a DataFrame as being a collection of Series objects with a
common index. In this example, the five columns in nba (Name, Team, Position,
Birthday, and Salary) share the same row index. Let’s get to work exploring the Data-
Frame.

4.2.2 Shared and exclusive attributes of Series and DataFrames

Attributes and methods may differ between Series and DataFrames, both in name
and implementation. Here’s an example. A Series has a dtype attribute that reveals
the data type of its values (see chapter 2). Notice that the dtype attribute is singular
because a Series can store only one data type:

In [12] pd.Series([1, 2, 3]).dtype

Out [12] dtype('int64')

85Similarities between Series and DataFrames
By comparison, a DataFrame can hold heterogeneous data. Heterogeneous means
mixed or varied. One column can hold integers, and another can hold strings. A
DataFrame has a unique dtypes attribute. (Notice that the name is plural.) The
attribute returns a Series with the DataFrame’s columns as the index labels and the
columns’ data types as the values:

In [13] nba.dtypes

Out [13] Name object
 Team object
 Position object
 Birthday datetime64[ns]
 Salary int64
 dtype: object

The Name, Team, and Position columns list object as their data type. The object
data type is pandas’ lingo for complex objects including strings. Thus, the nba Data-
Frame has three string columns, one datetime column, and one integer column.

 We can invoke the value_counts method on the Series to count the number of
columns storing each data type:

In [14] nba.dtypes.value_counts()

Out [14] object 3
 datetime64[ns] 1
 int64 1
 dtype: int64

dtype versus dtypes is one example of the different attributes between Series and
DataFrames. But the two data structures also have many attributes and methods in
common.

 A DataFrame consists of several smaller objects: an index that holds the row
labels, an index that holds the column labels, and a data container that holds the val-
ues. The index attribute exposes the index of the DataFrame:

In [15] nba.index

Out [15] RangeIndex(start=0, stop=450, step=1)

Here, we have a RangeIndex, an index optimized for storing a sequence of numeric
values. A RangeIndex object includes three attributes: start (the inclusive lower
bound), stop (the exclusive upper bound), and step (the interval or step sequence
between every two values). The output above tells us that nba’s index starts counting
at 0 and proceeds to 450 in increments of 1.

 Pandas uses a separate index object to store a DataFrame’s columns. We can
access it via the columns attribute:

In [16] nba.columns

Out [16] Index(['Name', 'Team', 'Position', 'Birthday', 'Salary'],
 dtype='object'

86 CHAPTER 4 The DataFrame object
This object is another type of index object: Index. Pandas uses this option when an
index consists of text values.

 The index attribute is an example of an attribute that a DataFrame shares with a
Series. The columns attribute is an example of an attribute that is exclusive to a
DataFrame. A Series has no concept of columns.

 The ndim attribute returns the number of dimensions in a pandas object. A Data-
Frame has two:

In [17] nba.ndim

Out [17] 2

The shape attribute returns the DataFrame’s dimensions in a tuple. The nba data set
has 450 rows and 5 columns:

In [18] nba.shape

Out [18] (450, 5)

The size attribute calculates the total number of values in the data set. Missing values
(such as NaNs) are included in the count:

In [19] nba.size

Out [19] 2250

If we want to exclude missing values, the count method returns a Series with the
counts of present values per column:

In [20] nba.count()

Out [20] Name 450
 Team 450
 Position 450
 Birthday 450
 Salary 450
 dtype: int64

We can add all these Series values with the sum method to arrive at the number of
non-null values in the DataFrame. The nba DataFrame data set holds no missing val-
ues, so the size attribute and the sum method return the same result:

In [21] nba.count().sum()

Out [21] 2250

Here’s an example illustrating the differences between the size attribute and the
count method. Let’s create a DataFrame with a missing value. We can access nan as a
top-level attribute on the NumPy package:

In [22] data = {
 "A": [1, np.nan],
 "B": [2, 3]

87Similarities between Series and DataFrames
 }

 df = pd.DataFrame(data)
 df

Out [22]

 A B

0 1.0 2
1 NaN 3

The size attribute returns 4 because the DataFrame has four cells:

In [23] df.size

Out [23] 4

By comparison, the sum method returns 3 because the DataFrame has three non-null
values:

In [24] df.count()

Out [24] A 1
 B 2
 dtype: int64

In [25] df.count().sum()

Out [25] 3

The A column has one present value, and the B column has two present values.

4.2.3 Shared methods of Series and DataFrames

DataFrames and Series have methods in common too. We can use the head
method to extract rows from the top of a DataFrame, for example:

In [26] nba.head(2)

Out [26]

 Name Team Position Birthday Salary

0 Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
1 Christian Wood Detroit Pistons PF 1995-09-27 1645357

The tail method returns rows from the bottom of the DataFrame:

In [27] nba.tail(n = 3)

Out [27]

 Name Team Position Birthday Salary

447 Robin Lopez Milwaukee Bucks C 1988-04-01 4767000
448 Collin Sexton Cleveland Cavaliers PG 1999-01-04 4764960
449 Ricky Rubio Phoenix Suns PG 1990-10-21 16200000

88 CHAPTER 4 The DataFrame object
The two methods default to returning five rows when invoked without an argument:

In [28] nba.tail()

Out [28]

 Name Team Position Birthday Salary

445 Austin Rivers Houston Rockets PG 1992-08-01 2174310
446 Harry Giles Sacramento Kings PF 1998-04-22 2578800
447 Robin Lopez Milwaukee Bucks C 1988-04-01 4767000
448 Collin Sexton Cleveland Cavaliers PG 1999-01-04 4764960
449 Ricky Rubio Phoenix Suns PG 1990-10-21 16200000

The sample method extracts random rows from the DataFrame. Its first parameter
specifies the number of rows:

In [29] nba.sample(3)

Out [29]

 Name Team Position Birthday Salary

225 Tomas Satoransky Chicago Bulls PG 1991-10-30 10000000
201 Javonte Green Boston Celtics SF 1993-07-23 898310
310 Matthew Dellavedova Cleveland Cavaliers PG 1990-09-08 9607500

Suppose that we want to find out how many teams, salaries, and positions exist in this
data set. In chapter 2, we used the nunique method to count the number of unique
values in a Series. When we invoke the same method on a DataFrame, it returns a
Series object with counts of unique values per column:

In [30] nba.nunique()

Out [30] Name 450
 Team 30
 Position 9
 Birthday 430
 Salary 269
 dtype: int64

There are 30 unique teams, 269 unique salaries, and 9 unique positions in nba.
 You may also recall the max and min methods. On a DataFrame, the max method

returns a Series with the maximum value from each column. The maximum value in
a text column is the string closest to the end of the alphabet. The maximum value in a
datetime column is the latest date in chronological order:

In [31] nba.max()

Out [31] Name Zylan Cheatham
 Team Washington Wizards
 Position SG
 Birthday 2000-12-23 00:00:00
 Salary 40231758
 dtype: object

89Similarities between Series and DataFrames
The min method returns a Series with the minimum value from each column (the small-
est number, the string closest to the start of the alphabet, the earliest date, and so on):

In [32] nba.min()

Out [32] Name Aaron Gordon
 Team Atlanta Hawks
 Position C
 Birthday 1977-01-26 00:00:00
 Salary 79568
 dtype: object

What if we want to identify multiple max values, such as the four highest-paid players in
the data set? The nlargest method retrieves a subset of rows in which a given column
has the largest values in the DataFrame. We pass the number of rows to extract to its n
parameter and the column to use for sorting to its columns parameter. The next exam-
ple extracts the DataFrame rows that have the four largest values in the Salary column:

In [33] nba.nlargest(n = 4, columns = "Salary")

Out [33]

 Name Team Position Birthday Salary

205 Stephen Curry Golden State Warriors PG 1988-03-14 40231758
38 Chris Paul Oklahoma City Thunder PG 1985-05-06 38506482
219 Russell Westbrook Houston Rockets PG 1988-11-12 38506482
251 John Wall Washington Wizards PG 1990-09-06 38199000

Our next challenge is finding the three oldest players in the league. We can accom-
plish this task by getting the three earliest dates in the Birthday column. The nsmall-
est method can help us; it returns a subset of rows in which a given column has the
smallest values in the data set. The smallest datetime values are those that occur earli-
est in chronological order. Note that the nlargest and nsmallest methods can be
invoked only on numeric or datetime columns:

In [34] nba.nsmallest(n = 3, columns = ["Birthday"])

Out [34]

 Name Team Position Birthday Salary

98 Vince Carter Atlanta Hawks PF 1977-01-26 2564753
196 Udonis Haslem Miami Heat C 1980-06-09 2564753
262 Kyle Korver Milwaukee Bucks PF 1981-03-17 6004753

What if we want to calculate the sum of all NBA salaries? The DataFrame includes a
sum method for this purpose:

In [35] nba.sum()

Out [35] Name Shake MiltonChristian WoodPJ WashingtonDerrick...
 Team Philadelphia 76ersDetroit PistonsCharlotte Hor...
 Position SGPFPFPGGPFSGSFCSFPGPGFCPGSGPFCCPFPFSGPFPGSGSF...
 Salary 3444112694
 dtype: object

90 CHAPTER 4 The DataFrame object
We do get the answer we want, but the output is a bit messy. By default, pandas adds
the values in each column. For text columns, the library concatenates all strings into
one. To limit the addition to numeric volumes, we can pass True to the sum method’s
numeric_only parameter:

In [36] nba.sum(numeric_only = True)

Out [36] Salary 3444112694
 dtype: int64

The total combined salaries of these 450 NBA players is a whopping $3.4 billion. We
can calculate the average salary with the mean method. The method accepts the same
numeric_only parameter to target only numeric columns:

In [37] nba.mean(numeric_only = True)

Out [37] Salary 7.653584e+06
 dtype: float64

A DataFrame also includes methods for statistical calculations such as median, mode,
and standard deviation:

In [38] nba.median(numeric_only = True)

Out [38] Salary 3303074.5
 dtype: float64

In [39] nba.mode(numeric_only = True)

Out [39]

 Salary

0 79568

In [40] nba.std(numeric_only = True)

Out [40] Salary 9.288810e+06
 dtype: float64

For advanced statistical methods, check out the official Series documentation
(http://mng.bz/myDa).

4.3 Sorting a DataFrame
Our data set’s rows arrived in jumbled, random order, but that’s no problem! We can
sort a DataFrame by one or more columns by using the sort_values method.

4.3.1 Sorting by a single column

Let’s first sort our players in alphabetical order by name. The sort_values method’s
first parameter, by, accepts the column that pandas should use to sort the DataFrame.
Let’s pass in the Name column as a string:

http://mng.bz/myDa

91Sorting a DataFrame
In [41] # The two lines below are equivalent
 nba.sort_values("Name")
 nba.sort_values(by = "Name")

Out [41]

 Name Team Position Birthday Salary

52 Aaron Gordon Orlando Magic PF 1995-09-16 19863636
101 Aaron Holiday Indiana Pacers PG 1996-09-30 2239200
437 Abdel Nader Oklahoma City Thunder SF 1993-09-25 1618520
81 Adam Mokoka Chicago Bulls G 1998-07-18 79568
399 Admiral Schofield Washington Wizards SF 1997-03-30 1000000
… … … … … …
159 Zach LaVine Chicago Bulls PG 1995-03-10 19500000
302 Zach Norvell Los Angeles Lakers SG 1997-12-09 79568
312 Zhaire Smith Philadelphia 76ers SG 1999-06-04 3058800
137 Zion Williamson New Orleans Pelicans F 2000-07-06 9757440
248 Zylan Cheatham New Orleans Pelicans SF 1995-11-17 79568

450 rows × 5 columns

The sort_values method’s ascending parameter determines the sort order; it has
a default argument of True. By default, pandas will sort a column of numbers in
increasing order, a column of strings in alphabetical order, and a column of datetimes
in chronological order.

 If we wanted to sort the names in reverse alphabetical order, we could pass the
ascending parameter a False instead:

In [42] nba.sort_values("Name", ascending = False).head()

Out [42]

 Name Team Position Birthday Salary

248 Zylan Cheatham New Orleans Pelicans SF 1995-11-17 79568
137 Zion Williamson New Orleans Pelicans F 2000-07-06 9757440
312 Zhaire Smith Philadelphia 76ers SG 1999-06-04 3058800
302 Zach Norvell Los Angeles Lakers SG 1997-12-09 79568
159 Zach LaVine Chicago Bulls PG 1995-03-10 19500000

Here’s another example: what if we want to find the five youngest players in nba with-
out using the nsmallest method? We could sort the Birthday column in reverse
chronological order by using the sort_values method with ascending set to
False and then take five rows off the top with the head method:

In [43] nba.sort_values("Birthday", ascending = False).head()

Out [43]

 Name Team Position Birthday Salary

136 Sekou Doumbouya Detroit Pistons SF 2000-12-23 3285120
432 Talen Horton-Tucker Los Angeles Lakers GF 2000-11-25 898310
137 Zion Williamson New Orleans Pelicans F 2000-07-06 9757440
313 RJ Barrett New York Knicks SG 2000-06-14 7839960
392 Jalen Lecque Phoenix Suns G 2000-06-13 898310

92 CHAPTER 4 The DataFrame object
The youngest player in nba appears first in the output. That player is Sekou Doum-
bouya, who was born December 23, 2000.

4.3.2 Sorting by multiple columns

We can sort multiple columns in a DataFrame by passing a list to the sort_values
method’s by parameter. Pandas will sort the DataFrame’s columns consecutively in
the order in which they appear in the list. The next example sorts the nba DataFrame
first by the Team column and then by the Name column. Pandas defaults to ascending
sorts for all columns:

In [44] nba.sort_values(by = ["Team", "Name"])

Out [44]

 Name Team Position Birthday Salary

359 Alex Len Atlanta Hawks C 1993-06-16 4160000
167 Allen Crabbe Atlanta Hawks SG 1992-04-09 18500000
276 Brandon Goodwin Atlanta Hawks PG 1995-10-02 79568
438 Bruno Fernando Atlanta Hawks C 1998-08-15 1400000
194 Cam Reddish Atlanta Hawks SF 1999-09-01 4245720
 … … … … … …
418 Jordan McRae Washington Wizards PG 1991-03-28 1645357
273 Justin Robinson Washington Wizards PG 1997-10-12 898310
428 Moritz Wagner Washington Wizards C 1997-04-26 2063520
21 Rui Hachimura Washington Wizards PF 1998-02-08 4469160
36 Thomas Bryant Washington Wizards C 1997-07-31 8000000

450 rows × 5 columns

Here’s how you read the output. The Atlanta Hawks are the first team in the data set
when we sort teams by alphabetical order. Within the Atlanta Hawks, Alex Len’s name
comes first, followed by Allen Crabbe and Brandon Goodwin. Pandas repeats this sort-
ing logic for the remaining teams and names.

 We can pass a single Boolean to the ascending parameter to apply the same sort
order to each column. The next example passes False, so pandas first sorts the Team
column in descending order and then the Name column in descending order:

In [45] nba.sort_values(["Team", "Name"], ascending = False)

Out [45]

 Name Team Position Birthday Salary

36 Thomas Bryant Washington Wizards C 1997-07-31 8000000
21 Rui Hachimura Washington Wizards PF 1998-02-08 4469160
428 Moritz Wagner Washington Wizards C 1997-04-26 2063520
273 Justin Robinson Washington Wizards PG 1997-10-12 898310
418 Jordan McRae Washington Wizards PG 1991-03-28 1645357
 … … … … … …
194 Cam Reddish Atlanta Hawks SF 1999-09-01 4245720
438 Bruno Fernando Atlanta Hawks C 1998-08-15 1400000

93Sorting a DataFrame
276 Brandon Goodwin Atlanta Hawks PG 1995-10-02 79568
167 Allen Crabbe Atlanta Hawks SG 1992-04-09 18500000
359 Alex Len Atlanta Hawks C 1993-06-16 4160000

450 rows × 5 columns

What if we want to sort each column in a different order? We might want to sort the
teams in ascending order and then sort the salaries within those teams in descending
order, for example. To accomplish this task, we can pass the ascending parameter a
list of Boolean values. The lists passed to the by and ascending parameters must be
equal in length. Pandas will use shared index positions between the two lists to match
each column with its associated sort order. In the next example, the Team column
occupies index position 0 in the by list; pandas matches it with the True at index posi-
tion 0 in the ascending list, so it sorts the column in ascending order. Pandas applies
the same logic to the Salary column and sorts it in descending order:

In [46] nba.sort_values(
 by = ["Team", "Salary"], ascending = [True, False]
)

Out [46]

 Name Team Position Birthday Salary

111 Chandler Parsons Atlanta Hawks SF 1988-10-25 25102512
28 Evan Turner Atlanta Hawks PG 1988-10-27 18606556
167 Allen Crabbe Atlanta Hawks SG 1992-04-09 18500000
213 De'Andre Hunter Atlanta Hawks SF 1997-12-02 7068360
339 Jabari Parker Atlanta Hawks PF 1995-03-15 6500000
 … … … … … …
80 Isaac Bonga Washington Wizards PG 1999-11-08 1416852
399 Admiral Schofield Washington Wizards SF 1997-03-30 1000000
273 Justin Robinson Washington Wizards PG 1997-10-12 898310
283 Garrison Mathews Washington Wizards SG 1996-10-24 79568
353 Chris Chiozza Washington Wizards PG 1995-11-21 79568

450 rows × 5 columns

The data looks good, so let’s make our sort permanent. The sort_values method
supports the inplace parameter, but we’ll be explicit and reassign the returned
DataFrame to the nba variable (see chapter 3 for a discussion of the imperfections of
the inplace parameter):

In [47] nba = nba.sort_values(
 by = ["Team", "Salary"],
 ascending = [True, False]
)

Hooray—we’ve sorted our DataFrame by the values in the Team and Salary columns.
Now we can figure out which players on each team get paid the most.

94 CHAPTER 4 The DataFrame object
4.4 Sorting by index
With our permanent sort, our DataFrame is in a different order from when it arrived:

In [48] nba.head()

Out [48]

 Name Team Position Birthday Salary

111 Chandler Parsons Atlanta Hawks SF 1988-10-25 25102512
28 Evan Turner Atlanta Hawks PG 1988-10-27 18606556
167 Allen Crabbe Atlanta Hawks SG 1992-04-09 18500000
213 De'Andre Hunter Atlanta Hawks SF 1997-12-02 7068360
339 Jabari Parker Atlanta Hawks PF 1995-03-15 6500000

How can we return it to its original form?

4.4.1 Sorting by row index

Our nba DataFrame still has its numeric index. If we could sort the data set by index
positions rather than by column values, we could return it to its original shape. The
sort_index method does just that:

In [49] # The two lines below are equivalent
 nba.sort_index().head()
 nba.sort_index(ascending = True).head()

Out [49]

 Name Team Position Birthday Salary

0 Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
1 Christian Wood Detroit Pistons PF 1995-09-27 1645357
2 PJ Washington Charlotte Hornets PF 1998-08-23 3831840
3 Derrick Rose Detroit Pistons PG 1988-10-04 7317074
4 Marial Shayok Philadelphia 76ers G 1995-07-26 79568

We can also reverse the sort order by passing False to the method’s ascending
parameter. The next example shows the greatest index positions first:

In [50] nba.sort_index(ascending = False).head()

Out [50]

 Name Team Position Birthday Salary

449 Ricky Rubio Phoenix Suns PG 1990-10-21 16200000
448 Collin Sexton Cleveland Cavaliers PG 1999-01-04 4764960
447 Robin Lopez Milwaukee Bucks C 1988-04-01 4767000
446 Harry Giles Sacramento Kings PF 1998-04-22 2578800
445 Austin Rivers Houston Rockets PG 1992-08-01 2174310

We’re back where we started, with the DataFrame sorted by index position. Let’s
assign this DataFrame back to the nba variable:

In [51] nba = nba.sort_index()

Next up, let’s explore how we can sort our nba on its other axis.

95Setting a new index
4.4.2 Sorting by column index

A DataFrame is a two-dimensional data structure. We can sort an additional axis: the
vertical axis.

 To sort the DataFrame columns in order, we’ll again rely on the sort_index
method. This time, however, we’ll need to add an axis parameter and pass it an argu-
ment of "columns" or 1. The next example sorts the columns in ascending order:

In [52] # The two lines below are equivalent
 nba.sort_index(axis = "columns").head()
 nba.sort_index(axis = 1).head()

Out [52]

 Birthday Name Position Salary Team

0 1996-09-26 Shake Milton SG 1445697 Philadelphia 76ers
1 1995-09-27 Christian Wood PF 1645357 Detroit Pistons
2 1998-08-23 PJ Washington PF 3831840 Charlotte Hornets
3 1988-10-04 Derrick Rose PG 7317074 Detroit Pistons
4 1995-07-26 Marial Shayok G 79568 Philadelphia 76ers

How about sorting the columns in reverse alphabetical order? That task is a simple
one: we can pass the ascending parameter an argument of False. The next exam-
ple invokes the sort_index method, targets the columns with the axis parameter,
and sorts in descending order with the ascending parameter:

In [53] nba.sort_index(axis = "columns", ascending = False).head()

Out [53]

 Team Salary Position Name Birthday

0 Philadelphia 76ers 1445697 SG Shake Milton 1996-09-26
1 Detroit Pistons 1645357 PF Christian Wood 1995-09-27
2 Charlotte Hornets 3831840 PF PJ Washington 1998-08-23
3 Detroit Pistons 7317074 PG Derrick Rose 1988-10-04
4 Philadelphia 76ers 79568 G Marial Shayok 1995-07-26

Let’s take a second to reflect on the power of pandas. With two methods and a few
parameters, we were able to sort the DataFrame on both axes, by one column, by
multiple columns, in ascending order, in descending order, or in multiple orders.
Pandas is remarkably flexible. We only have to combine the right method with the
right arguments.

4.5 Setting a new index
At its core, our data set is a collection of players. Therefore, it seems fitting to use the
Name column’s values as the DataFrame’s index labels. Name also has the benefit of
being the only column with unique values.

 The set_index method returns a new DataFrame with a given column set as the
index. Its first parameter, keys, accepts the column name as a string:

96 CHAPTER 4 The DataFrame object
In [54] # The two lines below are equivalent
 nba.set_index(keys = "Name")
 nba.set_index("Name")

Out [54]

 Team Position Birthday Salary
Name

Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
Christian Wood Detroit Pistons PF 1995-09-27 1645357
PJ Washington Charlotte Hornets PF 1998-08-23 3831840
Derrick Rose Detroit Pistons PG 1988-10-04 7317074
Marial Shayok Philadelphia 76ers G 1995-07-26 79568
 … … … … …
Austin Rivers Houston Rockets PG 1992-08-01 2174310
Harry Giles Sacramento Kings PF 1998-04-22 2578800
Robin Lopez Milwaukee Bucks C 1988-04-01 4767000
Collin Sexton Cleveland Cavaliers PG 1999-01-04 4764960
Ricky Rubio Phoenix Suns PG 1990-10-21 16200000

450 rows × 4 columns

Looks good! Let’s overwrite our nba variable:

In [55] nba = nba.set_index(keys = "Name")

As a side note, we can set the index when importing a data set. Pass the column name
as a string to the read_csv function’s index_col parameter. The following code
leads to the same DataFrame:

In [56] nba = pd.read_csv(
 "nba.csv", parse_dates = ["Birthday"], index_col = "Name"
)

Next, we’ll talk about selecting rows and columns from our DataFrame.

4.6 Selecting columns and rows from a DataFrame
A DataFrame is a collection of Series objects with a common index. Multiple syntax
options are available to extract one or more of these Series from the DataFrame.

4.6.1 Selecting a single column from a DataFrame

Each Series column is available as an attribute on the DataFrame. We use dot syntax
to access object attributes. We can extract the Salary column with nba.Salary, for
example. Notice that the index carries over from the DataFrame to the Series:

In [57] nba.Salary

Out [57] Name
 Shake Milton 1445697
 Christian Wood 1645357
 PJ Washington 3831840

97Selecting columns and rows from a DataFrame
 Derrick Rose 7317074
 Marial Shayok 79568
 ...
 Austin Rivers 2174310
 Harry Giles 2578800
 Robin Lopez 4767000
 Collin Sexton 4764960
 Ricky Rubio 16200000
 Name: Salary, Length: 450, dtype: int64

We can also extract a column by passing its name in square brackets after the Data-
Frame:

In [58] nba["Position"]

Out [58] Name
 Shake Milton SG
 Christian Wood PF
 PJ Washington PF
 Derrick Rose PG
 Marial Shayok G
 ..
 Austin Rivers PG
 Harry Giles PF
 Robin Lopez C
 Collin Sexton PG
 Ricky Rubio PG
 Name: Position, Length: 450, dtype: object

The advantage of the square-bracket syntax is that it supports column names with
spaces. If our column was named "Player Position", we could extract it only via
square brackets:

nba["Player Position"]

The attribute syntax would raise an exception. Python has no way of knowing the sig-
nificance of the space and would assume that we’re trying to access a Player column:

nba.Player Position

Although opinions differ, I recommend using the square-bracket syntax for
extraction. I like solutions that work 100% of the time, even if they require typing a
few extra characters.

4.6.2 Selecting multiple columns from a DataFrame

To extract multiple DataFrame columns, declare a pair of opening and closing
square brackets; then pass the column names in a list. The result will be a new Data-
Frame whose columns are in the same order as the list elements. The next example
targets the Salary and Birthday columns:

98 CHAPTER 4 The DataFrame object
In [59] nba[["Salary", "Birthday"]]

Out [59]

 Salary Birthday
Name

Shake Milton 1445697 1996-09-26
Christian Wood 1645357 1995-09-27
PJ Washington 3831840 1998-08-23
Derrick Rose 7317074 1988-10-04
Marial Shayok 79568 1995-07-26

Pandas will extract the columns based on their order in the list:

In [60] nba[["Birthday", "Salary"]].head()

Out [60]

 Birthday Salary
Name

Shake Milton 1996-09-26 1445697
Christian Wood 1995-09-27 1645357
PJ Washington 1998-08-23 3831840
Derrick Rose 1988-10-04 7317074
Marial Shayok 1995-07-26 79568

We can use the select_dtypes method to select columns based on their data types.
The method accepts two parameters, include and exclude. The parameters accept
a single string or a list, representing the column type(s) that pandas should keep or
discard. As a reminder, you can access the dtypes attribute if you’d like to see each
column’s datatype. The next example selects only string columns from nba:

In [61] nba.select_dtypes(include = "object")

Out [61]

 Team Position
Name

Shake Milton Philadelphia 76ers SG
Christian Wood Detroit Pistons PF
PJ Washington Charlotte Hornets PF
Derrick Rose Detroit Pistons PG
Marial Shayok Philadelphia 76ers G
 … … …
Austin Rivers Houston Rockets PG
Harry Giles Sacramento Kings PF
Robin Lopez Milwaukee Bucks C
Collin Sexton Cleveland Cavaliers PG
Ricky Rubio Phoenix Suns PG

450 rows × 2 columns

99Selecting rows from a DataFrame
The next example selects all columns except string and integer columns:

In [62] nba.select_dtypes(exclude = ["object", "int"])

Out [62]

 Birthday
Name

Shake Milton 1996-09-26
Christian Wood 1995-09-27
PJ Washington 1998-08-23
Derrick Rose 1988-10-04
Marial Shayok 1995-07-26
 … …
Austin Rivers 1992-08-01
Harry Giles 1998-04-22
Robin Lopez 1988-04-01
Collin Sexton 1999-01-04
Ricky Rubio 1990-10-21

450 rows × 1 columns

The Birthday column is the only column in nba that holds neither string nor integer
values. To include or exclude datetime columns, we can pass an argument of "date-
time" to the correct parameter.

4.7 Selecting rows from a DataFrame
Now that we’ve practiced extracting columns, let’s learn how to extract DataFrame
rows by index label or position.

4.7.1 Extracting rows by index label

The loc attribute extracts a row by label. We call attributes such as loc accessors
because they access a piece of data. Type a pair of square brackets immediately after
loc and pass in the target index label. The next example extracts the nba row with an
index label of "LeBron James". Pandas returns the row’s values in a Series. As
always, be mindful of case sensitivity:

In [63] nba.loc["LeBron James"]

Out [63] Team Los Angeles Lakers
 Position PF
 Birthday 1984-12-30 00:00:00
 Salary 37436858
 Name: LeBron James, dtype: object

We can pass a list in between the square brackets to extract multiple rows. When the
results set includes multiple records, pandas stores the results in a DataFrame:

100 CHAPTER 4 The DataFrame object
In [64] nba.loc[["Kawhi Leonard", "Paul George"]]

Out [64]

 Team Position Birthday Salary
Name

Kawhi Leonard Los Angeles Clippers SF 1991-06-29 32742000
Paul George Los Angeles Clippers SF 1990-05-02 33005556

Pandas organizes the rows in the order in which their index labels appear in the list.
The next example swaps the string order from the previous example:

In [65] nba.loc[["Paul George", "Kawhi Leonard"]]

Out [65]

 Team Position Birthday Salary
Name

Paul George Los Angeles Clippers SF 1990-05-02 33005556
Kawhi Leonard Los Angeles Clippers SF 1991-06-29 32742000

We can use loc to extract a sequence of index labels. The syntax mirrors Python’s list
slicing syntax. We provide the starting value, a colon, and the ending value. For
extractions like this one, I strongly recommended sorting the index first, as it acceler-
ates the speed with which pandas finds the value.

 Let’s say we wanted to target all players between Otto Porter and Patrick Beverley.
We can sort the DataFrame index to get the player names in alphabetical order and
then provide the two player names to the loc accessor. "Otto Porter" represents
our lower bound, and "Patrick Beverley" represents the upper bound:

In [66] nba.sort_index().loc["Otto Porter":"Patrick Beverley"]

Out [66]

 Team Position Birthday Salary
Name

Otto Porter Chicago Bulls SF 1993-06-03 27250576
PJ Dozier Denver Nuggets PG 1996-10-25 79568
PJ Washington Charlotte Hornets PF 1998-08-23 3831840
Pascal Siakam Toronto Raptors PF 1994-04-02 2351838
Pat Connaughton Milwaukee Bucks SG 1993-01-06 1723050
Patrick Beverley Los Angeles Clippers PG 1988-07-12 12345680

Note that pandas’ loc accessor has some differences with Python’s list-slicing syntax.
For one, the loc accessor includes the label at the upper bound, whereas Python’s list
slicing syntax excludes the value at the upper bound.

 Here’s a quick example to remind you. The next example uses list-slicing syntax to
extract the elements from index 0 to index 2 in a list of three elements. Index 2 ("PJ
Washington") is exclusive, so Python leaves it out:

In [67] players = ["Otto Porter", "PJ Dozier", "PJ Washington"]
 players[0:2]

Out [67] ['Otto Porter', 'PJ Dozier']

101Selecting rows from a DataFrame
We can use loc to pull rows from the middle of the DataFrame to its end. Pass the
square brackets the starting index label and a colon:

In [68] nba.sort_index().loc["Zach Collins":]

Out [68]

 Team Position Birthday Salary
Name

Zach Collins Portland Trail Blazers C 1997-11-19 4240200
Zach LaVine Chicago Bulls PG 1995-03-10 19500000
Zach Norvell Los Angeles Lakers SG 1997-12-09 79568
Zhaire Smith Philadelphia 76ers SG 1999-06-04 3058800
Zion Williamson New Orleans Pelicans F 2000-07-06 9757440
Zylan Cheatham New Orleans Pelicans SF 1995-11-17 79568

Turning in the other direction, we can use loc slicing to pull rows from the beginning
of the DataFrame to a specific index label. Start with a colon and then enter the
index label to extract to. The next example returns all players from the start to the
data set up to Al Horford:

In [69] nba.sort_index().loc[:"Al Horford"]

Out [69]

 Team Position Birthday Salary
Name

Aaron Gordon Orlando Magic PF 1995-09-16 19863636
Aaron Holiday Indiana Pacers PG 1996-09-30 2239200
Abdel Nader Oklahoma City Thunder SF 1993-09-25 1618520
Adam Mokoka Chicago Bulls G 1998-07-18 79568
Admiral Schofield Washington Wizards SF 1997-03-30 1000000
Al Horford Philadelphia 76ers C 1986-06-03 28000000

Pandas will raise an exception if the index label does not exist in the DataFrame:

In [70] nba.loc["Bugs Bunny"]

KeyError Traceback (most recent call last)

KeyError: 'Bugs Bunny'

As its name suggests, the KeyError exception communicates that a key does not exist
in a given data structure.

4.7.2 Extracting rows by index position

The iloc (index location) accessor extracts rows by index position, which is helpful
when the position of our rows has significance in our data set. The syntax is similar to
the one we used for loc. Enter a pair of square brackets after iloc, and pass in an
integer. Pandas will extract the row at that index:

102 CHAPTER 4 The DataFrame object
In [71] nba.iloc[300]

Out [71] Team Denver Nuggets
 Position PF
 Birthday 1999-04-03 00:00:00
 Salary 1416852
 Name: Jarred Vanderbilt, dtype: object

The iloc accessor also accepts a list of index positions to target multiple records. The
next example pulls out the players at index positions 100, 200, 300, and 400:

In [72] nba.iloc[[100, 200, 300, 400]]

Out [72]

 Team Position Birthday Salary
Name

Brian Bowen Indiana Pacers SG 1998-10-02 79568
Marco Belinelli San Antonio Spurs SF 1986-03-25 5846154
Jarred Vanderbilt Denver Nuggets PF 1999-04-03 1416852
Louis King Detroit Pistons F 1999-04-06 79568

We can use list-slicing syntax with the iloc accessor as well. Note, however, that pan-
das excludes the index position after the colon. The next example passes a slice of
400:404. Pandas includes the rows at index positions 400, 401, 402, and 403, and
excludes the row at index 404:

In [73] nba.iloc[400:404]

Out [73]

 Team Position Birthday Salary
Name

Louis King Detroit Pistons F 1999-04-06 79568
Kostas Antetokounmpo Los Angeles Lakers PF 1997-11-20 79568
Rodions Kurucs Brooklyn Nets PF 1998-02-05 1699236
Spencer Dinwiddie Brooklyn Nets PG 1993-04-06 10605600

We can leave out the number before the colon to pull from the start of the Data-
Frame. Here, we target rows from the beginning of nba up to (but not including)
index position 2:

In [74] nba.iloc[:2]

Out [74]

 Team Position Birthday Salary
Name

Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
Christian Wood Detroit Pistons PF 1995-09-27 1645357

Similarly, we can remove the number after the colon to pull to the end of the Data-
Frame. Here, we target the rows from index position 447 to the end of nba:

103Selecting rows from a DataFrame
In [75] nba.iloc[447:]

Out [75]

 Team Position Birthday Salary
Name

Robin Lopez Milwaukee Bucks C 1988-04-01 4767000
Collin Sexton Cleveland Cavaliers PG 1999-01-04 4764960
Ricky Rubio Phoenix Suns PG 1990-10-21 16200000

We can also pass negative numbers for either value or both values. The next example
extracts rows from the 10th-to-last row up to (but not including) the sixth-to-last row:

In [76] nba.iloc[-10:-6]

Out [76]

 Team Position Birthday Salary
Name

Jared Dudley Los Angeles Lakers PF 1985-07-10 2564753
Max Strus Chicago Bulls SG 1996-03-28 79568
Kevon Looney Golden State Warriors C 1996-02-06 4464286
Willy Hernangomez Charlotte Hornets C 1994-05-27 1557250

We can provide a third number inside the square brackets to create the step sequence,
a gap between every two index positions. The next example pulls the first 10 nba rows
in increments of 2. The resulting DataFrame includes the rows with index positions 0,
2, 4, 6, and 8:

In [77] nba.iloc[0:10:2]

Out [77]

 Team Position Birthday Salary
Name

Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
PJ Washington Charlotte Hornets PF 1998-08-23 3831840
Marial Shayok Philadelphia 76ers G 1995-07-26 79568
Kendrick Nunn Miami Heat SG 1995-08-03 1416852
Brook Lopez Milwaukee Bucks C 1988-04-01 12093024

This slicing technique is particularly effective when we want to pull out every other row.

4.7.3 Extracting values from specific columns

Both the loc and iloc attributes accept a second argument representing the col-
umn(s) to extract. If we’re using loc, we have to provide the column name. If we’re
using iloc, we have to provide the column position. The next example uses loc to
pull the value at the intersection of the "Giannis Antetokounmpo" row and the
Team column:

In [78] nba.loc["Giannis Antetokounmpo", "Team"]

Out [78] 'Milwaukee Bucks'

104 CHAPTER 4 The DataFrame object
To specify multiple values, we can pass a list for one or both of the arguments to the
loc accessor. The next example extracts the row with a "James Harden" index label
and the values from the Position and Birthday columns. Pandas returns a Series:

In [79] nba.loc["James Harden", ["Position", "Birthday"]]

Out [79] Position PG
 Birthday 1989-08-26 00:00:00
 Name: James Harden, dtype: object

The next example provides multiple row labels and multiple columns:

In [80] nba.loc[
 ["Russell Westbrook", "Anthony Davis"],
 ["Team", "Salary"]
]

Out [80]

 Team Salary
Name

Russell Westbrook Houston Rockets 38506482
Anthony Davis Los Angeles Lakers 27093019

We can also use list-slicing syntax to extract multiple columns without explicitly writ-
ing out their names. We have four columns in our data set (Team, Position, Birthday,
and Salary). Let’s extract all columns from Position to Salary. Pandas includes both
endpoints in a loc slice:

In [81] nba.loc["Joel Embiid", "Position":"Salary"]

Out [81] Position C
 Birthday 1994-03-16 00:00:00
 Salary 27504630
 Name: Joel Embiid, dtype: object

We must pass the column names in the order in which they appear in the DataFrame.
The next example yields an empty result because the Salary column comes after the
Position column. Pandas is unable to identify which columns to pull out:

In [82] nba.loc["Joel Embiid", "Salary":"Position"]

Out [82] Series([], Name: Joel Embiid, dtype: object)

Let’s say we wanted to target columns by their order rather than by their name.
Remember that pandas assigns an index position to each DataFrame column. In nba,
the Team column has an index of 0, Position has an index of 1, and so on. We can pass
a column’s index as the second argument to iloc. The next example targets the value
at the intersection of the row at index 57 and the column at index 3 (Salary):

In [83] nba.iloc[57, 3]

Out [83] 796806

105Selecting rows from a DataFrame
We can use list-slicing syntax here as well. The next example pulls all rows from index
position 100 up to but not including index position 104. It also includes all columns
from the beginning of the columns up to but not including the column at index posi-
tion 3 (Salary):

In [84] nba.iloc[100:104, :3]

Out [84]

 Team Position Birthday
Name

Brian Bowen Indiana Pacers SG 1998-10-02
Aaron Holiday Indiana Pacers PG 1996-09-30
Troy Daniels Los Angeles Lakers SG 1991-07-15
Buddy Hield Sacramento Kings SG 1992-12-17

The iloc and loc accessors are remarkably versatile. Their square brackets can
accept a single value, a list of values, a list slice, and more. The disadvantage of this
flexibility is that it demands extra overhead; pandas has to figure out what kind of
input we’ve given to iloc or loc.

 We can use two alternative attributes, at and iat, when we know that we want to
extract a single value from a DataFrame. The two attributes are speedier because pan-
das can optimize its searching algorithms when looking for a single value.

 The syntax is similar. The at attribute accepts row and column labels:

In [85] nba.at["Austin Rivers", "Birthday"]

Out [85] Timestamp('1992-08-01 00:00:00')

The iat attribute accepts row and column indices:

In [86] nba.iat[263, 1]

Out [86] 'PF'

Jupyter Notebook includes several magic methods to help enhance our developer
experience. We declare magic methods with a %% prefix and enter them alongside our
regular Python code. One example is %%timeit, which runs the code in a cell and
calculates the average time it takes to execute. %%timeit sometimes runs the cell up
to 100,000 times! The next examples use the magic method to compare the speed of
the accessors we’ve explored so far:

In [87] %%timeit
 nba.at["Austin Rivers", "Birthday"]

6.38 µs ± 53.6 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [88] %%timeit
 nba.loc["Austin Rivers", "Birthday"]

9.12 µs ± 53.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

106 CHAPTER 4 The DataFrame object
In [89] %%timeit
 nba.iat[263, 1]

4.7 µs ± 27.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [90] %%timeit
 nba.iloc[263, 1]

7.41 µs ± 39.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

The results are subject to some variance between different computers but show the
clear speed advantage of at and iat over loc and iloc.

4.8 Extracting values from Series
The loc, iloc, at, and iat accessors are available on Series objects as well. We can
practice on a sample Series from our DataFrame, such as Salary:

In [91] nba["Salary"].loc["Damian Lillard"]

Out [91] 29802321

In [92] nba["Salary"].at["Damian Lillard"]

Out [92] 29802321

In [93] nba["Salary"].iloc[234]

Out [93] 2033160

In [94] nba["Salary"].iat[234]

Out [94] 2033160

Feel free to use whatever accessors work best for you.

4.9 Renaming columns or rows
Do you recall the columns attribute? It exposes the Index object that stores the
DataFrame’s column names:

In [95] nba.columns

Out [95] Index(['Team', 'Position', 'Birthday', 'Salary'], dtype='object')

We can rename any or all of a DataFrame’s columns by assigning a list of new names
to the attribute. The next example changes the name of the Salary column to Pay:

In [96] nba.columns = ["Team", "Position", "Date of Birth", "Pay"]
 nba.head(1)

Out [96]

 Team Position Date of Birth Pay
Name

Shake Milton Philadelphia 76ers SG 1996-09-26 1445697

107Renaming columns or rows
The rename method is an alternative option that accomplishes the same result. We
can pass to its columns parameter a dictionary in which the keys are the existing col-
umn names and the values are their new names. The next example alters the Date of
Birth column’s name to Birthday:

In [97] nba.rename(columns = { "Date of Birth": "Birthday" })

Out [97]

 Team Position Birthday Pay
Name

Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
Christian Wood Detroit Pistons PF 1995-09-27 1645357
PJ Washington Charlotte Hornets PF 1998-08-23 3831840
Derrick Rose Detroit Pistons PG 1988-10-04 7317074
Marial Shayok Philadelphia 76ers G 1995-07-26 79568
 … … … … …
Austin Rivers Houston Rockets PG 1992-08-01 2174310
Harry Giles Sacramento Kings PF 1998-04-22 2578800
Robin Lopez Milwaukee Bucks C 1988-04-01 4767000
Collin Sexton Cleveland Cavaliers PG 1999-01-04 4764960
Ricky Rubio Phoenix Suns PG 1990-10-21 16200000

450 rows × 4 columns

Let’s make the operation permanent by assigning the returned DataFrame to the nba
variable:

In [98] nba = nba.rename(columns = { "Date of Birth": "Birthday" })

We can also rename index labels by passing a dictionary to the method’s index
parameter. The same logic applies; the keys are the old labels, and the values are the
new ones. The following example swaps "Giannis Antetokounmpo" with his popu-
lar nickname "Greek Freak":

In [99] nba.loc["Giannis Antetokounmpo"]

Out [99] Team Milwaukee Bucks
 Position PF
 Birthday 1994-12-06 00:00:00
 Pay 25842697

 Name: Giannis Antetokounmpo, dtype: object

In [100] nba = nba.rename(
 index = { "Giannis Antetokounmpo": "Greek Freak" }
)

Let’s try looking up the row by its new label:

In [101] nba.loc["Greek Freak"]

Out [101] Team Milwaukee Bucks
 Position PF
 Birthday 1994-12-06 00:00:00
 Pay 25842697
 Name: Greek Freak, dtype: object

108 CHAPTER 4 The DataFrame object
We’ve successfully changed the row label!

4.10 Resetting an index
Sometimes, we want to set another column as the index of our DataFrame. Let’s say
we wanted to make Team the index of nba. We could invoke the set_index method
we introduced earlier in the chapter with a different column, but we would lose our
current index of player names. Take a look at this example:

In [102] nba.set_index("Team").head()

Out [102]

 Position Birthday Salary
Team

Philadelphia 76ers SG 1996-09-26 1445697
Detroit Pistons PF 1995-09-27 1645357
Charlotte Hornets PF 1998-08-23 3831840
Detroit Pistons PG 1988-10-04 7317074
Philadelphia 76ers G 1995-07-26 79568

To preserve the players’ names, we must first reintegrate the existing index as a regu-
lar column in the DataFrame. The reset_index method moves the current index to
a DataFrame column and replaces the former index with pandas’ numeric index:

In [103] nba.reset_index().head()

Out [103]

 Name Team Position Birthday Salary

0 Shake Milton Philadelphia 76ers SG 1996-09-26 1445697
1 Christian Wood Detroit Pistons PF 1995-09-27 1645357
2 PJ Washington Charlotte Hornets PF 1998-08-23 3831840
3 Derrick Rose Detroit Pistons PG 1988-10-04 7317074
4 Marial Shayok Philadelphia 76ers G 1995-07-26 79568

Now we can use the set_index method to move the Team column to the index with
no data loss:

In [104] nba.reset_index().set_index("Team").head()

Out [104]

 Name Position Birthday Salary
Team

Philadelphia 76ers Shake Milton SG 1996-09-26 1445697
Detroit Pistons Christian Wood PF 1995-09-27 1645357
Charlotte Hornets PJ Washington PF 1998-08-23 3831840
Detroit Pistons Derrick Rose PG 1988-10-04 7317074
Philadelphia 76ers Marial Shayok G 1995-07-26 79568

One advantage of avoiding the inplace parameter is that we can chain multiple
method calls. Let’s chain the reset_index and set_index method calls and over-
write the nba variable with the result:

In [105] nba = nba.reset_index().set_index("Team")

109Coding challenge
That’s all there is to cover. You’re now acquainted with the DataFrame, the core work-
horse of the pandas library.

4.11 Coding challenge
Now that we’ve explored the NBA’s financials, let’s apply the chapter’s concepts in a
different sports league.

4.11.1 Problems

The nfl.csv file contains a list of players in the National Football League with similar
Name, Team, Position, Birthday, and Salary columns. See whether you can answer
these questions:

1 How can we import the nfl.csv file? What’s an effective way to convert the values
in its Birthday column to datetimes?

2 What are the two ways we can set the DataFrame index to store the player
names?

3 How can we count the number of players per team in this data set?
4 Who are the five highest-paid players?
5 How can we sort the data set first by teams in alphabetical order and then by sal-

ary in descending order?
6 Who is the oldest player on the New York Jets roster, and what is his birthday?

4.11.2 Solutions

Let’s walk through the challenges step by step:

1 We can import the CSV with the read_csv function. To store the Birthday col-
umn values as datetimes, we’ll pass the column to the parse_dates parameter
in a list:

In [106] nfl = pd.read_csv("nfl.csv", parse_dates = ["Birthday"])
 nfl

Out [106]

 Name Team Position Birthday Salary

0 Tremon Smith Philadelphia Eagles RB 1996-07-20 570000
1 Shawn Williams Cincinnati Bengals SS 1991-05-13 3500000
2 Adam Butler New England Patriots DT 1994-04-12 645000
3 Derek Wolfe Denver Broncos DE 1990-02-24 8000000
4 Jake Ryan Jacksonville Jaguars OLB 1992-02-27 1000000
 … … … … … …
1650 Bashaud Breeland Kansas City Chiefs CB 1992-01-30 805000
1651 Craig James Philadelphia Eagles CB 1996-04-29 570000
1652 Jonotthan Harrison New York Jets C 1991-08-25 1500000
1653 Chuma Edoga New York Jets OT 1997-05-25 495000
1654 Tajae Sharpe Tennessee Titans WR 1994-12-23 2025000

1655 rows × 5 columns

110 CHAPTER 4 The DataFrame object
2 Our next challenge is setting the player names as the index labels. Our option is
to invoke the set_index method and assign the new DataFrame to the nfl
variable:

In [107] nfl = nfl.set_index("Name")

Another option is to provide the index_col parameter to the read_csv func-
tion when importing the data set:

In [108] nfl = pd.read_csv(
 "nfl.csv", index_col = "Name", parse_dates = ["Birthday"]
)

The result will be the same either way:

In [109] nfl.head()

Out [109]

 Team Position Birthday Salary
Name

Tremon Smith Philadelphia Eagles RB 1996-07-20 570000
Shawn Williams Cincinnati Bengals SS 1991-05-13 3500000
Adam Butler New England Patriots DT 1994-04-12 645000
Derek Wolfe Denver Broncos DE 1990-02-24 8000000
Jake Ryan Jacksonville Jaguars OLB 1992-02-27 1000000

3 To count the number of players per team, we can invoke the value_counts
method on the Team column. First, we need to extract the Team Series with
dot syntax or square brackets:

In [110] # The two lines below are equivalent
 nfl.Team.value_counts().head()
 nfl["Team"].value_counts().head()

Out [110] New York Jets 58
 Washington Redskins 56
 Kansas City Chiefs 56
 San Francisco 49Ers 55
 New Orleans Saints 55

4 To identify the five highest-paid players, we can use the sort_values method
to sort the Salary column. To tell pandas to sort in descending order, we can
pass the ascending parameter an argument of False. Another option is the
nlargest method:

In [111] nfl.sort_values("Salary", ascending = False).head()

Out [111]

 Team Position Birthday Salary
Name

Kirk Cousins Minnesota Vikings QB 1988-08-19 27500000
Jameis Winston Tampa Bay Buccaneers QB 1994-01-06 20922000

111Coding challenge
Marcus Mariota Tennessee Titans QB 1993-10-30 20922000
Derek Carr Oakland Raiders QB 1991-03-28 19900000
Jimmy Garoppolo San Francisco 49Ers QB 1991-11-02 17200000

5 To sort by multiple columns, we’ll have to pass arguments to both the by and
ascending parameters of the sort_values method. The following code sorts
the Team column in ascending order followed by the Salary column in descend-
ing order:

In [112] nfl.sort_values(
 by = ["Team", "Salary"],
 ascending = [True, False]
)

Out [112]

 Team Position Birthday Salary
Name

Chandler Jones Arizona Cardinals OLB 1990-02-27 16500000
Patrick Peterson Arizona Cardinals CB 1990-07-11 11000000
Larry Fitzgerald Arizona Cardinals WR 1983-08-31 11000000
David Johnson Arizona Cardinals RB 1991-12-16 5700000
Justin Pugh Arizona Cardinals G 1990-08-15 5000000
 … … … … …
Ross Pierschbacher Washington Redskins C 1995-05-05 495000
Kelvin Harmon Washington Redskins WR 1996-12-15 495000
Wes Martin Washington Redskins G 1996-05-09 495000
Jimmy Moreland Washington Redskins CB 1995-08-26 495000
Jeremy Reaves Washington Redskins SS 1996-08-29 495000

1655 rows × 4 columns

6 The final challenge is a tricky one: we have to find the oldest player on the New
York Jets roster. Given the current tools at our disposal, we can set the Team col-
umn as the DataFrame index to allow for easy extraction of all Jets players. To pre-
serve the player names currently in our index, we’ll first use the reset_index
method to move them back into the DataFrame as a regular column:

In [113] nfl = nfl.reset_index().set_index(keys = "Team")
 nfl.head(3)

Out [113]

 Name Position Birthday Salary
Team

Philadelphia Eagles Tremon Smith RB 1996-07-20 570000
Cincinnati Bengals Shawn Williams SS 1991-05-13 3500000
New England Patriots Adam Butler DT 1994-04-12 645000

Next, we can use the loc attribute to isolate all players on the New York Jets:

In [114] nfl.loc["New York Jets"].head()

Out [114]

112 CHAPTER 4 The DataFrame object
 Name Position Birthday Salary
Team

New York Jets Bronson Kaufusi DE 1991-07-06 645000
New York Jets Darryl Roberts CB 1990-11-26 1000000
New York Jets Jordan Willis DE 1995-05-02 754750
New York Jets Quinnen Williams DE 1997-12-21 495000
New York Jets Sam Ficken K 1992-12-14 495000

The last step is to sort the Birthday column and extract the top record. This sort
is possible only because we converted the column’s values to datetimes:

In [115] nfl.loc["New York Jets"].sort_values("Birthday").head(1)

Out [115]

 Name Position Birthday Salary
Team

New York Jets Ryan Kalil C 1985-03-29 2400000

The oldest player on the New York Jets in this data set is Ryan Kalil. His birthday was
March 29, 1985.

 Congratulations on completing the coding challenge!

Summary
 The DataFrame is a two-dimensional data structure consisting of rows and

columns.
 The DataFrame shares attributes and methods with the Series. Many of the

attributes and methods operate differently due to the dimensional differences
between the two objects.

 The sort_values method sorts one or more DataFrame columns. We can
assign each column a different sort order (ascending or descending).

 The loc attribute extracts rows or columns by index label. The at attribute is a
convenient shortcut for targeting only one value.

 The iloc attribute extracts rows or columns by index position. The iat attri-
bute is a convenient shortcut for targeting only one value.

 The reset_index method restores an index as a regular column in the Data-
Frame.

 The rename method sets a different name for one or more columns or rows.

Filtering a DataFrame
In chapter 4, we learned how to extract rows, columns, and cell values from a
DataFrame by using the loc and iloc accessors. These accessors work well when
we know the index labels and positions of the rows/columns we want to target.
Sometimes, we may want to target rows not by an identifier but by a condition or a
criterion. We may want to extract a subset of rows in which a column holds a spe-
cific value, for example.

This chapter covers
 Reducing a DataFrame’s memory use

 Extracting DataFrame rows by one or more
conditions

 Filtering a DataFrame for rows that include or
exclude null values

 Selecting column values that fall between a range

 Removing duplicate and null values from a
DataFrame
113

114 CHAPTER 5 Filtering a DataFrame
 In this chapter, we’ll learn how to declare logical conditions that include and
exclude rows from a DataFrame. We’ll see how to combine multiple conditions by
using AND and OR logic. Finally, we’ll introduce some pandas utility methods that sim-
plify the filtering process. Lots of fun lies ahead, so let’s jump in.

5.1 Optimizing a data set for memory use
Before we segue into filtering, let’s quickly talk about reducing memory in pandas.
Whenever importing a data set, it’s important to consider whether each column stores
its data in the most optimal type. The “best” data type is the one that consumes the
least memory or provides the most utility. Integers occupy less memory than floating-
point numbers on most computers, for example, so if your data set includes whole
numbers, it’s ideal to import them as integers rather than floating-points. As another
example, if your data set includes dates, it’s ideal to import them as datetimes rather
than as strings, which allows for datetime-specific operations. In this section, we’ll
learn some tips and tricks to shrink memory consumption by converting column data
to different types, which will facilitate faster filtering later. Let’s begin with the usual
import of our favorite data analysis library:

In [1] import pandas as pd

This chapter’s employees.csv data set is a fictional collection of workers at a company.
Each record includes the employee’s first name, gender, start date at the firm, salary,
manager status (True or False), and team. Let’s take a peek at the data set with the
read_csv function:

In [2] pd.read_csv("employees.csv")

Out [2]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 8/6/93 NaN True Marketing
1 Thomas Male 3/31/96 61933.0 True NaN
2 Maria Female NaN 130590.0 False Finance
3 Jerry NaN 3/4/05 138705.0 True Finance
4 Larry Male 1/24/98 101004.0 True IT
 … … … … … … …
996 Phillip Male 1/31/84 42392.0 False Finance
997 Russell Male 5/20/13 96914.0 False Product
998 Larry Male 4/20/13 60500.0 False Business Dev
999 Albert Male 5/15/12 129949.0 True Sales
1000 NaN NaN NaN NaN NaN NaN

1001 rows × 6 columns

Take a second to notice the NaNs scattered throughout the output. Every column has
missing values. In fact, the last row consists only of NaNs. Imperfect data like this is
common in the real world. Data sets can arrive with blank rows, blank columns,
and more.

115Optimizing a data set for memory use
 How can we increase the utility of our data set? Our first optimization is one that
we should feel comfortable with by now. We can convert the text values in the Start
Date column to datetimes with the parse_dates parameter:

In [3] pd.read_csv("employees.csv", parse_dates = ["Start Date"]).head()

Out [3]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
1 Thomas Male 1996-03-31 61933.0 True NaN
2 Maria Female NaT 130590.0 False Finance
3 Jerry NaN 2005-03-04 138705.0 True Finance
4 Larry Male 1998-01-24 101004.0 True IT

We’re in a good place with the CSV import, so let’s assign the DataFrame object to a
descriptive variable such as employees:

In [4] employees = pd.read_csv(
 "employees.csv", parse_dates = ["Start Date"]
)

A few options are available for improving the speed and efficiency of DataFrame
operations. First, let’s summarize the data set as it currently stands. We can invoke the
info method to see a list of the columns, their data types, a count of missing values,
and the DataFrame’s total memory consumption:

In [5] employees.info()

Out [5]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 First Name 933 non-null object
 1 Gender 854 non-null object
 2 Start Date 999 non-null datetime64[ns]
 3 Salary 999 non-null float64
 4 Mgmt 933 non-null object
 5 Team 957 non-null object
dtypes: datetime64[ns](1), float64(1), object(4)
message usage: 47.0+ KB

Let’s walk through the output from top to bottom. We have a DataFrame with 1,001
rows, starting at index 0 and proceeding to index 1000. There are four string col-
umns, one datetime column, and one floating-point column. All six columns have
missing data.

 Memory use currently is ~47 KB—a small amount for modern computers, but let’s
try to whittle the number down. As you read the following examples, focus more on

116 CHAPTER 5 Filtering a DataFrame
the percentage reductions than on the numeric reductions. The larger your data sets
grow, the more significant the performance improvement will be.

5.1.1 Converting data types with the astype method

Did you notice that pandas imported the Mgmt column’s values as strings? The col-
umn stores only two values: True and False. We can reduce memory use by convert-
ing the values to the more lightweight Boolean data type.

 The astype method converts a Series’ values to a different data type. It accepts a
single argument: the new data type. We can pass either the data type or a string with its
name.

 The next example extracts the Mgmt Series from employees and invokes its
astype method with an argument of bool. Pandas returns a new Series object of
Booleans. Note that the library converts NaNs to True values. We’ll discuss removing
missing values in section 5.5.4.

In [6] employees["Mgmt"].astype(bool)

Out [6] 0 True
 1 True
 2 False
 3 True
 4 True
 ...
 996 False
 997 False
 998 False
 999 True
 1000 True
 Name: Mgmt, Length: 1001, dtype: bool

Looks good! Now that we’ve previewed what the Series will look like, we can over-
write the existing Mgmt column in employees. Updating a DataFrame column
works similarly to setting a key-value pair in a dictionary. If a column with the specified
name exists, pandas overwrites it with the new Series. If the column with the name
does not exist, pandas creates a new Series and appends it to the right of the
DataFrame. The library matches rows in the Series and DataFrame by shared
index labels.

 The next code sample overwrites the Mgmt column with our new Series of Bool-
eans. As a reminder, Python evaluates the right side of the assignment operator (=)
first. First, we create a new Series, then we overwrite our existing Mgmt column:

In [7] employees["Mgmt"] = employees["Mgmt"].astype(bool)

A column assignment does not produce a return value, so the code does not output
anything in Jupyter Notebook. Let’s take a look at the DataFrame again to see the
results:

117Optimizing a data set for memory use
In [8] employees.tail()

Out [8]

 First Name Gender Start Date Salary Mgmt Team

996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales
1000 NaN NaN NaT NaN True NaN

Except for the True in the last row of missing values, the DataFrame looks no differ-
ent. But what about our memory use? Let’s invoke the info method again to see the
difference:

In [9] employees.info()

Out [9]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 First Name 933 non-null object
 1 Gender 854 non-null object
 2 Start Date 999 non-null datetime64[ns]
 3 Salary 999 non-null float64
 4 Mgmt 1001 non-null bool
 5 Team 957 non-null object
dtypes: bool(1), datetime64[ns](1), float64(1), object(3)
memory usage: 40.2+ KB

We’ve reduced employees’ memory use by almost 15%, from 47 KB to 40.2 KB.
That’s a pretty good start!

 Next, let’s transition to the Salary column. If we open the raw CSV file, we can see
that its values are stored as whole numbers:

First Name,Gender,Start Date,Salary,Mgmt,Team
Douglas,Male,8/6/93,,True,Marketing
Thomas,Male,3/31/96,61933,True,
Maria,Female,,130590,False,Finance
Jerry,,3/4/05,138705,True,Finance

In employees, however, pandas stores the Salary values at floats. To support the NaNs
throughout the column, pandas converts the integers to floating-point numbers—a
technical requirement of the library that we observed in earlier chapters.

 Following our previous Boolean example, we might try to coerce the column’s val-
ues to integers with the astype method. Unfortunately, pandas raises a ValueError
exception:

118 CHAPTER 5 Filtering a DataFrame
In [10] employees["Salary"].astype(int)

ValueError Traceback (most recent call last)
<ipython-input-99-b148c8b8be90> in <module>
----> 1 employees["Salary"].astype(int)

ValueError: Cannot convert non-finite values (NA or inf) to integer

Pandas is unable to convert the NaN values to integers. We can solve this problem by
replacing the NaN values with a constant value. The fillna method replaces a
Series’ null values with the argument we pass in. The next example provides a fill
value of 0. Note that your choice of value can distort the data; 0 is passed solely for the
sake of example.

 We know that the original Salary column has a missing value in its last row. Let’s
take a look at the last row after we invoke the fillna method:

In [11] employees["Salary"].fillna(0).tail()

Out [11] 996 42392.0
 997 96914.0
 998 60500.0
 999 129949.0
 1000 0.0
 Name: Salary, dtype: float64

Excellent. Now that the Salary column has no missing values, we can convert its values
to integers with the astype method:

In [12] employees["Salary"].fillna(0).astype(int).tail()

Out [12] 996 42392
 997 96914
 998 60500
 999 129949
 1000 0
 Name: Salary, dtype: int64

Next, we can overwrite the existing Salary Series in employees:

In [13] employees["Salary"] = employees["Salary"].fillna(0).astype(int)

We can make one additional optimization. Pandas includes a special data type called a
category, which is ideal for a column consisting of a small number of unique values rel-
ative to its total size. Some everyday examples of data points with a limited number of
values include gender, weekdays, blood types, planets, and income groups. Behind the
scenes, pandas stores only one copy of each categorical value rather than storing
duplicates across rows.

 The nunique method can reveal the number of unique values in each DataFrame
column. Note that it excludes missing values (NaN) from the count by default:

119Optimizing a data set for memory use
In [14] employees.nunique()

Out [14] First Name 200
 Gender 2
 Start Date 971
 Salary 995
 Mgmt 2
 Team 10
 dtype: int64

The Gender and Team columns stand out as good candidates to store categorical val-
ues. In 1,001 rows of data, Gender has only two unique values, and Team has only ten
unique values.

 Let’s use the astype method again. First, we’ll convert the Gender column’s val-
ues to categories by passing an argument of "category" to the method:

In [15] employees["Gender"].astype("category")

Out [15] 0 Male
 1 Male
 2 Female
 3 NaN
 4 Male
 ...
 996 Male
 997 Male
 998 Male
 999 Male
 1000 NaN
 Name: Gender, Length: 1001, dtype: category
 Categories (2, object): [Female, Male]

Pandas has identified two unique categories: "Female" and "Male". We’re good to
overwrite our existing Gender column:

In [16] employees["Gender"] = employees["Gender"].astype("category")

Let’s check in on the memory use by invoking the info method. Memory use has
dropped significantly once again because pandas has to keep track of only two values
instead of 1,001:

In [17] employees.info()

Out [17]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 First Name 933 non-null object
 1 Gender 854 non-null category
 2 Start Date 999 non-null datetime64[ns]

120 CHAPTER 5 Filtering a DataFrame
 3 Salary 1001 non-null int64
 4 Mgmt 1001 non-null bool
 5 Team 957 non-null object
dtypes: bool(1), category(1), datetime64[ns](1), int64(1), object(2)
memory usage: 33.5+ KB

Let’s repeat the same process for the Team column, which has only ten unique values:

In [18] employees["Team"] = employees["Team"].astype("category")

In [19] employees.info()

Out [19]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 First Name 933 non-null object
 1 Gender 854 non-null category
 2 Start Date 999 non-null datetime64[ns]
 3 Salary 1001 non-null int64
 4 Mgmt 1001 non-null bool
 5 Team 957 non-null category
dtypes: bool(1), category(2)
memory usage: 27.0+ KB

With fewer than ten lines of code, we’ve reduced the DataFrame’s memory consump-
tion by more than 40%. Imagine that impact on data sets with millions of rows!

5.2 Filtering by a single condition
Extracting a subset of data is perhaps the most common operation in data analysis. A
subset is a portion of a larger data set that fits some kind of condition.

 Suppose that we want to generate a list of all employees named "Maria". To accom-
plish this task, we need to filter our employees data set based on the values in the First
Name column. The list of employees named Maria is a subset of all employees.

 First, a quick reminder of how equality works in Python. The equality operator
(==) compares the equality of two objects in Python, returning True if the objects are
equal and False if they are unequal. (See appendix B for a detailed explanation.)
Here’s a simple example:

In [20] "Maria" == "Maria"

Out [20] True

In [21] "Maria" == "Taylor"

Out [21] False

121Filtering by a single condition
To compare every Series entry with a constant value, we place the Series on one
side of the equality operator and the value on the other:

Series == value

One might think that this syntax would lead to an error, but pandas is smart enough
to recognize that we want to compare the equality of each Series value with the spec-
ified string, not with the Series itself. We explored similar ideas in chapter 2 when
we paired a Series with mathematical operators such as the addition sign.

 When we combine a Series with an equality operator, pandas returns a Series
of Booleans. The next example compares each First Name column value with
"Maria". A True value indicates that the string "Maria" does occur at that index,
and a False value indicates that it does not. The following output communicates that
index 2 stores the value "Maria":

In [22] employees["First Name"] == "Maria"

Out [22] 0 False
 1 False
 2 True
 3 False
 4 False
 ...
 996 False
 997 False
 998 False
 999 False
 1000 False
 Name: First Name, Length: 1001, dtype: bool

If we could extract only the rows with a True value above from our employees Data-
Frame, we would have all the "Maria" records in the data set. Luckily, pandas offers a
convenient syntax for extracting rows by using a Boolean Series. To filter rows, we
provide the Boolean Series between square brackets following the DataFrame:

In [23] employees[employees["First Name"] == "Maria"]

Out [23]

 First Name Gender Start Date Salary Mgmt Team

2 Maria Female NaT 130590 False Finance
198 Maria Female 1990-12-27 36067 True Product
815 Maria NaN 1986-01-18 106562 False HR
844 Maria NaN 1985-06-19 148857 False Legal
936 Maria Female 2003-03-14 96250 False Business Dev
984 Maria Female 2011-10-15 43455 False Engineering

Great success! We’ve used our Boolean Series to filter rows with a value of "Maria"
in the First Name column.

122 CHAPTER 5 Filtering a DataFrame
 If the use of multiple square brackets is confusing, you can assign the Boolean
Series to a descriptive variable and then pass the variable into the square brackets
instead. The following code yields the same subset of rows as the preceding code:

In [24] marias = employees["First Name"] == "Maria"
 employees[marias]

Out [24]

 First Name Gender Start Date Salary Mgmt Team

2 Maria Female NaT 130590 False Finance
198 Maria Female 1990-12-27 36067 True Product
815 Maria NaN 1986-01-18 106562 False HR
844 Maria NaN 1985-06-19 148857 False Legal
936 Maria Female 2003-03-14 96250 False Business Dev
984 Maria Female 2011-10-15 43455 False Engineering

The most common mistake beginners make when comparing the equality of values is
using one equal sign instead of two. Remember that a single equal sign assigns an
object to a variable, and two equal signs check for equality between objects. If we acci-
dentally used a single equal sign in this example, we would overwrite all the First
Name column’s values with the string "Maria". No good.

 Let’s try another example. What if we want to extract a subset of employees who
are not on the Finance team? The protocol remains the same, but with a slight twist.
We need to generate a Boolean Series that checks which of the Team column’s val-
ues are not equal to "Finance". Then we can use the Boolean Series to filter
employees. Python’s inequality operator returns True if two values are not equal and
False if they are equal:

In [25] "Finance" != "Engineering"

Out [25] True

The Series object plays friendly with the inequality operator as well. The next exam-
ple compares the values in the Team column with the string "Finance". True
denotes that the Team value for a given index is not "Finance", and False indicates
the Team value is "Finance":

In [26] employees["Team"] != "Finance"

Out [26] 0 True
 1 True
 2 False
 3 False
 4 True
 ...
 996 False
 997 True
 998 True
 999 True
 1000 True
 Name: Team, Length: 1001, dtype: bool

123Filtering by a single condition
Now that we have our Boolean Series, we can pass it inside square brackets to extract
the DataFrame rows with a value of True. In the following output, we see that pandas
has excluded the rows at indexes 2 and 3 because the Team value there is "Finance":

In [27] employees[employees["Team"] != "Finance"]

Out [27]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 0 True Marketing
1 Thomas Male 1996-03-31 61933 True NaN
4 Larry Male 1998-01-24 101004 True IT
5 Dennis Male 1987-04-18 115163 False Legal
6 Ruby Female 1987-08-17 65476 True Product
 … … … … … … …
995 Henry NaN 2014-11-23 132483 False Distribution
997 Russell Male 2013-05-20 96914 False Product
998 Larry Male 2013-04-20 60500 False Business Dev
999 Albert Male 2012-05-15 129949 True Sales
1000 NaN NaN NaT 0 True NaN

899 rows × 6 columns

Note that the results include rows with missing values. We can see an example at index
1000. In this scenario, pandas considers a NaN to be unequal to the string "Finance".

 What if we want to retrieve all the managers in the company? Managers have a value
of True in the Mgmt column. We could execute employees["Mgmt"] == True, but
we don’t need to because Mgmt is already a Series of Booleans. The True values and
False values already indicate whether pandas should keep or discard a row. Therefore,
we can pass the Mgmt column by itself inside the square brackets:

In [28] employees[employees["Mgmt"]].head()

Out [28]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 0 True Marketing
1 Thomas Male 1996-03-31 61933 True NaN
3 Jerry NaN 2005-03-04 138705 True Finance
4 Larry Male 1998-01-24 101004 True IT
6 Ruby Female 1987-08-17 65476 True Product

We can also use arithmetic operands to filter columns based on mathematical condi-
tions. The next example generates a Boolean Series for Salary values greater than
$100,000 (see chapter 2 for more on this syntax):

In [29] high_earners = employees["Salary"] > 100000
 high_earners.head()

Out [29] 0 False
 1 False
 2 True
 3 True
 4 True
 Name: Salary, dtype: bool

124 CHAPTER 5 Filtering a DataFrame
Let’s see which employees earn a salary above $100,000:

In [30] employees[high_earners].head()

Out [30]

 First Name Gender Start Date Salary Mgmt Team

2 Maria Female NaT 130590 False Finance
3 Jerry NaN 2005-03-04 138705 True Finance
4 Larry Male 1998-01-24 101004 True IT
5 Dennis Male 1987-04-18 115163 False Legal
9 Frances Female 2002-08-08 139852 True Business Dev

Try practicing the syntax on some of the other columns in employees. As long as you
provide a Boolean Series, pandas will be able to filter the DataFrame.

5.3 Filtering by multiple conditions
We can filter a DataFrame with multiple conditions by creating two independent
Boolean Series and then declaring the logical criterion that pandas should apply
between them.

5.3.1 The AND condition

Suppose that we want to find all female employees who work on the business develop-
ment team. Now pandas must look for two conditions to select a row: a value of
"Female" in the Gender column and a value of "Business Dev" in the Team col-
umn. The two criteria are independent, but both must be met. Here’s a quick
reminder of how AND logic works with two conditions:

Let’s construct one Boolean Series at a time. We can begin by isolating the
"Female" values in the Gender column:

In [31] is_female = employees["Gender"] == "Female"

Next, we’ll target all employees who work on the "Business Dev" team:

In [32] in_biz_dev = employees["Team"] == "Business Dev"

Finally, we need to calculate the intersection of the two Series, the rows in which
both the is_female and in_biz_dev Series have True values. Pass both Series
into the square brackets, and place an ampersand symbol (&) between them. The

Condition 1 Condition 2 Evaluation

True True True

True False False

False True False

False False False

125Filtering by multiple conditions
ampersand declares an AND logical criterion. The is_female Series must have
True and the in_biz_dev Series must have True:

In [33] employees[is_female & in_biz_dev].head()

Out [33]

 First Name Gender Start Date Salary Mgmt Team

9 Frances Female 2002-08-08 139852 True Business Dev
33 Jean Female 1993-12-18 119082 False Business Dev
36 Rachel Female 2009-02-16 142032 False Business Dev
38 Stephanie Female 1986-09-13 36844 True Business Dev
61 Denise Female 2001-11-06 106862 False Business Dev

We can include any amount of Series within the square brackets as long as we sepa-
rate every subsequent two with a & symbol. The next example adds a third criterion to
identify the female managers on the business development team:

In [34] is_manager = employees["Mgmt"]
 employees[is_female & in_biz_dev & is_manager].head()

Out [34]

 First Name Gender Start Date Salary Mgmt Team

9 Frances Female 2002-08-08 139852 True Business Dev
38 Stephanie Female 1986-09-13 36844 True Business Dev
66 Nancy Female 2012-12-15 125250 True Business Dev
92 Linda Female 2000-05-25 119009 True Business Dev
111 Bonnie Female 1999-12-17 42153 True Business Dev

In summary, the & symbol selects rows that fit all conditions. Declare two or more
Boolean Series and then use the ampersand to weave them together.

5.3.2 The OR condition

We can also extract rows if they fit one of several conditions. Not all conditions have to
be true, but at least one does. Here’s a quick reminder of how OR logic works with two
conditions:

Suppose that we want to identify all employees with a Salary below $40,000 or a Start
Date after January 1, 2015. We can use mathematical operators such as < and > to
arrive at two separate Boolean Series for these conditions:

In [35] earning_below_40k = employees["Salary"] < 40000
 started_after_2015 = employees["Start Date"] > "2015-01-01"

Condition 1 Condition 2 Evaluation

True True True

True False True

False True True

False False False

126 CHAPTER 5 Filtering a DataFrame
We use a pipe symbol (|) between Boolean Series to declare OR criteria. The next
example selects the rows in which either of the Boolean Series holds a True value:

In [36] employees[earning_below_40k | started_after_2015].tail()

Out [36]

 First Name Gender Start Date Salary Mgmt Team

958 Gloria Female 1987-10-24 39833 False Engineering
964 Bruce Male 1980-05-07 35802 True Sales
967 Thomas Male 2016-03-12 105681 False Engineering
989 Justin NaN 1991-02-10 38344 False Legal
1000 NaN NaN NaT 0 True NaN

The rows at index positions 958, 964, 989, and 1000 fit the Salary condition, and the
row at index 967 fits the Start Date condition. Pandas will also include rows that fit
both conditions.

5.3.3 Inversion with ~

The tilde symbol (~) inverts the values in a Boolean Series. All True values become
False, and all False values become True. Here’s a simple example with a small Series:

In [37] my_series = pd.Series([True, False, True])
 my_series

Out [37] 0 True
 1 False
 2 True
 dtype: bool

In [38] ~my_series

Out [38] 0 False
 1 True
 2 False
 dtype: bool

Inversion is helpful when we’d like to reverse a condition. Let’s say we want to identify
employees with a Salary of less than $100,000. We could use two approaches, the first
of which is to write employees["Salary"] < 100000:

In [39] employees[employees["Salary"] < 100000].head()

Out [39]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 0 True Marketing
1 Thomas Male 1996-03-31 61933 True NaN
6 Ruby Female 1987-08-17 65476 True Product
7 NaN Female 2015-07-20 45906 True Finance
8 Angela Female 2005-11-22 95570 True Engineering

Alternatively, we could invert the results set of employees earning more than or equal
to $100,000. The resulting DataFrames will be identical. In the next example, we

127Filtering by condition
wrap our greater-than operation inside a parenthesis. The syntax ensures that pandas
generates the Boolean Series before inverting its values. In general, you should use
parentheses whenever the order of evaluation may be unclear to pandas:

In [40] employees[~(employees["Salary"] >= 100000)].head()

Out [40]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 0 True Marketing
1 Thomas Male 1996-03-31 61933 True NaN
6 Ruby Female 1987-08-17 65476 True Product
7 NaN Female 2015-07-20 45906 True Finance
8 Angela Female 2005-11-22 95570 True Engineering

TIP For complex extractions like this one, consider assigning the Boolean
Series to a descriptive variable.

5.3.4 Methods for Booleans

Pandas provides an alternative syntax for analysts who prefer methods over operators.
The following table displays the method alternatives for equality, inequality, and other
arithmetic operations:

The same rules apply regarding the use of & and | symbols for AND/OR logic.

5.4 Filtering by condition
Some filtering operations are more complex than simple equality or inequality
checks. Luckily, pandas ships with many helper methods that generate Boolean Series
for these types of extractions.

5.4.1 The isin method

What if we want to isolate the employees who belong to either the Sales, Legal, or Mar-
keting team? We could provide three separate Boolean Series inside the square
brackets and add the | symbol to declare OR criteria:

Operation Arithmetic syntax Method syntax

Equality employees["Team"] == "Marketing" employees["Team"].eq("Marketing")

Inequality employees["Team"] != "Marketing" employees["Team"].ne("Marketing")

Less than employees["Salary"] < 100000 employees["Salary"].lt(100000)

Less than or
equal to

employees["Salary"] <= 100000 employees["Salary"].le(100000)

Greater than employees["Salary"] > 100000 employees["Salary"].gt(100000)

Greater than
or equal to

employees["Salary"] >= 100000 employees["Salary"].ge(100000)

128 CHAPTER 5 Filtering a DataFrame
In [41] sales = employees["Team"] == "Sales"
 legal = employees["Team"] == "Legal"
 mktg = employees["Team"] == "Marketing"
 employees[sales | legal | mktg].head()

Out [41]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 0 True Marketing
5 Dennis Male 1987-04-18 115163 False Legal
11 Julie Female 1997-10-26 102508 True Legal
13 Gary Male 2008-01-27 109831 False Sales
20 Lois NaN 1995-04-22 64714 True Legal

Although this solution works, it isn’t scalable. What if our next report asked for
employees from 15 teams instead of three? Declaring a Series for each condition is
laborious.

 A better solution is the isin method, which accepts an iterable of elements (list,
tuple, Series, and so on) and returns a Boolean Series. True denotes that pandas
found the row’s value among the iterable’s values, and False denotes that it did not.
When we have the Series, we can use it to filter the DataFrame in the usual manner.
The next example achieves the same result set:

In [42] all_star_teams = ["Sales", "Legal", "Marketing"]
 on_all_star_teams = employees["Team"].isin(all_star_teams)
 employees[on_all_star_teams].head()

Out [42]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 0 True Marketing
5 Dennis Male 1987-04-18 115163 False Legal
11 Julie Female 1997-10-26 102508 True Legal
13 Gary Male 2008-01-27 109831 False Sales
20 Lois NaN 1995-04-22 64714 True Legal

An optimal situation for using the isin method is when we do not know the compar-
ison collection in advance, such as when it is generated dynamically.

5.4.2 The between method

When working with numbers or dates, we often want to extract values that fall within a
range. Suppose that we want to identify all employees with a salary between $80,000
and $90,000. We could create two Boolean Series, one to declare the lower bound
and one to declare the upper bound. Then we could use the & operator to mandate
that both conditions are True:

In [43] higher_than_80 = employees["Salary"] >= 80000
 lower_than_90 = employees["Salary"] < 90000
 employees[higher_than_80 & lower_than_90].head()

Out [43]

129Filtering by condition
 First Name Gender Start Date Salary Mgmt Team

19 Donna Female 2010-07-22 81014 False Product
31 Joyce NaN 2005-02-20 88657 False Product
35 Theresa Female 2006-10-10 85182 False Sales
45 Roger Male 1980-04-17 88010 True Sales
54 Sara Female 2007-08-15 83677 False Engineering

A slightly cleaner solution is to use a method called between, which accepts a lower
bound and an upper bound; it returns a Boolean Series where True denotes that a
row’s value falls between the specified interval. Note that the first argument, the lower
bound, is inclusive, and the second argument, the upper bound, is exclusive. The fol-
lowing code returns the same DataFrame as the preceding code, filtering for salaries
between $80,000 and $90,000:

In [44] between_80k_and_90k = employees["Salary"].between(80000, 90000)
 employees[between_80k_and_90k].head()

Out [44]

 First Name Gender Start Date Salary Mgmt Team

19 Donna Female 2010-07-22 81014 False Product
31 Joyce NaN 2005-02-20 88657 False Product
35 Theresa Female 2006-10-10 85182 False Sales
45 Roger Male 1980-04-17 88010 True Sales
54 Sara Female 2007-08-15 83677 False Engineering

The between method also works on columns of other data types. To filter datetimes,
we can pass strings for the start and end dates of our time range. The keyword param-
eters for the first and second arguments of the method are left and right. Here, we
find all employees who started with the company in the 1980s:

In [45] eighties_folk = employees["Start Date"].between(
 left = "1980-01-01",
 right = "1990-01-01"
)

 employees[eighties_folk].head()

Out [45]

 First Name Gender Start Date Salary Mgmt Team

5 Dennis Male 1987-04-18 115163 False Legal
6 Ruby Female 1987-08-17 65476 True Product
10 Louise Female 1980-08-12 63241 True NaN
12 Brandon Male 1980-12-01 112807 True HR
17 Shawn Male 1986-12-07 111737 False Product

We can also apply the between method to string columns. Let’s extract all employees
whose first names starts with the letter "R". We’ll start with a capital "R" as our inclu-
sive lower bound and go up to the noninclusive upper bound of "S":

130 CHAPTER 5 Filtering a DataFrame
In [46] name_starts_with_r = employees["First Name"].between("R", "S")
 employees[name_starts_with_r].head()

Out [46]

 First Name Gender Start Date Salary Mgmt Team

6 Ruby Female 1987-08-17 65476 True Product
36 Rachel Female 2009-02-16 142032 False Business Dev
45 Roger Male 1980-04-17 88010 True Sales
67 Rachel Female 1999-08-16 51178 True Finance
78 Robin Female 1983-06-04 114797 True Sales

As always, be mindful of case sensitivity when working with characters and strings.

5.4.3 The isnull and notnull methods

The employees data set includes plenty of missing values. We can see a few missing val-
ues in our first five rows:

In [47] employees.head()

Out [47]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 0 True Marketing
1 Thomas Male 1996-03-31 61933 True NaN
2 Maria Female NaT 130590 False Finance
3 Jerry NaN 2005-03-04 138705 True Finance
4 Larry Male 1998-01-24 101004 True IT

Pandas marks missing text values and missing numeric values with a NaN (not a num-
ber) designation, and it marks missing datetime values with a NaT (not a time) desig-
nation. We can see an example in the Start Date column at index position 2.

 We can use several pandas methods to isolate rows with either null or present val-
ues in a given column. The isnull method returns a Boolean Series in which True
denotes that a row’s value is missing:

In [48] employees["Team"].isnull().head()

Out [48] 0 False
 1 True
 2 False
 3 False
 4 False
 Name: Team, dtype: bool

Pandas considers the NaT and None values to be null as well. The next example
invokes the isnull method on the Start Date column:

In [49] employees["Start Date"].isnull().head()

Out [49] 0 False
 1 False
 2 True
 3 False
 4 False
 Name: Start Date, dtype: bool

131Filtering by condition
The notnull method returns the inverse Series, one in which True indicates that a
row’s value is present. The following output communicates that indices 0, 2, 3, and 4
do not have missing values:

In [50] employees["Team"].notnull().head()

Out [50] 0 True
 1 False
 2 True
 3 True
 4 True
 Name: Team, dtype: bool

We can produce the same result set by inverting the Series returned by the isnull
method. As a reminder, we use the tilde symbol (~) to invert a Boolean Series:

In [51] (~employees["Team"].isnull()).head()

Out [51] 0 True
 1 False
 2 True
 3 True
 4 True
 Name: Team, dtype: bool

Either approach works, but notnull is a bit more descriptive and thus is recom-
mended.

 As always, we can use these Boolean Series to extract specific DataFrame rows.
Here, we extract all employees with a missing Team value:

In [52] no_team = employees["Team"].isnull()
 employees[no_team].head()

Out [52]

 First Name Gender Start Date Salary Mgmt Team

1 Thomas Male 1996-03-31 61933 True NaN
10 Louise Female 1980-08-12 63241 True NaN
23 NaN Male 2012-06-14 125792 True NaN
32 NaN Male 1998-08-21 122340 True NaN
91 James NaN 2005-01-26 128771 False NaN

The next example pulls out employees with a present First Name value:

In [53] has_name = employees["First Name"].notnull()
 employees[has_name].tail()

Out [53]

 First Name Gender Start Date Salary Mgmt Team

995 Henry NaN 2014-11-23 132483 False Distribution
996 Phillip Male 1984-01-31 42392 False Finance
997 Russell Male 2013-05-20 96914 False Product
998 Larry Male 2013-04-20 60500 False Business Dev
999 Albert Male 2012-05-15 129949 True Sales

132 CHAPTER 5 Filtering a DataFrame
The isnull and notnull methods are the best way to quickly filter for present and
missing values in one or more rows.

5.4.4 Dealing with null values

While we’re on the topic of missing values, let’s discuss some options for dealing with
them. In section 5.2, we learned how to use the fillna method to replace NaNs with
a constant value. We could also remove them.

 Let’s kick off this section by bringing our data set back to its original shape. We’ll
reimport the CSV by using the read_csv function:

In [54] employees = pd.read_csv(
 "employees.csv", parse_dates = ["Start Date"]
)

Here’s a reminder of what it looks like:

In [55] employees

Out [55]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
1 Thomas Male 1996-03-31 61933.0 True NaN
2 Maria Female NaT 130590.0 False Finance
3 Jerry NaN 2005-03-04 138705.0 True Finance
4 Larry Male 1998-01-24 101004.0 True IT
 … … … … … … …
996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales
1000 NaN NaN NaT NaN NaN NaN

1001 rows × 6 columns

The dropna method removes DataFrame rows that hold any NaN values. It doesn’t
matter how many values a row is missing; the method excludes the row if a single NaN
is present. The employees DataFrame has a missing value at index 0 of the Salary col-
umn, index 1 of the Team column, index 2 of the Start Date column, and index 3 of the
Gender column. Notice that pandas excludes all these rows in the following output:

In [56] employees.dropna()

Out [56]

 First Name Gender Start Date Salary Mgmt Team

4 Larry Male 1998-01-24 101004.0 True IT
5 Dennis Male 1987-04-18 115163.0 False Legal
6 Ruby Female 1987-08-17 65476.0 True Product
8 Angela Female 2005-11-22 95570.0 True Engineering
9 Frances Female 2002-08-08 139852.0 True Business Dev
 … … … … … … …

133Filtering by condition
994 George Male 2013-06-21 98874.0 True Marketing
996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales

761 rows × 6 columns

We can pass the how parameter an argument of "all" to remove rows in which all val-
ues are missing. Only one row in the data set, the last one, satisfies this condition:

In [57] employees.dropna(how = "all").tail()

Out [57]

 First Name Gender Start Date Salary Mgmt Team

995 Henry NaN 2014-11-23 132483.0 False Distribution
996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales

The how parameter’s default argument is "any". An argument of "any" removes a
row if any of its values is absent. Notice that the row at index label 995 has NaN in the
Gender column of the preceding output. Compare that output with the following out-
put, in which row 995 is not present; pandas still removes the last row because it has at
least one NaN value:

In [58] employees.dropna(how = "any").tail()

Out [58]

 First Name Gender Start Date Salary Mgmt Team

994 George Male 2013-06-21 98874.0 True Marketing
996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales

We can use the subset parameter to target rows with a missing value in a specific col-
umn. The next example removes rows that have a missing value in the Gender
column:

In [59] employees.dropna(subset = ["Gender"]).tail()

Out [59]

 First Name Gender Start Date Salary Mgmt Team

994 George Male 2013-06-21 98874.0 True Marketing
996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales

134 CHAPTER 5 Filtering a DataFrame
We can also pass the subset parameter a list of columns. Pandas will remove a row if
it has a missing value in any of the specified columns. The next example removes rows
with missing values in the Start Date column, the Salary column, or both:

In [60] employees.dropna(subset = ["Start Date", "Salary"]).head()

Out [60]

 First Name Gender Start Date Salary Mgmt Team

1 Thomas Male 1996-03-31 61933.0 True NaN
3 Jerry NaN 2005-03-04 138705.0 True Finance
4 Larry Male 1998-01-24 101004.0 True IT
5 Dennis Male 1987-04-18 115163.0 False Legal
6 Ruby Female 1987-08-17 65476.0 True Product

The thresh parameter specifies a minimum threshold of non-null values that a row
must have for pandas to keep it. The next example filters employees for rows with at
least four present values:

In [61] employees.dropna(how = "any", thresh = 4).head()

Out [61]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
1 Thomas Male 1996-03-31 61933.0 True NaN
2 Maria Female NaT 130590.0 False Finance
3 Jerry NaN 2005-03-04 138705.0 True Finance
4 Larry Male 1998-01-24 101004.0 True IT

The thresh parameter is great when a certain number of missing values renders a
row useless for analysis.

5.5 Dealing with duplicates
Missing values are a common occurrence in messy data sets, and so are duplicate val-
ues. Luckily, pandas includes several methods for identifying and excluding duplicate
values.

5.5.1 The duplicated method

First up, here’s a quick reminder of the first five rows of the Team column. Notice that
the value "Finance" appears at index positions 2 and 3:

In [62] employees["Team"].head()

Out [62] 0 Marketing
 1 NaN
 2 Finance
 3 Finance
 4 IT
 Name: Team, dtype: object

135Dealing with duplicates
The duplicated method returns a Boolean Series that identifies duplicates in a
column. Pandas returns True any time it sees a value that it previously encountered in
the Series. Consider the next example. The duplicated method marks the first
occurrence of "Finance" in the Team column as a nonduplicate with False. It
marks all subsequent occurrences of "Finance" as duplicates (with True). The same
logic applies to all other Team values:

In [63] employees["Team"].duplicated().head()

Out [63] 0 False
 1 False
 2 False
 3 True
 4 False
 Name: Team, dtype: bool

The duplicated method’s keep parameter informs pandas which duplicate occur-
rence to keep. Its default argument, "first", keeps the first occurrence of each
duplicate value. The following code is equivalent to the preceding code:

In [64] employees["Team"].duplicated(keep = "first").head()

Out [64] 0 False
 1 False
 2 False
 3 True
 4 False
 Name: Team, dtype: bool

We can also ask pandas to mark the last occurrence of a value in a column as the
nonduplicate. Pass a string of "last" to the keep parameter:

In [65] employees["Team"].duplicated(keep = "last")

Out [65] 0 True
 1 True
 2 True
 3 True
 4 True
 ...
 996 False
 997 False
 998 False
 999 False
 1000 False
 Name: Team, Length: 1001, dtype: bool

Let’s say we want to extract one employee from each team. One strategy we could use
is pulling out the first row for each unique team in the Team column. Our existing
duplicated method returns a Boolean Series; True identifies all duplicate values
after the first encounter. If we invert that Series, we’ll get a Series in which True
denotes the first time pandas encounters a value:

136 CHAPTER 5 Filtering a DataFrame
In [66] (~employees["Team"].duplicated()).head()

Out [66] 0 True
 1 True
 2 True
 3 False
 4 True
 Name: Team, dtype: bool

Now we can extract one employee per team by passing the Boolean Series inside
square brackets. Pandas will include the rows with the first occurrences of a value in
the Team column. Note that the library considers NaNs to be a unique value:

In [67] first_one_in_team = ~employees["Team"].duplicated()
 employees[first_one_in_team]

Out [67]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
1 Thomas Male 1996-03-31 61933.0 True NaN
2 Maria Female NaT 130590.0 False Finance
4 Larry Male 1998-01-24 101004.0 True IT
5 Dennis Male 1987-04-18 115163.0 False Legal
6 Ruby Female 1987-08-17 65476.0 True Product
8 Angela Female 2005-11-22 95570.0 True Engineering
9 Frances Female 2002-08-08 139852.0 True Business Dev
12 Brandon Male 1980-12-01 112807.0 True HR
13 Gary Male 2008-01-27 109831.0 False Sales
40 Michael Male 2008-10-10 99283.0 True Distribution

This output tells us that Douglas is the first employee on the Marketing team in the
data set, Thomas is the first one with a missing team, Maria is the first one on the
Finance team, and so on.

5.5.2 The drop_duplicates method

A DataFrame’s drop_duplicates method provides a convenient shortcut for
accomplishing the operation in section 5.5.1. By default, the method removes rows in
which all values are equal to those in a previously encountered row. There are no
employees rows in which all six row values are equal, so the method doesn’t accom-
plish much for us with a standard invocation:

In [68] employees.drop_duplicates()

Out [68]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
1 Thomas Male 1996-03-31 61933.0 True NaN
2 Maria Female NaT 130590.0 False Finance
3 Jerry NaN 2005-03-04 138705.0 True Finance
4 Larry Male 1998-01-24 101004.0 True IT
 … … … … … … …

137Dealing with duplicates
996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales
1000 NaN NaN NaT NaN NaN NaN

1001 rows × 6 columns

But we can pass the method a subset parameter with a list of columns that pandas
should use to determine a row’s uniqueness. The next example finds the first occur-
rence of each unique value in the Team column. In other words, pandas keeps a row
only if it has the first occurrence of a Team value (such as "Marketing"). It excludes
all rows with duplicate Team values after the first one:

In [69] employees.drop_duplicates(subset = ["Team"])

Out [69]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
1 Thomas Male 1996-03-31 61933.0 True NaN
2 Maria Female NaT 130590.0 False Finance
4 Larry Male 1998-01-24 101004.0 True IT
5 Dennis Male 1987-04-18 115163.0 False Legal
6 Ruby Female 1987-08-17 65476.0 True Product
8 Angela Female 2005-11-22 95570.0 True Engineering
9 Frances Female 2002-08-08 139852.0 True Business Dev
12 Brandon Male 1980-12-01 112807.0 True HR
13 Gary Male 2008-01-27 109831.0 False Sales
40 Michael Male 2008-10-10 99283.0 True Distribution

The drop_duplicates method also accepts a keep parameter. We can pass it an
argument of "last" to keep the rows with each duplicate value’s last occurrence.
These rows are likely to be closer to the end of the data set. In the following example,
Alice is the last employee in the data set on the HR team, Justin is the last employee
on the Legal team, and so on:

In [70] employees.drop_duplicates(subset = ["Team"], keep = "last")

Out [70]

 First Name Gender Start Date Salary Mgmt Team

988 Alice Female 2004-10-05 47638.0 False HR
989 Justin NaN 1991-02-10 38344.0 False Legal
990 Robin Female 1987-07-24 100765.0 True IT
993 Tina Female 1997-05-15 56450.0 True Engineering
994 George Male 2013-06-21 98874.0 True Marketing
995 Henry NaN 2014-11-23 132483.0 False Distribution
996 Phillip Male 1984-01-31 42392.0 False Finance
997 Russell Male 2013-05-20 96914.0 False Product
998 Larry Male 2013-04-20 60500.0 False Business Dev
999 Albert Male 2012-05-15 129949.0 True Sales
1000 NaN NaN NaT NaN NaN NaN

138 CHAPTER 5 Filtering a DataFrame
One additional option is available for the keep parameter. We can pass an argument
of False to exclude all rows with duplicate values. Pandas will reject a row if there are
any other rows with the same value. The next example filters for rows in employees
with a unique value in the First Name column. In other words, these first names occur
only once in the DataFrame:

In [71] employees.drop_duplicates(subset = ["First Name"], keep = False)

Out [71]

 First Name Gender Start Date Salary Mgmt Team

5 Dennis Male 1987-04-18 115163.0 False Legal
8 Angela Female 2005-11-22 95570.0 True Engineering
33 Jean Female 1993-12-18 119082.0 False Business Dev
190 Carol Female 1996-03-19 57783.0 False Finance
291 Tammy Female 1984-11-11 132839.0 True IT
495 Eugene Male 1984-05-24 81077.0 False Sales
688 Brian Male 2007-04-07 93901.0 True Legal
832 Keith Male 2003-02-12 120672.0 False Legal
887 David Male 2009-12-05 92242.0 False Legal

Let’s say we want to identify duplicates by a combination of values across multiple col-
umns. We may want the first occurrence of each employee with a unique combination
of First Name and Gender in the data set, for example. For reference, here’s a subset
of all employees with a First Name of "Douglas" and a Gender of "Male":

In [72] name_is_douglas = employees["First Name"] == "Douglas"
 is_male = employees["Gender"] == "Male"
 employees[name_is_douglas & is_male]

Out [72]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
217 Douglas Male 1999-09-03 83341.0 True IT
322 Douglas Male 2002-01-08 41428.0 False Product
835 Douglas Male 2007-08-04 132175.0 False Engineering

We can pass a list of columns to the drop_duplicates method’s subset parameter.
Pandas will use the columns to determine the presence of duplicates. The next exam-
ple uses a combination of values across the Gender and Team columns to identify
duplicates:

In [73] employees.drop_duplicates(subset = ["Gender", "Team"]).head()

Out [73]

 First Name Gender Start Date Salary Mgmt Team

0 Douglas Male 1993-08-06 NaN True Marketing
1 Thomas Male 1996-03-31 61933.0 True NaN
2 Maria Female NaT 130590.0 False Finance
3 Jerry NaN 2005-03-04 138705.0 True Finance
4 Larry Male 1998-01-24 101004.0 True IT

139Coding challenge
Let’s walk through the output. The row at index 0 holds the first occurrence of the
name "Douglas" and the gender "Male" in the employees data set. Pandas will
exclude any other rows with the same two values from the results set. To clarify, the
library will still include a row if it has a First Name of "Douglas" and a Gender not
equal to "Male". Similarly, it will include rows with Gender of "Male" and a First
Name not equal to "Douglas". Pandas uses the combination of values across the two
columns to identify the duplicates.

5.6 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

5.6.1 Problems

The netflix.csv data set is a collection of almost 6,000 titles that were available to watch
in November 2019 on the video streaming service Netflix. It includes four columns:
the video’s title, director, the date Netflix added it, and its type/category. The director
and date_added columns contain missing values. We can see examples at index posi-
tions 0, 2, and 5836 of the following output:

In [74] pd.read_csv("netflix.csv")

Out [74]

 title director date_added type

0 Alias Grace NaN 3-Nov-17 TV Show
1 A Patch of Fog Michael Lennox 15-Apr-17 Movie
2 Lunatics NaN 19-Apr-19 TV Show
3 Uriyadi 2 Vijay Kumar 2-Aug-19 Movie
4 Shrek the Musical Jason Moore 29-Dec-13 Movie
 … … … … …
5832 The Pursuit John Papola 7-Aug-19 Movie
5833 Hurricane Bianca Matt Kugelman 1-Jan-17 Movie
5834 Amar's Hands Khaled Youssef 26-Apr-19 Movie
5835 Bill Nye: Science Guy Jason Sussberg 25-Apr-18 Movie
5836 Age of Glory NaN NaN TV Show

5837 rows × 4 columns

Using the skills you learned in this chapter, solve the following challenges:

1 Optimize the data set for limited memory use and maximum utility.
2 Find all rows with a title of "Limitless".
3 Find all rows with a director of "Robert Rodriguez" and a type of "Movie".
4 Find all rows with either a date_added of "2019-07-31" or a director of

"Robert Altman".
5 Find all rows with a director of "Orson Welles", "Aditya Kripalani", or

"Sam Raimi".
6 Find all rows with a date_added value between May 1, 2019 and June 1, 2019.
7 Drop all rows with a NaN value in the director column.
8 Identify the days when Netflix added only one movie to its catalog.

140 CHAPTER 5 Filtering a DataFrame
5.6.2 Solutions

Let’s tackle the questions!

1 To optimize the data set for memory and utility, we can first convert the date_
added column’s values to datetimes. We can force the type coercion during the
import with the parse_dates parameter to the read_csv function:

In [75] netflix = pd.read_csv("netflix.csv", parse_dates = ["date_added"])

It’s important to keep benchmarks, so let’s take a look at current memory use:

In [76] netflix.info()

Out [76]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5837 entries, 0 to 5836
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 title 5837 non-null object
 1 director 3936 non-null object
 2 date_added 5195 non-null datetime64[ns]
 3 type 5837 non-null object
dtypes: datetime64[ns](1), object(3)
memory usage: 182.5+ KB

Can we convert any column’s values to a different data type? How about cate-
gorical values? Let’s use the nunique method to count the number of unique
values per column:

In [77] netflix.nunique()

Out [77] title 5780
 director 3024
 date_added 1092
 type 2
 dtype: int64

The type column is a perfect candidate for categorical values. In a data set of
5,837 rows, it has only two unique values: "Movie" and "TV Show". We can
convert its values by using the astype method. Remember to overwrite the
original Series:

In [78] netflix["type"] = netflix["type"].astype("category")

How much has the conversion to categorical data reduced our memory use? A
whopping 22%:

In [79] netflix.info()

Out [79]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5837 entries, 0 to 5836

141Coding challenge
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 title 5837 non-null object
 1 director 3936 non-null object
 2 date_added 5195 non-null datetime64[ns]
 3 type 5837 non-null category
dtypes: category(1), datetime64[ns](1), object(2)
memory usage: 142.8+ KB

2 We’ll need to use the equality operator to compare each title column value with
the string "Limitless". Afterward, we can use the Boolean Series to extract
rows from netflix for which the evaluation returns True:

In [80] netflix[netflix["title"] == "Limitless"]

Out [80]

 title director date_added type

1559 Limitless Neil Burger 2019-05-16 Movie
2564 Limitless NaN 2016-07-01 TV Show
4579 Limitless Vrinda Samartha 2019-10-01 Movie

3 To extract movies directed by Robert Rodriguez, we’ll need two Boolean
Series, one comparing the director column’s values with "Robert Rodri-
guez" and the other comparing the type column’s values with "Movie". The &
symbol applies AND logic for two Boolean Series:

In [81] directed_by_robert_rodriguez = (
 netflix["director"] == "Robert Rodriguez"
)
 is_movie = netflix["type"] == "Movie"
 netflix[directed_by_robert_rodriguez & is_movie]

Out [81]

 title director date_added type

1384 Spy Kids: All the Time in the … Robert Rodriguez 2019-02-19 Movie
1416 Spy Kids 3: Game… Robert Rodriguez 2019-04-01 Movie
1460 Spy Kids 2: The Island of Lost D… Robert Rodriguez 2019-03-08 Movie
2890 Sin City Robert Rodriguez 2019-10-01 Movie
3836 Shorts Robert Rodriguez 2019-07-01 Movie
3883 Spy Kids Robert Rodriguez 2019-04-01 Movie

4 The next question asks all for all titles with a date_added of "2019-07-31" or a
director of "Robert Altman". This problem is similar to the preceding one
but requires a | symbol for OR logic:

In [82] added_on_july_31 = netflix["date_added"] == "2019-07-31"
 directed_by_altman = netflix["director"] == "Robert Altman"
 netflix[added_on_july_31 | directed_by_altman]

Out [82]

142 CHAPTER 5 Filtering a DataFrame
 title director date_added type

611 Popeye Robert Altman 2019-11-24 Movie
1028 The Red Sea Diving Resort Gideon Raff 2019-07-31 Movie
1092 Gosford Park Robert Altman 2019-11-01 Movie
3473 Bangkok Love Stories: Innocence NaN 2019-07-31 TV Show
5117 Ramen Shop Eric Khoo 2019-07-31 Movie

5 The next challenge asks for entries with a director of "Orson Welles", "Adi-
tya Kripalani", or "Sam Raimi". One option is to create three Boolean
Series, one for each of the three directors, and then use the | operator. But a
more concise and scalable way to generate the Boolean Series is to invoke the
isin method on the director column and pass in the list of directors:

In [83] directors = ["Orson Welles", "Aditya Kripalani", "Sam Raimi"]
 target_directors = netflix["director"].isin(directors)
 netflix[target_directors]

Out [83]

 title director date_added type

946 The Stranger Orson Welles 2018-07-19 Movie
1870 The Gift Sam Raimi 2019-11-20 Movie
3706 Spider-Man 3 Sam Raimi 2019-11-01 Movie
4243 Tikli and Laxmi Bomb Aditya Kripalani 2018-08-01 Movie
4475 The Other Side of the Wind Orson Welles 2018-11-02 Movie
5115 Tottaa Pataaka Item Maal Aditya Kripalani 2019-06-25 Movie

6 The most concise way to find all rows with a date_added value between May 1,
2019 and June 1, 2019, is to use the between method. We can provide the two
dates as the lower and upper bounds. This approach eliminates the need for
two separate Boolean Series:

In [84] may_movies = netflix["date_added"].between(
 "2019-05-01", "2019-06-01"
)

 netflix[may_movies].head()

Out [84]

 title director date_added type

29 Chopsticks Sachin Yardi 2019-05-31 Movie
60 Away From Home NaN 2019-05-08 TV Show
82 III Smoking Barrels Sanjib Dey 2019-06-01 Movie
108 Jailbirds NaN 2019-05-10 TV Show
124 Pegasus Han Han 2019-05-31 Movie

7 The dropna method removes DataFrame rows with missing values. We have to
include the subset parameter to limit the columns in which pandas should
look for null values. For this question, we’ll target NaN values in the director
column:

143Summary
In [85] netflix.dropna(subset = ["director"]).head()

Out [85]

 title director date_added type

1 A Patch of Fog Michael Lennox 2017-04-15 Movie
3 Uriyadi 2 Vijay Kumar 2019-08-02 Movie
4 Shrek the Musical Jason Moore 2013-12-29 Movie
5 Schubert In Love Lars Büchel 2018-03-01 Movie
6 We Have Always Lived in the Castle Stacie Passon 2019-09-14 Movie

8 The final challenge asks to identify the days when Netflix added only one movie
to the service. One solution is to recognize that the date_added column holds
duplicate date values for titles added on the same day. We can invoke the
drop_duplicates method with a subset of date_added and the keep param-
eter set to False. Pandas will remove any rows with duplicate entries in the
date_added column. The resulting DataFrame will have the titles that were the
only ones added on their respective dates:

In [86] netflix.drop_duplicates(subset = ["date_added"], keep = False)

Out [86]

 title director date_added type

4 Shrek the Musical Jason Moore 2013-12-29 Movie
12 Without Gorky Cosima Spender 2017-05-31 Movie
30 Anjelah Johnson: Not Fancy Jay Karas 2015-10-02 Movie
38 One Last Thing Tim Rouhana 2019-08-25 Movie
70 Marvel's Iron Man & Hulk: Heroes … Leo Riley 2014-02-16 Movie
 … … … … …
5748 Menorca John Barnard 2017-08-27 Movie
5749 Green Room Jeremy Saulnier 2018-11-12 Movie
5788 Chris Brown: Welcome to My Life Andrew Sandler 2017-10-07 Movie
5789 A Very Murray Christmas Sofia Coppola 2015-12-04 Movie
5812 Little Singham in London Prakash Satam 2019-04-22 Movie

391 rows × 4 columns

Congratulations on completing the coding challenge!

Summary
 The astype method converts a Series’ values to another data type.
 The category data type is ideal when a Series has a small number of unique

values.
 Pandas can extract subsets of data from a DataFrame based on one or more

conditions.
 Pass a Boolean Series inside square brackets to extract a subset of a Data-

Frame.
 Use the equality, inequality, and mathematical operators to compare each

Series entry with a constant value.

144 CHAPTER 5 Filtering a DataFrame
 The & symbol mandates that multiple conditions be met to extract a row.
 The | symbol mandates that either condition be met to extract a row.
 Helper methods such as isnull, notnull, between, and duplicated return

Boolean Series that we can use to filter data sets.
 The fillna method replaces NaNs with a constant value.
 The dropna method removes rows with null values. We can customize its argu-

ments to target missing values in all or some columns.

Part 2

Applied pandas

In part 1, we laid the groundwork for our mastery of pandas. Now that we’re
comfortable working with Series and DataFrames, we can expand our hori-
zons and learn how to tackle common problems in data analysis. Chapter 6 dives
right into working with messy text data, including dealing with whitespace and
inconsistent character casing. In chapter 7, we learn how to use the powerful
MultiIndex to store and extract hierarchical data. Chapters 8 and 9 focus on
aggregation: pivoting our DataFrames, grouping data into buckets, summariz-
ing data, and more. In chapter 10, we explore how to merge datasets by using a
variety of joins. Immediately afterward, we learn the ins and outs of working with
another common data type, datetimes, in chapter 11. In chapter 12, we look at
importing and exporting data sets to and from pandas. Chapter 13 covers how to
adjust the library’s configuration settings. Finally, chapter 14 provides a tutorial
on creating visualizations from our DataFrames.

 Along the way, we’ll practice pandas concepts on more than 30 datasets that
cover everything from baby names to breakfast cereals, from Fortune 1000 com-
panies to Nobel Prize winners. You are welcome to proceed through the chap-
ters linearly or explore whichever topic piques your interest most. Consider each
chapter here to be a new specialization to add to your pandas toolbox. Good
luck!

146 CHAPTER

Working with text data
Text data can get quite messy. Real-world data sets are riddled with incorrect char-
acters, improper letter casings, whitespace, and more. The process of cleaning data
is called wrangling or munging. Often, the majority of our data analysis is dedicated
to munging. We may know the insight we want to derive early on, but the difficulty
lies in arranging the data in a suitable shape for the manipulation. Luckily for us,
one of the primary motivations behind pandas was easing the difficulty of cleaning
up improperly formatted text values. The library is battle-tested and flexible. In this
chapter, we’ll learn how to use pandas to fix all sorts of imperfections in our text
data sets. There’s a lot of ground to cover, so let’s dive right in.

This chapter covers
 Removing whitespace from strings

 Uppercasing and lowercasing strings

 Finding and replacing characters in strings

 Slicing a string by character index positions

 Splitting text by a delimiter
147

148 CHAPTER 6 Working with text data
6.1 Letter casing and whitespace
We’ll begin by importing pandas in a new Jupyter Notebook:

In [1] import pandas as pd

This chapter’s first data set, chicago_food_inspections.csv, is a listing of more than
150,000 food inspections conducted across the city of Chicago. The CSV includes only
two columns: one with an establishment’s name and the other with its risk ranking.
The four risk levels are Risk 1 (High), Risk 2 (Medium), Risk 3 (Low), and a special
All for the worst offenders:

In [2] inspections = pd.read_csv("chicago_food_inspections.csv")
 inspections

Out [2]

 Name Risk

0 MARRIOT MARQUIS CHICAGO Risk 1 (High)
1 JETS PIZZA Risk 2 (Medium)
2 ROOM 1520 Risk 3 (Low)
3 MARRIOT MARQUIS CHICAGO Risk 1 (High)
4 CHARTWELLS Risk 1 (High)
 … … …
153805 WOLCOTT'S Risk 1 (High)
153806 DUNKIN DONUTS/BASKIN-ROBBINS Risk 2 (Medium)
153807 Cafe 608 Risk 1 (High)
153808 mr.daniel's Risk 1 (High)
153809 TEMPO CAFE Risk 1 (High)

153810 rows × 2 columns

NOTE chicago_food_inspections.csv is a modified version of a data set avail-
able from the city of Chicago (http://mng.bz/9N60). There are typos and
inconsistencies within the data; we have preserved them so that you can see the
data irregularities that appear in the real world. I encourage you to consider
how you can optimize this data with the techniques you’ll learn in this chapter.

We immediately see an issue in the Name column: inconsistency in letter casing. Most
row values are uppercase, some are lowercase ("mr.daniel's"), and some are nor-
mal case ("Café 608").

 The preceding output does not show another problem hiding in inspections:
the Name column’s values are surrounded by whitespace. We can spot the extra spac-
ing more easily if we isolate the Name Series with square-bracket syntax. Notice that
the ends of the rows do not align:

In [3] inspections["Name"].head()

Out [3] 0 MARRIOT MARQUIS CHICAGO
 1 JETS PIZZA
 2 ROOM 1520
 3 MARRIOT MARQUIS CHICAGO
 4 CHARTWELLS
 Name: Name, dtype: object

http://mng.bz/9N60

149Letter casing and whitespace
We can use the values attribute on the Series to get the underlying NumPy ndarray
storing the values. The whitespace is present at the ends and the beginnings of the values:

In [4] inspections["Name"].head().values

Out [4] array([' MARRIOT MARQUIS CHICAGO ', ' JETS PIZZA ',
 ' ROOM 1520 ', ' MARRIOT MARQUIS CHICAGO ',
 ' CHARTWELLS '], dtype=object)

Let’s focus on the whitespace first. We’ll deal with the letter casings a little later.
 The Series object’s str attribute exposes a StringMethods object, a powerful

toolbox of methods for working with strings:

In [5] inspections["Name"].str

Out [5] <pandas.core.strings.StringMethods at 0x122ad8510>

Any time we’d like to perform string manipulations, we invoke a method on the
StringMethods object rather than the Series itself. Some methods work like
Python’s native string methods, whereas other methods are exclusive to pandas. For a
comprehensive review of Python’s string methods, see appendix B.

 We can use the strip family of methods to remove whitespace from a string. The
lstrip (left strip) method removes whitespace from the beginning of a string. Here’s
a basic example:

In [6] dessert = " cheesecake "
 dessert.lstrip()

Out [6] 'cheesecake '

The rstrip (right strip) method removes whitespace from the end of a string:

In [7] dessert.rstrip()

Out [7] ' cheesecake'

The strip method removes whitespace from both ends of a string:

In [8] dessert.strip()

Out [8] 'cheesecake'

These three strip methods are available on the StringMethods object. Each one
returns a new Series object with the operation applied to every column value. Let’s
invoke each of them:

In [9] inspections["Name"].str.lstrip().head()

Out [9] 0 MARRIOT MARQUIS CHICAGO
 1 JETS PIZZA
 2 ROOM 1520
 3 MARRIOT MARQUIS CHICAGO
 4 CHARTWELLS
 Name: Name, dtype: object

150 CHAPTER 6 Working with text data
In [10] inspections["Name"].str.rstrip().head()

Out [10] 0 MARRIOT MARQUIS CHICAGO
 1 JETS PIZZA
 2 ROOM 1520
 3 MARRIOT MARQUIS CHICAGO
 4 CHARTWELLS
 Name: Name, dtype: object

In [11] inspections["Name"].str.strip().head()

Out [11] 0 MARRIOT MARQUIS CHICAGO
 1 JETS PIZZA
 2 ROOM 1520
 3 MARRIOT MARQUIS CHICAGO
 4 CHARTWELLS
 Name: Name, dtype: object

Now we can overwrite our existing Series with the new one that has no extra
whitespace. On the right side of an equal sign, we’ll use the strip code to create the
new Series. On the left side, we’ll use square-bracket syntax to denote the column
we’d like to overwrite. Python processes the right side of the equal sign first. In sum-
mary, we use the Name column to create a new Series without whitespace and then
overwrite the Name column with that new Series:

In [12] inspections["Name"] = inspections["Name"].str.strip()

This one-line solution is suitable for a small data set, but it may quickly become
tedious for one with a large number of columns. How can we quickly apply the same
logic to all DataFrame columns? You may recall the columns attribute, which exposes
the iterable Index object that holds the DataFrame’s column names:

In [13] inspections.columns

Out [13] Index(['Name', 'Risk'], dtype='object')

We can use Python’s for loop to iterate over each column, extract it dynamically from
the DataFrame, invoke the str.strip method to return a new Series, and over-
write the original column. The logic requires only two lines:

In [14] for column in inspections.columns:
 inspections[column] = inspections[column].str.strip()

All of Python’s character casing methods are available on the StringMethods object.
The lower method, for example, lowercases all string characters:

In [15] inspections["Name"].str.lower().head()

Out [15] 0 marriot marquis chicago
 1 jets pizza
 2 room 1520
 3 marriot marquis chicago
 4 chartwells
 Name: Name, dtype: object

151String slicing
The complementary str.upper method returns a Series with uppercase strings.
The next example invokes the method on a different Series because the Name col-
umn is mostly uppercase already:

In [16] steaks = pd.Series(["porterhouse", "filet mignon", "ribeye"])
 steaks

Out [16] 0 porterhouse
 1 filet mignon
 2 ribeye
 dtype: object

In [17] steaks.str.upper()

Out [17] 0 PORTERHOUSE
 1 FILET MIGNON
 2 RIBEYE
 dtype: object

Suppose that we want to get the establishments’ names in a more standardized, read-
able format. We can use the str.capitalize method to capitalize the first letter of
each string in the Series:

In [18] inspections["Name"].str.capitalize().head()

Out [18] 0 Marriot marquis chicago
 1 Jets pizza
 2 Room 1520
 3 Marriot marquis chicago
 4 Chartwells
 Name: Name, dtype: object

That’s a step in the right direction, but perhaps the best method available is
str.title, which capitalizes each word’s first letter. Pandas uses spaces to identify
where one word ends and the next begins:

In [19] inspections["Name"].str.title().head()

Out [19] 0 Marriot Marquis Chicago
 1 Jets Pizza
 2 Room 1520
 3 Marriot Marquis Chicago
 4 Chartwells
 Name: Name, dtype: object

The title method is a fantastic option for dealing with locations, countries, cities,
and people’s full names.

6.2 String slicing
Let’s turn our focus to the Risk column. Each row’s value includes both a numeric and
categorical representation of the risk (such as 1 and "High"). Here’s a reminder of
what the column looks like:

152 CHAPTER 6 Working with text data
In [20] inspections["Risk"].head()

Out [20]

0 Risk 1 (High)
1 Risk 2 (Medium)
2 Risk 3 (Low)
3 Risk 1 (High)
4 Risk 1 (High)
Name: Risk, dtype: object

Let’s say we want to extract the numeric risk value from each row. This operation may
appear simple, given the seemingly consistent format of each row, but we have to
tread carefully. There is always room for deception in a data set this large:

In [21] len(inspections)

Out [21] 153810

Do all rows follow a "Risk Number (Risk Level)" format? We can find out by invok-
ing the unique method, which returns a NumPy ndarray consisting of the column’s
unique values:

In [22] inspections["Risk"].unique()

Out [22] array(['Risk 1 (High)', 'Risk 2 (Medium)', 'Risk 3 (Low)', 'All',
 nan], dtype=object)

We have to account for two additional values: missing NaNs and the 'All' string.
How we deal with these values is ultimately up to the analyst and the business. Are the
values significant, or can they be discarded? In this scenario, let’s propose a compro-
mise: we’ll remove the missing NaN values and replace the "All" values with "Risk 4
(Extreme)". We’ll pick this approach to ensure that all Risk values have a consistent
format.

 We can remove missing values from a Series with the dropna method intro-
duced in chapter 5. We’ll pass its subset parameter a list of the DataFrame columns
in which pandas should look for NaNs. The next example removes rows in inspec-
tions with a NaN value in the Risk column:

In [23] inspections = inspections.dropna(subset = ["Risk"])

Let’s check in on unique values in the Risk column:

In [24] inspections["Risk"].unique()

Out [24] array(['Risk 1 (High)', 'Risk 2 (Medium)', 'Risk 3 (Low)', 'All'],
 dtype=object)

We can use the DataFrame’s helpful replace method to replace all occurrences
of one value with another. The method’s first parameter, to_replace, sets the value
to search for, and its second parameter, value, specifies what to replace each

153String slicing and character replacement
occurrence of it with. The next example replaces the "All" string values with "Risk
4 (Extreme)":

In [25] inspections = inspections.replace(
 to_replace = "All", value = "Risk 4 (Extreme)"
)

Now we have a consistent format for all values in the Risk column:

In [26] inspections["Risk"].unique()

Out [26] array(['Risk 1 (High)', 'Risk 2 (Medium)', 'Risk 3 (Low)',
 'Risk 4 (Extreme)'], dtype=object)

Next, let’s continue with our original goal of extracting each row’s risk number.

6.3 String slicing and character replacement
We can use the slice method on the StringMethods object to extract a substring
from a string by index position. The method accepts a starting index and an ending
index as arguments. The lower bound (the starting point) is inclusive, whereas the
upper bound (the endpoint) is exclusive.

 Our risk number starts at index position 5 in each string. The next example pulls
the characters from index position 5 up to (but not including) index position 6:

In [27] inspections["Risk"].str.slice(5, 6).head()

Out [27] 0 1
 1 2
 2 3
 3 1
 4 1
 Name: Risk, dtype: object

We can also replace the slice method with Python’s list-slicing syntax (see appendix
B). The following code returns the same result as the preceding code:

In [28] inspections["Risk"].str[5:6].head()

Out [28] 0 1
 1 2
 2 3
 3 1
 4 1
 Name: Risk, dtype: object

What if we want to extract the categorical ranking ("High", "Medium", "Low", and
"All") from each row? This challenge is made difficult by the different lengths of the
words; we cannot extract the same number of characters from a starting index posi-
tion. A few solutions are available. We’ll discuss the most resilient option, regular
expressions, in section 6.7.

154 CHAPTER 6 Working with text data
 For now, let’s attack the problem step by step. We can start by using the slice
method to extract each row’s risk category. If we pass the slice method a single
value, pandas will use it as the lower bound and extract until the end of the string.

 The next example pulls the characters from index position 8 to the end of each
string. The character at index position 8 is the first letter in each risk type (the "H" in
"High", the "M" in "Medium", the "L" in "Low", and the "E" in "Extreme"):

In [29] inspections["Risk"].str.slice(8).head()

Out [29] 0 High)
 1 Medium)
 2 Low)
 3 High)
 4 High)
 Name: Risk, dtype: object

We can use Python’s list-slicing syntax, too. Inside the square brackets, provide a start-
ing index position followed by a single colon. The result is identical:

In [30] inspections["Risk"].str[8:].head()

Out [30] 0 High)
 1 Medium)
 2 Low)
 3 High)
 4 High)
 Name: Risk, dtype: object

We still have to deal with the pesky closing parentheses. Here’s a cool solution: pass a
negative argument to the str.slice method. A negative argument sets the index
bound relative to the end of the string: -1 extracts up to the last character, -2 extracts
up to the second-to-last character, and so on. Let’s extract a substring from index posi-
tion 8 up until the last character in each string:

In [31] inspections["Risk"].str.slice(8, -1).head()

Out [31] 0 High
 1 Medium
 2 Low
 3 High
 4 High
 Name: Risk, dtype: object

We’ve got it! If you prefer list-slicing syntax, you can pass the -1 after the colon inside
the square brackets:

In [32] inspections["Risk"].str[8:-1].head()

Out [32] 0 High
 1 Medium
 2 Low
 3 High
 4 High
 Name: Risk, dtype: object

155Boolean methods
Another strategy we can use to remove the closing parentheses is the str.replace
method. We can replace each closing parentheses with an empty string—a string with-
out characters.

 Each str method returns a new Series object with its own str attribute. This
aspect allows us to chain multiple string methods in sequence, as long as we reference
the str attribute in each method invocation. The next example chains the slice and
replace methods:

In [33] inspections["Risk"].str.slice(8).str.replace(")", "").head()

Out [33] 0 High
 1 Medium
 2 Low
 3 High
 4 High
 Name: Risk, dtype: object

By slicing from a middle index position and removing the ending parenthesis, we
were able to isolate the Risk level for each row.

6.4 Boolean methods
Section 6.3 introduced methods such as upper and slice that return a Series of
strings. Other methods available on the StringMethods object return a Series of
Booleans. These methods can prove to be particularly helpful for filtering a Data-
Frame.

 Suppose that we want to isolate all establishments with the word "Pizza" in their
names. In vanilla Python, we use the in operator to search for a substring with a string:

In [34] "Pizza" in "Jets Pizza"

Out [34] True

The biggest challenge in string matching is case sensitivity. Python will not find the
string "pizza" in "Jets Pizza", for example, because of the mismatch in casing of
the "p" character:

In [35] "pizza" in "Jets Pizza"

Out [35] False

To solve this problem, we need to ensure consistent casing across all column values
before we check for the presence of a substring. We can look for a lowercase "pizza"
in an all-lowercase Series or an uppercase "PIZZA" in an all-uppercase Series.
Let’s go with the former approach.

 The contains method checks for a substring’s inclusion in each Series value.
The method returns True when pandas finds the method’s argument within the row’s
string and False when it does not. The next example first lowercases the Name col-
umn with the lower method and then searches for "pizza" within each row:

156 CHAPTER 6 Working with text data
In [36] inspections["Name"].str.lower().str.contains("pizza").head()

Out [36] 0 False
 1 True
 2 False
 3 False
 4 False
 Name: Name, dtype: bool

We have a Boolean Series, which we can use to extract all establishments with
"Pizza" in their name:

In [37] has_pizza = inspections["Name"].str.lower().str.contains("pizza")
 inspections[has_pizza]

Out [37]

 Name Risk

1 JETS PIZZA Risk 2 (Medium)
19 NANCY'S HOME OF STUFFED PIZZA Risk 1 (High)
27 NARY'S GRILL & PIZZA ,INC. Risk 1 (High)
29 NARYS GRILL & PIZZA Risk 1 (High)
68 COLUTAS PIZZA Risk 1 (High)
 … … …
153756 ANGELO'S STUFFED PIZZA CORP Risk 1 (High)
153764 COCHIAROS PIZZA #2 Risk 1 (High)
153772 FERNANDO'S MEXICAN GRILL & PIZZA Risk 1 (High)
153788 REGGIO'S PIZZA EXPRESS Risk 1 (High)
153801 State Street Pizza Company Risk 1 (High)

3992 rows × 2 columns

Notice that pandas preserves the original letter casing of the values in Name. The
inspections DataFrame is never mutated. The lower method returns a new
Series, and the contains method we invoke on it returns another new Series,
which pandas uses to filter rows from the original DataFrame.

 What if we want to be more precise in our targeting, perhaps extracting all estab-
lishments beginning with the string "tacos"? Now we care about the position of the
substring within each string. The str.startswith method solves the problem,
returning True if a string begins with its argument:

In [38] inspections["Name"].str.lower().str.startswith("tacos").head()

Out [38] 0 False
 1 False
 2 False
 3 False
 4 False
 Name: Name, dtype: bool

In [39] starts_with_tacos = (
 inspections["Name"].str.lower().str.startswith("tacos")
)

 inspections[starts_with_tacos]

157Splitting strings
Out [39]

 Name Risk

69 TACOS NIETOS Risk 1 (High)
556 TACOS EL TIO 2 INC. Risk 1 (High)
675 TACOS DON GABINO Risk 1 (High)
958 TACOS EL TIO 2 INC. Risk 1 (High)
1036 TACOS EL TIO 2 INC. Risk 1 (High)
 … … …
143587 TACOS DE LUNA Risk 1 (High)
144026 TACOS GARCIA Risk 1 (High)
146174 Tacos Place's 1 Risk 1 (High)
147810 TACOS MARIO'S LIMITED Risk 1 (High)
151191 TACOS REYNA Risk 1 (High)

105 rows × 2 columns

The complementary str.endswith method checks for a substring at the end of each
Series string:

In [40] ends_with_tacos = (
 inspections["Name"].str.lower().str.endswith("tacos")
)

 inspections[ends_with_tacos]

Out [40]

 Name Risk

382 LAZO'S TACOS Risk 1 (High)
569 LAZO'S TACOS Risk 1 (High)
2652 FLYING TACOS Risk 3 (Low)
3250 JONY'S TACOS Risk 1 (High)
3812 PACO'S TACOS Risk 1 (High)
 … … …
151121 REYES TACOS Risk 1 (High)
151318 EL MACHO TACOS Risk 1 (High)
151801 EL MACHO TACOS Risk 1 (High)
153087 RAYMOND'S TACOS Risk 1 (High)
153504 MIS TACOS Risk 1 (High)

304 rows × 2 columns

Whether you’re looking for text at the beginning, middle, or end of a string, the
StringMethods object has a helper method to assist you.

6.5 Splitting strings
Our next data set is a collection of fictional customers. Each row includes the cus-
tomer’s Name and Address. Let’s import the customers.csv file with the read_csv
function and assign the DataFrame to a customers variable:

In [41] customers = pd.read_csv("customers.csv")
 customers.head()

Out [41]

158 CHAPTER 6 Working with text data
 Name Address

0 Frank Manning 6461 Quinn Groves, East Matthew, New Hampshire,166…
1 Elizabeth Johnson 1360 Tracey Ports Apt. 419, Kyleport, Vermont,319…
2 Donald Stephens 19120 Fleming Manors, Prestonstad, Montana, 23495
3 Michael Vincent III 441 Olivia Creek, Jimmymouth, Georgia, 82991
4 Jasmine Zamora 4246 Chelsey Ford Apt. 310, Karamouth, Utah, 76…

We can use the str.len method to return the length of each row’s string. Row 0’s
value of "Frank Manning", for example, has a length of 13 characters:

In [42] customers["Name"].str.len().head()

Out [42] 0 13
 1 17
 2 15
 3 19
 4 14
 Name: Name, dtype: int64

Suppose that we want to isolate each customer’s first and last names in two separate
columns. You may be familiar with Python’s split method, which separates a string
by using a specified delimiter. The method returns a list consisting of all the substrings
after the split. The next example splits a phone number into a list of three strings by
using a hyphen delimiter:

In [43] phone_number = "555-123-4567"
 phone_number.split("-")

Out [43] ['555', '123', '4567']

The str.split method performs the same operation on each row in a Series; its
return value is a Series of lists. We pass the delimiter to the method’s first parameter,
pat (short for pattern). The next example splits the values in Name by the presence of
a space:

In [44] # The two lines below are equivalent
 customers["Name"].str.split(pat = " ").head()
 customers["Name"].str.split(" ").head()

Out [44] 0 [Frank, Manning]
 1 [Elizabeth, Johnson]
 2 [Donald, Stephens]
 3 [Michael, Vincent, III]
 4 [Jasmine, Zamora]
 Name: Name, dtype: object

Next, let’s reinvoke the str.len method on this new Series of lists to get the length
of each list. Pandas reacts dynamically to whatever data type a Series is storing:

In [45] customers["Name"].str.split(" ").str.len().head()

Out [45] 0 2
 1 2
 2 2

159Splitting strings
 3 3
 4 2
 Name: Name, dtype: int64

We have a small issue. Due to suffixes such as "MD" and "Jr", some names have more
than two words. We can see an example at index position 3: Michael Vincent III,
which pandas splits into a list of three elements. To ensure an equal number of ele-
ments per list, we can limit the number of splits. If we set a maximum threshold of one
split, pandas will split a string at the first space and stop. Then we’ll have a Series
consisting of two-element lists. Each list will hold the customer’s first name and any-
thing that follows it.

 The next example passes an argument of 1 to the split method’s n parameter,
which sets the maximum number of splits. Take a look at how pandas deals with
"Michael Vincent III" at index 3:

In [46] customers["Name"].str.split(pat = " ", n = 1).head()

Out [46] 0 [Frank, Manning]
 1 [Elizabeth, Johnson]
 2 [Donald, Stephens]
 3 [Michael, Vincent III]
 4 [Jasmine, Zamora]
 Name: Name, dtype: object

Now all our lists have equal lengths. We can use str.get to pull out a value from each
row’s list based on its index position. We can target index 0, for example, to pull out
the first element of each list, which is the customer’s first name:

In [47] customers["Name"].str.split(pat = " ", n = 1).str.get(0).head()

Out [47] 0 Frank
 1 Elizabeth
 2 Donald
 3 Michael
 4 Jasmine
 Name: Name, dtype: object

To pull the last name from each list, we could pass the get method an index position
of 1:

In [48] customers["Name"].str.split(pat = " ", n = 1).str.get(1).head()

Out [48] 0 Manning
 1 Johnson
 2 Stephens
 3 Vincent III
 4 Zamora
 Name: Name, dtype: object

The get method also supports negative arguments. An argument of -1 extracts the
last element from each row’s list, regardless of how many elements the list holds. The

160 CHAPTER 6 Working with text data
following code produces the same result as the preceding code and is a bit more versa-
tile in scenarios in which the lists have different lengths:

In [49] customers["Name"].str.split(pat = " ", n = 1).str.get(-1).head()

Out [49] 0 Manning
 1 Johnson
 2 Stephens
 3 Vincent III
 4 Zamora
 Name: Name, dtype: object

So far, so good. We’ve used two separate get method calls to extract the first and last
names in two separate Series. Wouldn’t it be nice to perform the same logic in a sin-
gle method call? Luckily, the str.split method accepts an expand parameter, and
when we pass it an argument of True, the method returns a new DataFrame instead
of a Series of lists:

In [50] customers["Name"].str.split(
 pat = " ", n = 1, expand = True
).head()

Out [50]

 0 1

0 Frank Manning
1 Elizabeth Johnson
2 Donald Stephens
3 Michael Vincent III
4 Jasmine Zamora

We’ve got a new DataFrame! Because we did not provide custom names for the col-
umns, pandas defaulted to a numeric index on the column axis.

 Be careful in these scenarios. If we do not limit the number of splits with the n
parameter, pandas will place None values in rows that do not have sufficient elements:

In [51] customers["Name"].str.split(pat = " ", expand = True).head()

Out [51]

 0 1 2

0 Frank Manning None
1 Elizabeth Johnson None
2 Donald Stephens None
3 Michael Vincent III
4 Jasmine Zamora None

Now that we’ve isolated the customers’ names, let’s attach the new two-column Data-
Frame to the existing customers DataFrame. On the right side of an equal sign, we’ll
use the split code to create the DataFrame. On the left side of the equal sign, we’ll
provide a list of column names inside a pair of square brackets. Pandas will append
these columns to customers. The next example adds two new columns, First Name

161Splitting strings
and Last Name, and populates them with the DataFrame returned by the split
method:

In [52] customers[["First Name", "Last Name"]] = customers[
 "Name"
].str.split(pat = " ", n = 1, expand = True)

Let’s take a look at the result:

In [53] customers

Out [53]

 Name Address First Name Last Name

0 Frank Manning 6461 Quinn Groves, E… Frank Manning
1 Elizabeth Johnson 1360 Tracey Ports Ap… Elizabeth Johnson
2 Donald Stephens 19120 Fleming Manors… Donald Stephens
3 Michael Vincent III 441 Olivia Creek, Ji… Michael Vincent III
4 Jasmine Zamora 4246 Chelsey Ford Ap… Jasmine Zamora
 … … … … …
9956 Dana Browning 762 Andrew Views Apt… Dana Browning
9957 Amanda Anderson 44188 Day Crest Apt … Amanda Anderson
9958 Eric Davis 73015 Michelle Squar… Eric Davis
9959 Taylor Hernandez 129 Keith Greens, Ha… Taylor Hernandez
9960 Sherry Nicholson 355 Griffin Valley, … Sherry Nicholson

9961 rows × 4 columns

Excellent! Now that we’ve extracted the customers’ names to separate columns, we
can delete the original Name column. One way is to use the drop method on our cus-
tomers DataFrame. We’ll pass the column’s name to the labels parameter and an
argument of "columns" to the axis parameter. We need to include the axis param-
eter to tell pandas to look for the Name label in the columns instead of the rows:

In [54] customers = customers.drop(labels = "Name", axis = "columns")

Remember that mutational operations do not produce output in Jupyter Notebook.
We must print the DataFrame to see the result:

In [55] customers.head()

Out [55]

 Address First Name Last Name

0 6461 Quinn Groves, East Matthew, New Hampshire… Frank Manning
1 1360 Tracey Ports Apt. 419, Kyleport, Vermont… Elizabeth Johnson
2 19120 Fleming Manors, Prestonstad, Montana… Donald Stephens
3 441 Olivia Creek, Jimmymouth, Georgia… Michael Vincent III
4 4246 Chelsey Ford Apt. 310, Karamouth, Utah… Jasmine Zamora

There we go. The Name column is gone, and we have split its contents across two new
columns.

162 CHAPTER 6 Working with text data
6.6 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

6.6.1 Problems

Our customers data set includes an Address column. Each address consists of a street,
a city, a state, and a zip code. Your challenge is to separate these four values; assign
them to new Street, City, State, and Zip columns; and then remove the Address col-
umn. Give the problem a shot, and then review the solution.

6.6.2 Solutions

Our first step is splitting the address strings with a delimiter, using the split method.
A comma by itself seems to be a good argument:

In [56] customers["Address"].str.split(",").head()

Out [56] 0 [6461 Quinn Groves, East Matthew, New Hampsh...
 1 [1360 Tracey Ports Apt. 419, Kyleport, Vermo...
 2 [19120 Fleming Manors, Prestonstad, Montana,...
 3 [441 Olivia Creek, Jimmymouth, Georgia, 82991]
 4 [4246 Chelsey Ford Apt. 310, Karamouth, Utah...
 Name: Address, dtype: object

Unfortunately, this split keeps the spaces after the commas. We could perform addi-
tional cleanup by using a method such as strip, but a better solution is available. If
we think about it, each portion of the address is separated by a comma and a space.
Therefore, we can pass the split method a delimiter of both characters:

In [57] customers["Address"].str.split(", ").head()

Out [57] 0 [6461 Quinn Groves, East Matthew, New Hampshir...
 1 [1360 Tracey Ports Apt. 419, Kyleport, Vermont...
 2 [19120 Fleming Manors, Prestonstad, Montana, 2...
 3 [441 Olivia Creek, Jimmymouth, Georgia, 82991]
 4 [4246 Chelsey Ford Apt. 310, Karamouth, Utah, ...
 Name: Address, dtype: object

Now there is no extra whitespace at the start of each substring within the lists.
 By default, the split method returns a Series of lists. We can make the method

return a DataFrame by passing the expand parameter an argument of True:

In [58] customers["Address"].str.split(", ", expand = True).head()

Out [58]

 0 1 2 3

0 6461 Quinn Groves East Matthew New Hampshire 16656
1 1360 Tracey Ports Apt. 419 Kyleport Vermont 31924
2 19120 Fleming Manors Prestonstad Montana 23495
3 441 Olivia Creek Jimmymouth Georgia 82991
4 4246 Chelsey Ford Apt. 310 Karamouth Utah 76252

163A note on regular expressions
We have a couple more steps left. Let’s add the new four-column DataFrame to our
existing customers DataFrame. We’ll define a list with the new column names. This
time around, let’s assign the list to a variable to simplify readability. Next, we’ll pass
the list in square brackets before an equal sign. On the right side of the equal sign,
we’ll use the preceding code to create the new DataFrame:

In [59] new_cols = ["Street", "City", "State", "Zip"]

 customers[new_cols] = customers["Address"].str.split(
 pat = ", ", expand = True
)

The last step is deleting the original Address column. The drop method is a good
solution here. To alter the DataFrame permanently, make sure to overwrite custom-
ers with the returned DataFrame:

In [60] customers.drop(labels = "Address", axis = "columns").head()

Out [60]

 First Name Last Name Street City State Zip

0 Frank Manning 6461 Quin... East Matthew New Hamps... 16656
1 Elizabeth Johnson 1360 Trac... Kyleport Vermont 31924
2 Donald Stephens 19120 Fle... Prestonstad Montana 23495
3 Michael Vincent III 441 Olivi... Jimmymouth Georgia 82991
4 Jasmine Zamora 4246 Chel... Karamouth Utah 76252

Another option is to use Python’s built-in del keyword before the target column. This
syntax mutates the DataFrame:

In [61] del customers["Address"]

Let’s take a look at the final product:

In [62] customers.tail()

Out [62]

 First Name Last Name Street City State Zip

9956 Dana Browning 762 Andrew … North Paul New Mexico 28889
9957 Amanda Anderson 44188 Day C… Lake Marcia Maine 37378
9958 Eric Davis 73015 Miche… Watsonville West Virginia 03933
9959 Taylor Hernandez 129 Keith G… Haleyfurt Oklahoma 98916
9960 Sherry Nicholson 355 Griffin… Davidtown New Mexico 17581

We’ve successfully extracted the contents of the Address column to four new columns.
Congratulations on completing the coding challenge!

6.7 A note on regular expressions
Any discussion of working with text data is incomplete without mentioning regular
expressions, also known as RegEx. A regular expression is a search pattern that looks for
a sequence of characters within a string.

 We declare regular expressions with a special syntax consisting of symbols and
characters. \d, for example, matches any numeric digit between 0 and 9. With regular

164 CHAPTER 6 Working with text data
expressions, we can define complex search patterns by targeting lowercase characters,
uppercase characters, digits, slashes, whitespace, string boundaries, and more.

 Suppose that a phone number like 555-555-5555 is hidden in a larger string. We
can use regular expressions to define a search algorithm that extracts sequences of
three sequential digits, a dash, three sequential digits, another dash, and four more
sequential digits. That level of granularity grants regular expressions their power.

 Here’s a quick example that shows the syntax in action. The next code sample uses
the replace method on the Street column to swap all occurrences of four sequential
digits with an asterisk character:

In [63] customers["Street"].head()

Out [63] 0 6461 Quinn Groves
 1 1360 Tracey Ports Apt. 419
 2 19120 Fleming Manors
 3 441 Olivia Creek
 4 4246 Chelsey Ford Apt. 310
 Name: Street, dtype: object

In [64] customers["Street"].str.replace(
 "\d{4,}", "*", regex = True
).head()

Out [64] 0 * Quinn Groves
 1 * Tracey Ports Apt. 419
 2 * Fleming Manors
 3 441 Olivia Creek
 4 * Chelsey Ford Apt. 310
 Name: Street, dtype: object

Regular expressions are a highly specialized technical topic. Whole books are written
on the complexities of RegEx. For now, it’s important to note that pandas supports
RegEx arguments for most of its string methods. You can check out appendix E for a
more comprehensive introduction to the domain.

Summary
 The str attribute holds a StringMethods object with methods for performing

string manipulations on Series values.
 The strip family of methods removes whitespace from the start of a string, the

end of a string, or both sides.
 Methods such as upper, lower, capitalize, and title modify the letter cas-

ing of string characters.
 The contains method checks for the presence of a substring within another

string.
 The startswith method checks for a substring at the beginning of a string.
 The complementary endswith method checks for a substring at the end of a

string.
 The split method splits a string into a list by using a specified delimiter. We

can use it to split a DataFrame column’s text across several Series.

MultiIndex DataFrames
So far on our pandas journey, we’ve explored the one-dimensional Series and the
two-dimensional DataFrame. The number of dimensions is the number of refer-
ence points we need to extract a value from a data structure. We need only one label
or one index position to locate a value in a Series. We need two reference points
to locate a value in a DataFrame: a label/index for the rows and a label/index for
the columns. Can we expand beyond two dimensions? Absolutely! Pandas supports
data sets with any number of dimensions through the use of a MultiIndex.

 A MultiIndex is an index object that holds multiple levels. Each level stores a
value for the row. It is optimal to use a MultiIndex when a combination of values

This chapter covers
 Creating a MultiIndex

 Selecting rows and columns from a MultiIndex
DataFrame

 Extracting a cross-section from a MultiIndex
DataFrame

 Swapping MultiIndex levels
165

166 CHAPTER 7 MultiIndex DataFrames
provides the best identifier for a row of data. Consider the data set in figure 7.1, which
stores stock prices across multiple dates.

 Suppose that we want to find a unique identifier for each price. Neither a stock’s
name nor its date is sufficient by itself, but the combination of both values is a good
fit. The stock "MSFT" appears twice, the date "02/08/2021" appears twice, but the
combination of "MSFT" and "02/08/2021" appears only once. A MultiIndex stor-
ing the values of the Stock and Date columns would suit this data set well.

 A MultiIndex is also ideal for hierarchical data—data in which one column’s val-
ues are a subcategory of another column’s values. Consider the data set in figure 7.2.

The Item column’s values are subcategories of the Group column’s values. An Apple is
a type of Fruit, and Broccoli is a type of Vegetable. Thus, the Group and Item columns
could serve as a MultiIndex combo.

 The MultiIndex is an obscure feature in pandas but one that’s worth taking the
time to learn. The introduction of multiple index levels adds a lot of versatility to how
we slice and dice data sets.

7.1 The MultiIndex object
Let’s open a new Jupyter Notebook, import the pandas library, and assign it the alias pd:

In [1] import pandas as pd

To keep things simple, we’ll start by creating a MultiIndex object from scratch. In
section 7.2, we’ll practice these concepts on an imported data set.

 Do you recall Python’s built-in tuple object? The tuple is an immutable data struc-
ture that holds a sequence of values in order. A tuple is effectively a list that cannot be
modified after creation. For a deeper dive into this data structure, see appendix B.

Figure 7.1 Sample data set with Stock,
Date, and Price columns

Figure 7.2 Sample data set with Group,
Item, and Calories columns

167The MultiIndex object
 Let’s say we want to model a street address. An address typically includes a street
name, city, town, and zip code. We could store these four elements in a tuple:

In [2] address = ("8809 Flair Square", "Toddside", "IL", "37206")
 address

Out [2] ('8809 Underwood Squares', 'Toddside', 'IL', '37206')

Series and DataFrame indices can hold various data types: strings, numbers, date-
times, and more. But all these objects can store only one value per index position, one
label per row. A tuple doesn’t have that limitation.

 What if we gathered multiple tuples in a list? The list would look like this:

In [3] addresses = [
 ("8809 Flair Square", "Toddside", "IL", "37206"),
 ("9901 Austin Street", "Toddside", "IL", "37206"),
 ("905 Hogan Quarter", "Franklin", "IL", "37206"),
]

Now imagine these tuples serving as a DataFrame’s index labels. I hope that the idea
is not too confusing. All operations remain the same. We would still be able to refer-
ence a row by its index label, but each index label would be a container holding multi-
ple elements. That’s a good way to start thinking about the MultiIndex object—as an
index in which each label can store multiple pieces of data.

 We can create a MultiIndex object independently of a Series or DataFrame. The
MultiIndex class is available as a top-level attribute on the pandas library. It includes
a from_tuples class method that instantiates a MultiIndex from a list of tuples. A
class method is a method we invoke on a class rather than an instance. The next example
invokes the from_tuples class method and passes it the addresses list:

In [4] # The two lines below are equivalent
 pd.MultiIndex.from_tuples(addresses)
 pd.MultiIndex.from_tuples(tuples = addresses)

Out [4] MultiIndex([('8809 Flair Square', 'Toddside', 'IL', '37206'),
 ('9901 Austin Street', 'Toddside', 'IL', '37206'),
 ('905 Hogan Quarter', 'Franklin', 'IL', '37206')],
)

We have our first MultiIndex, which stores three tuples of four elements each. There
is a consistent pattern to each tuple’s elements:

 The first value is the address.
 The second value is the city.
 The third value is the state.
 The fourth value is the zip code.

In pandas terminology, the collection of tuple values at the same position forms a level
of the MultiIndex. In the previous example, the first MultiIndex level consists of
the values "8809 Flair Square", "9901 Austin Street", and "905 Hogan

168 CHAPTER 7 MultiIndex DataFrames
Quarter". Similarly, the second MultiIndex level consists of "Toddside",
"Toddside", and "Franklin".

 We can assign each MultiIndex level a name by passing a list to the from_tuples
method’s names parameter. Here, we assign the names "Street", "City", "State",
and "Zip":

In [5] row_index = pd.MultiIndex.from_tuples(
 tuples = addresses,
 names = ["Street", "City", "State", "Zip"]
)

 row_index

Out [5] MultiIndex([('8809 Flair Square', 'Toddside', 'IL', '37206'),
 ('9901 Austin Street', 'Toddside', 'IL', '37206'),
 ('905 Hogan Quarter', 'Franklin', 'IL', '37206')],
 names=['Street', 'City', 'State', 'Zip'])

To summarize, a MultiIndex is a storage container in which each label holds multi-
ple values. A level consists of the values at the same position across the labels.

 Now that we have a MultiIndex, let’s attach it to a DataFrame. The easiest way is
to use the DataFrame constructor’s index parameter. We passed this parameter a list
of strings in earlier chapters, but it also accepts any valid index object. Let’s pass it the
MultiIndex we assigned to the row_index variable. Because our MultiIndex has
three tuples (or, equivalently, three labels), we’ll need to provide three rows of data:

In [6] data = [
 ["A", "B+"],
 ["C+", "C"],
 ["D-", "A"],
]

 columns = ["Schools", "Cost of Living"]

 area_grades = pd.DataFrame(
 data = data, index = row_index, columns = columns
)

 area_grades

Out [6]

 Schools Cost of Living
Street City State Zip

8809 Flair Square Toddside IL 37206 A B+
9901 Austin Street Toddside IL 37206 C+ C
905 Hogan Quarter Franklin IL 37206 D- A

We have a DataFrame with a MultiIndex on its row axis. Each row’s label holds four
values: a street, a city, a state, and a zip code.

 Let’s turn our focus to the column axis. Pandas stores a DataFrame’s column
headers in an index object as well. We can access that index via the columns attribute:

169The MultiIndex object
In [7] area_grades.columns

Out [7] Index(['Schools', 'Cost of Living'], dtype='object')

Pandas currently stores the two column names in a single-level Index object. Let’s cre-
ate a second MultiIndex and attach it to the column axis. The next example invokes
the from_tuples class method again, passing it a list of four tuples. Each tuple holds
two strings:

In [8] column_index = pd.MultiIndex.from_tuples(
 [
 ("Culture", "Restaurants"),
 ("Culture", "Museums"),
 ("Services", "Police"),
 ("Services", "Schools"),
]
)

 column_index

Out [8] MultiIndex([('Culture', 'Restaurants'),
 ('Culture', 'Museums'),
 ('Services', 'Police'),
 ('Services', 'Schools')],
)

Let’s attach both of our MultiIndexes to a DataFrame. The MultiIndex for the
row axis (row_index) requires the data set to hold three rows. The MultiIndex for
the column axis (column_index) requires the data set to hold four columns. There-
fore, our data set must have a 3 x 4 shape. Let’s create that sample data. The next
example declares a list of three lists. Each nested list stores four strings:

In [9] data = [
 ["C-", "B+", "B-", "A"],
 ["D+", "C", "A", "C+"],
 ["A-", "A", "D+", "F"]
]

We’re ready to put the pieces together and create a DataFrame with a MultiIndex
on both the row and column axes. In the DataFrame constructor, let’s pass our
respective MultiIndex variables to the index and columns parameters:

In [10] pd.DataFrame(
 data = data, index = row_index, columns = column_index
)

Out [10]

 Culture Services
 Restaurants Museums Police Schools
Street City State Zip

8809 Flai... Toddside IL 37206 C- B+ B- A
9901 Aust... Toddside IL 37206 D+ C A C+
905 Hogan... Franklin IL 37206 A- A D+ F

170 CHAPTER 7 MultiIndex DataFrames
Hooray! We’ve successfully created a DataFrame with a four-level row MultiIndex
and a two-level column MultiIndex. A MultiIndex is an index that can store multi-
ple levels, multiple tiers. Each index label is made of multiple components. That’s all
there is to it.

7.2 MultiIndex DataFrames
Let’s scale things up a bit. The neighborhoods.csv data set is similar to the one we cre-
ated in section 7.1; it’s a listing of ~250 fictional addresses in cities across the United
States. Each address is graded on four characteristics of livability: Restaurants, Muse-
ums, Police, and Schools. The four grades are grouped in two parent categories: Cul-
ture and Services.

 Here’s a preview of the first couple of rows of the raw CSV file. In a CSV, a comma
separates every two subsequent values in a row of data. Thus, the presence of sequen-
tial commas with nothing between them indicates missing values:

,,,Culture,Culture,Services,Services
,,,Restaurants,Museums,Police,Schools
State,City,Street,,,,
MO,Fisherborough,244 Tracy View,C+,F,D-,A+

How will pandas import this CSV file’s data? Let’s find out with the read_csv function:

In [11] neighborhoods = pd.read_csv("neighborhoods.csv")
 neighborhoods.head()

Out [11]

 Unnamed: 0 Unnamed: 1 Unnamed: 2 Culture Culture.1 Services Services.1

0 NaN NaN NaN Restau... Museums Police Schools
1 State City Street NaN NaN NaN NaN
2 MO Fisher... 244 Tr... C+ F D- A+
3 SD Port C... 446 Cy... C- B B D+
4 WV Jimene... 432 Jo... A A+ F B

Something is off here! First, we have three Unnamed columns, each one ending in a
different number. When importing a CSV, pandas assumes that the file’s first row
holds the column names, also known as the headers. If a header slot does not have a
value, pandas assigns a title of "Unnamed" to the column. Simultaneously, the library
tries to avoid duplicate column names. To distinguish between multiple missing head-
ers, the library adds a numerical index to each. Thus, we have three Unnamed col-
umns: Unnamed: 0, Unnamed: 1, and Unnamed: 2.

 The four columns to the right have the same naming issue. Notice that pandas
assigns a title of Culture to the column at index 3 and Culture 1 to the one after it.
The CSV file has the same value of "Culture" for two header cells in a row, followed
by the same value of "Services" for two header cells in a row.

 Unfortunately, that’s not the end of our problems. In row 0, each of the first three
columns holds a NaN value. In row 1, we have NaN values present in the last four
columns. The issue is that the CSV is trying to model a multilevel row index and a

171MultiIndex DataFrames
multilevel column index, but the default arguments to the read_csv function’s
parameters don’t recognize it. Luckily, we can solve this problem by altering the argu-
ments to a couple of read_csv parameters.

 First, we have to tell pandas that the three leftmost columns should serve as the
index of the DataFrame. We can do this by passing the index_col parameter a list of
numbers, each one representing the index (or numeric position) of a column that
should be in the DataFrame’s index. The index starts counting from 0. Thus, the first
three columns (the Unnamed ones) will have index positions 0, 1, and 2. When we
pass index_col a list with multiple values, pandas automatically creates a Multi-
Index for the DataFrame:

In [12] neighborhoods = pd.read_csv(
 "neighborhoods.csv",
 index_col = [0, 1, 2]
)

 neighborhoods.head()

Out [12]
 Culture Culture.1 Services Services.1

NaN NaN NaN Restaurants Museums Police Schools
State City Street NaN NaN NaN NaN
MO Fisherbor... 244 Tracy... C+ F D- A+
SD Port Curt... 446 Cynth... C- B B D+
WV Jimenezview 432 John ... A A+ F B

We’re halfway there. Next, we need to tell pandas which data set rows we’d like to use
for our DataFrame’s headers. The read_csv function assumes that only the first row
will hold the headers. In this data set, the first two rows will hold the headers. We can
customize the DataFrame headers with the read_csv function’s header parameter,
which accepts a list of integers representing the rows that pandas should set as column
headers. If we provide a list with more than one element, pandas will assign a Multi-
Index to the columns. The next example sets the first two rows (indexes 0 and 1) as
column headers:

In [13] neighborhoods = pd.read_csv(
 "neighborhoods.csv",
 index_col = [0, 1, 2],
 header = [0, 1]
)

 neighborhoods.head()

Out [13]
 Culture Services
 Restaurants Museums Police Schools
State City Street

MO Fisherborough 244 Tracy View C+ F D- A+
SD Port Curtisv... 446 Cynthia ... C- B B D+
WV Jimenezview 432 John Common A A+ F B
AK Stevenshire 238 Andrew Rue D- A A- A-
ND New Joshuaport 877 Walter Neck D+ C- B B

172 CHAPTER 7 MultiIndex DataFrames
Now we have something we can work with!
 As mentioned earlier, the data set groups four characteristics of livability (Restau-

rants, Museums, Police, and Schools) in two categories (Culture and Services). When
we have a parent category encompassing smaller child categories, creating a Multi-
Index is an optimal way to enable quick slicing.

 Let’s invoke some familiar methods to observe how the output changes with a
MultiIndex DataFrame. The info method is a good place to start:

In [14] neighborhoods.info()

Out [14]

<class 'pandas.core.frame.DataFrame'>
MultiIndex: 251 entries, ('MO', 'Fisherborough', '244 Tracy View') to ('NE',

'South Kennethmouth', '346 Wallace Pass')
Data columns (total 4 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 (Culture, Restaurants) 251 non-null object
 1 (Culture, Museums) 251 non-null object
 2 (Services, Police) 251 non-null object
 3 (Services, Schools) 251 non-null object
dtypes: object(4)
memory use: 27.2+ KB

Notice that pandas prints each column’s name as a two-element tuple, such as (Cul-
ture, Restaurants). Similarly, the library stores each row’s label as a three-element
tuple, such as ('MO', 'Fisherborough', '244 Tracy View').

 We can access the rows’ MultiIndex object with the familiar index attribute. The
output allows us to see the tuples that hold each row’s values:

In [15] neighborhoods.index

Out [15] MultiIndex([
 ('MO', 'Fisherborough', '244 Tracy View'),
 ('SD', 'Port Curtisville', '446 Cynthia Inlet'),
 ('WV', 'Jimenezview', '432 John Common'),
 ('AK', 'Stevenshire', '238 Andrew Rue'),
 ('ND', 'New Joshuaport', '877 Walter Neck'),
 ('ID', 'Wellsville', '696 Weber Stravenue'),
 ('TN', 'Jodiburgh', '285 Justin Corners'),
 ('DC', 'Lake Christopher', '607 Montoya Harbors'),
 ('OH', 'Port Mike', '041 Michael Neck'),
 ('ND', 'Hardyburgh', '550 Gilmore Mountains'),
 ...
 ('AK', 'South Nicholasshire', '114 Jones Garden'),
 ('IA', 'Port Willieport', '320 Jennifer Mission'),
 ('ME', 'Port Linda', '692 Hill Glens'),
 ('KS', 'Kaylamouth', '483 Freeman Via'),
 ('WA', 'Port Shawnfort', '691 Winters Bridge'),
 ('MI', 'North Matthew', '055 Clayton Isle'),
 ('MT', 'Chadton', '601 Richards Road'),
 ('SC', 'Diazmouth', '385 Robin Harbors'),
 ('VA', 'Laurentown', '255 Gonzalez Land'),
 ('NE', 'South Kennethmouth', '346 Wallace Pass')],
 names=['State', 'City', 'Street'], length=251)

173MultiIndex DataFrames
We can access the columns’ MultiIndex object with the columns attribute, which
also uses tuples to store the nested column labels:

In [16] neighborhoods.columns

Out [16] MultiIndex([('Culture', 'Restaurants'),
 ('Culture', 'Museums'),
 ('Services', 'Police'),
 ('Services', 'Schools')],
)

Under its hood, pandas composes a MultiIndex from multiple Index objects. When
importing the data set, the library assigned a name to each Index from a CSV header.
We can access the list of index names with the names attribute on the MultiIndex
object. State, City, and Street are the names of the three CSV columns that became
our index:

In [17] neighborhoods.index.names

Out [17] FrozenList(['State', 'City', 'Street'])

Pandas assigns an order to each nested level within the MultiIndex. In our current
neighborhoods DataFrame,

 The State level has an index position of 0.
 The City level has an index position of 1.
 The Street level has an index position of 2.

The get_level_values method extracts the Index object at a given level of the
MultiIndex. We can pass either the level’s index position or the level’s name to the
method’s first and only parameter, level:

In [18] # The two lines below are equivalent
 neighborhoods.index.get_level_values(1)
 neighborhoods.index.get_level_values("City")

Out [18] Index(['Fisherborough', 'Port Curtisville', 'Jimenezview',
 'Stevenshire', 'New Joshuaport', 'Wellsville', 'Jodiburgh',
 'Lake Christopher', 'Port Mike', 'Hardyburgh',
 ...
 'South Nicholasshire', 'Port Willieport', 'Port Linda',
 'Kaylamouth', 'Port Shawnfort', 'North Matthew', 'Chadton',
 'Diazmouth', 'Laurentown', 'South Kennethmouth'],
 dtype='object', name='City', length=251)

The columns’ MultiIndex levels do not have any names because the CSV did not
provide any:

In [19] neighborhoods.columns.names

Out [19] FrozenList([None, None])

Let’s fix this problem. We can access the columns’ MultiIndex with the columns
attribute. Then we can assign a new list of column names to the names attribute of the

174 CHAPTER 7 MultiIndex DataFrames
MultiIndex object. The names "Category" and "Subcategory" seem to be fitting
here:

In [20] neighborhoods.columns.names = ["Category", "Subcategory"]
 neighborhoods.columns.names

Out [20] FrozenList(['Category', 'Subcategory'])

The level names will appear to the left of the column headers in the output. Let’s
invoke the head method to see the difference:

In [21] neighborhoods.head(3)

Out [21]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

MO Fisherbor... 244 Tracy... C+ F D- A+
SD Port Curt... 446 Cynth... C- B B D+
WV Jimenezview 432 John ... A A+ F B

Now that we’ve assigned names to the levels, we can use the get_level_values
method to retrieve any Index from the columns’ MultiIndex. Remember that we
can pass either the column’s index position or its name to the method:

In [22] # The two lines below are equivalent
 neighborhoods.columns.get_level_values(0)
 neighborhoods.columns.get_level_values("Category")

Out [22] Index(['Culture', 'Culture', 'Services', 'Services'],
 dtype='object', name='Category')

A MultiIndex will carry over to new objects derived from a data set. The index can
switch axes depending on the operation. Consider a DataFrame’s nunique method,
which returns a Series with a count of unique values per column. If we invoke
nunique on neighborhoods, the DataFrame’s column MultiIndex will swap axes
and serve as the row’s MultiIndex in the resulting Series:

In [23] neighborhoods.head(1)

Out [23]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AK Rowlandchester 386 Rebecca ... C- A- A+ C

In [24] neighborhoods.nunique()

Out [24] Culture Restaurants 13
 Museums 13

175Sorting a MultiIndex
 Services Police 13
 Schools 13
 dtype: int64

The MultiIndex Series tells us how many unique values pandas found in each of
the four columns. The values are equal in this case because all four columns hold the
13 possible grades (A+ to F).

7.3 Sorting a MultiIndex
Pandas can find a value in an ordered collection much quicker than in a jumbled one.
A good analogous example is searching for a word in a dictionary. It’s easier to locate
a word when words are in alphabetical order rather than a random sequence. Thus, it’s
optimal to sort an index before selecting any rows and columns from a DataFrame.

 Chapter 4 introduced the sort_index method for sorting a DataFrame. When
we invoke the method on a MultiIndex DataFrame, pandas sorts all levels in ascend-
ing order and proceeds from the outside in. In the next example, pandas sorts the
State-level values first, then the City-level values, and finally the Street-level values:

In [25] neighborhoods.sort_index()

Out [25]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AK Rowlandchester 386 Rebecca ... C- A- A+ C
 Scottstad 082 Leblanc ... D C- D B+
 114 Jones Ga... D- D- D D
 Stevenshire 238 Andrew Rue D- A A- A-
AL Clarkland 430 Douglas ... A F C+ B+
 … … … … … … …
WY Lake Nicole 754 Weaver T... B D- B D
 933 Jennifer... C A+ A- C
 Martintown 013 Bell Mills C- D A- B-
 Port Jason 624 Faulkner... A- F C+ C+
 Reneeshire 717 Patel Sq... B B+ D A

251 rows × 4 columns

Let’s make sure that we understand the output. First, pandas targets the State level
and sorts the value "AK" before "AL". Then, within the state of "AK", pandas sorts the
city of "Rowlandchester" before "Scottstad". It applies the same logic to the
final level, Street.

 The sort_values method includes an ascending parameter. We can pass the
parameter a Boolean to apply a consistent sort order to all MultiIndex levels. The
next example provides an argument of False. Pandas sorts the State values in reverse
alphabetical order, then the City values in reverse alphabetical order, and finally the
Street values in reverse alphabetical order:

176 CHAPTER 7 MultiIndex DataFrames
In [26] neighborhoods.sort_index(ascending = False).head()

Out [26]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

WY Reneeshire 717 Patel Sq... B B+ D A
 Port Jason 624 Faulkner... A- F C+ C+
 Martintown 013 Bell Mills C- D A- B-
 Lake Nicole 933 Jennifer... C A+ A- C
 754 Weaver T... B D- B D

Suppose that we want to vary the sort order for different levels. We can pass the
ascending parameter a list of Booleans. Each Boolean sets the sort order for the
next MultiIndex level, starting with the outermost one and proceeding inward. An
argument of [True, False, True], for example, will sort the State level in ascend-
ing order, the City level in descending order, and the Street level in ascending order:

In [27] neighborhoods.sort_index(ascending = [True, False, True]).head()

Out [27]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AK Stevenshire 238 Andrew Rue D- A A- A-
 Scottstad 082 Leblanc ... D C- D B+
 114 Jones Ga... D- D- D D
 Rowlandchester 386 Rebecca ... C- A- A+ C
AL Vegaside 191 Mindy Me... B+ A- A+ D+

We can also sort a MultiIndex level by itself. Let’s say we want to sort the rows by the
values in the second MultiIndex level, City. We can pass the level’s index position or
its name to the level parameter of the sort_index method. Pandas will ignore the
remaining levels when sorting:

In [28] # The two lines below are equivalent
 neighborhoods.sort_index(level = 1)
 neighborhoods.sort_index(level = "City")

Out [28]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AR Allisonland 124 Diaz Brooks C- A+ F C+
GA Amyburgh 941 Brian Ex... B B D- C+
IA Amyburgh 163 Heather ... F D A+ A-
ID Andrewshire 952 Ellis Drive C+ A- C+ A
UT Baileyfort 919 Stewart ... D+ C+ A C
 … … … … … … …
NC West Scott 348 Jack Branch A- D- A- A

177Sorting a MultiIndex
SD West Scott 139 Hardy Vista C+ A- D+ B-
IN Wilsonborough 066 Carr Road A+ C- B F
NC Wilsonshire 871 Christop... B+ B D+ F
NV Wilsonshire 542 Jessica ... A A+ C- C+

251 rows × 4 columns

The level parameter also accepts a list of levels. The next example sorts the City
level’s values first, followed by the Street level’s values. The State level’s values do not
influence the sort at all:

In [29] # The two lines below are equivalent
 neighborhoods.sort_index(level = [1, 2]).head()
 neighborhoods.sort_index(level = ["City", "Street"]).head()

Out [29]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AR Allisonland 124 Diaz Brooks C- A+ F C+
IA Amyburgh 163 Heather ... F D A+ A-
GA Amyburgh 941 Brian Ex... B B D- C+
ID Andrewshire 952 Ellis Drive C+ A- C+ A
VT Baileyfort 831 Norma Cove B D+ A+ D+

We can also combine the ascending and level parameters. Notice in the preceding
example that pandas sorted the two Street values for the city of Amyburgh ("163
Heather Neck" and "941 Brian Expressway") in alphabetical/ascending order.
The next example sorts the City level in ascending order and the Street level in
descending order, thus swapping the positions of the two Amyburgh Street values:

In [30] neighborhoods.sort_index(
 level = ["City", "Street"], ascending = [True, False]
).head()

Out [30]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AR Allisonland 124 Diaz Brooks C- A+ F C+
GA Amyburgh 941 Brian Ex... B B D- C+
IA Amyburgh 163 Heather ... F D A+ A-
ID Andrewshire 952 Ellis Drive C+ A- C+ A
UT Baileyfort 919 Stewart ... D+ C+ A C

We can sort the columns’ MultiIndex as well by supplying an axis parameter to the
sort_index method. The parameter’s default argument is 0, which represents the
row index. To sort the columns, we can pass either the number 1 or the string
"columns". In the next example, pandas sorts the Category level first and the Subcat-
egory level second. The value Culture comes before Services. Within the Culture level,

178 CHAPTER 7 MultiIndex DataFrames
the value Museums comes before Restaurants. Within Services, the value Police comes
before Schools:

In [31] # The two lines below are equivalent
 neighborhoods.sort_index(axis = 1).head(3)
 neighborhoods.sort_index(axis = "columns").head(3)

Out [31]

Category Culture Services
Subcategory Museums Restaurants Police Schools
State City Street

MO Fisherborough 244 Tracy View F C+ D- A+
SD Port Curtisv... 446 Cynthia ... B C- B D+
WV Jimenezview 432 John Common A+ A F B

We can combine the level and ascending parameters with the axis parameter to
further customize the columns’ sort orders. The next example sorts the Subcategory
level values in descending order. Pandas ignores the values in the Category level. The
reverse alphabetical order of the subcategories ("Schools", "Restaurants",
"Police", and "Museums") forces a visual breakup of the Category group. Thus, the
output prints the Services and Culture column headers multiple times:

In [32] neighborhoods.sort_index(
 axis = 1, level = "Subcategory", ascending = False
).head(3)

Out [32]

Category Services Culture Services Culture
Subcategory Schools Restaurants Police Museums
State City Street

MO Fisherborough 244 Tracy View A+ C+ D- F
SD Port Curtisv... 446 Cynthia ... D+ C- B B
WV Jimenezview 432 John Common B A F A+

In section 7.4, we’ll learn how to extract rows and columns from a MultiIndex
DataFrame with familiar accessor attributes such as loc and iloc. As mentioned ear-
lier, it’s optimal to sort our index before we look up any row. Let’s sort the Multi-
Index levels in ascending order and overwrite our neighborhoods DataFrame:

In [33] neighborhoods = neighborhoods.sort_index(ascending = True)

Here’s the result:

In [34] neighborhoods.head(3)

Out [34]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AK Rowlandchester 386 Rebecca ... C- A- A+ C
 Scottstad 082 Leblanc ... D C- D B+
 114 Jones Ga... D- D- D D

179Selecting with a MultiIndex
Looks good. We’ve sorted each level in the MultiIndex and are clear to proceed.

7.4 Selecting with a MultiIndex
Extracting DataFrame rows and columns gets tricky when multiple levels are
involved. The key question to ask before writing any code is what we want to pull out.

 Chapter 4 introduced the square-bracket syntax for selecting a column from a
DataFrame. Here’s a quick reminder. The following code creates a DataFrame with
two rows and two columns:

In [35] data = [
 [1, 2],
 [3, 4]
]

 df = pd.DataFrame(
 data = data, index = ["A", "B"], columns = ["X", "Y"]
)

 df

Out [35]

 X Y

A 1 2
B 3 4

The square-bracket syntax extracts a column from the DataFrame as a Series:

In [36] df["X"]

Out [36] A 1
 B 3
 Name: X, dtype: int64

Suppose that we want to pull out a column from neighborhoods. Each of the four col-
umns in the DataFrame requires a combination of two identifiers: a Category and a
Subcategory. What happens if we pass only one?

7.4.1 Extracting one or more columns

If we pass a single value in square brackets, pandas will look for it in the outermost
level of the columns’ MultiIndex. The following example searches for "Services",
which is a valid value in the Category level:

In [37] neighborhoods["Services"]

Out [37]

Subcategory Police Schools
State City Street

AK Rowlandchester 386 Rebecca Cove A+ C
 Scottstad 082 Leblanc Freeway D B+
 114 Jones Garden D D
 Stevenshire 238 Andrew Rue A- A-

180 CHAPTER 7 MultiIndex DataFrames
AL Clarkland 430 Douglas Mission C+ B+
 … … … … … …
WY Lake Nicole 754 Weaver Turnpike B D
 933 Jennifer Burg A- C
 Martintown 013 Bell Mills A- B-
 Port Jason 624 Faulkner Orchard C+ C+
 Reneeshire 717 Patel Square D A

251 rows × 2 columns

Notice that the new DataFrame does not have a Category level. It has a plain Index
with two values: "Police" and "Schools". There is no longer a need for a Mul-
tiIndex; the two columns in this DataFrame are the subcategories that fall under
the Services value. The Category level no longer has any variation that merits listing.

 Pandas will raise a KeyError exception if the value does not exist in the outermost
level of the columns’ MultiIndex:

In [38] neighborhoods["Schools"]

KeyError Traceback (most recent call last)

KeyError: 'Schools'

What if we want to target a specific Category and then a Subcategory within it? To
specify values across multiple levels in the column’s MultiIndex, we can pass them
inside a tuple. The next example targets the column with a value of "Services" in
the Category level and a value of "Schools" in the Subcategory level:

In [39] neighborhoods[("Services", "Schools")]

Out [39] State City Street
 AK Rowlandchester 386 Rebecca Cove C
 Scottstad 082 Leblanc Freeway B+
 114 Jones Garden D
 Stevenshire 238 Andrew Rue A-
 AL Clarkland 430 Douglas Mission B+
 ..
 WY Lake Nicole 754 Weaver Turnpike D
 933 Jennifer Burg C
 Martintown 013 Bell Mills B-
 Port Jason 624 Faulkner Orchard C+
 Reneeshire 717 Patel Square A
 Name: (Services, Schools), Length: 251, dtype: object

The method returns a Series without a column index! Once again, when we provide
a value for a MultiIndex level, we remove the need for that level to exist. We explic-
itly told pandas what values to target in the Category and Subcategory levels, so the
library removed the two levels from the column index. Because the ("Services",
"Schools") combination yielded a single column of data, pandas returned a Series
object.

181Selecting with a MultiIndex
 To extract multiple DataFrame columns, we need to pass the square brackets a list
of tuples. Each tuple should specify the level values for one column. The order of
tuples within the list sets the order of columns in the resulting DataFrame. The next
example pulls out two columns from neighborhoods:

In [40] neighborhoods[[("Services", "Schools"), ("Culture", "Museums")]]

Out [40]

Category Services Culture
Subcategory Schools Museums
State City Street

AK Rowlandchester 386 Rebecca Cove C A-
 Scottstad 082 Leblanc Freeway B+ C-
 114 Jones Garden D D-
 Stevenshire 238 Andrew Rue A- A
AL Clarkland 430 Douglas Mission B+ F
 … … … … … …
WY Lake Nicole 754 Weaver Turnpike D D-
 933 Jennifer Burg C A+
 Martintown 013 Bell Mills B- D
 Port Jason 624 Faulkner Orchard C+ F
 Reneeshire 717 Patel Square A B+

251 rows × 2 columns

Syntax tends to become confusing and error-prone when it involves multiple paren-
theses and brackets. We can simplify the preceding code by assigning the list to a vari-
able and breaking its tuples across several lines:

In [41] columns = [
 ("Services", "Schools"),
 ("Culture", "Museums")
]

 neighborhoods[columns]

Out [41]

Category Services Culture
Subcategory Schools Museums
State City Street

AK Rowlandchester 386 Rebecca Cove C A-
 Scottstad 082 Leblanc Freeway B+ C-
 114 Jones Garden D D-
 Stevenshire 238 Andrew Rue A- A
AL Clarkland 430 Douglas Mission B+ F
 … … … … … …
WY Lake Nicole 754 Weaver Turnpike D D-
 933 Jennifer Burg C A+
 Martintown 013 Bell Mills B- D
 Port Jason 624 Faulkner Orchard C+ F
 Reneeshire 717 Patel Square A B+

251 rows × 2 columns

182 CHAPTER 7 MultiIndex DataFrames
The previous two examples accomplish the same result, but this code is significantly
easier to read; its syntax clearly identifies where each tuple begins and ends.

7.4.2 Extracting one or more rows with loc

Chapter 4 introduced the loc and iloc accessors for selecting rows and columns
from a DataFrame. The loc accessor extracts by index label, and the iloc accessor
extracts by index position. Here’s a quick review, using the df DataFrame we
declared in section 7.4.1:

In [42] df

Out [42]

 X Y

A 1 2
B 3 4

The next example uses loc to select the row with an index label of "A":

In [43] df.loc["A"]

Out [43] X 1
 Y 2
 Name: A, dtype: int64

The next example uses iloc to select the row at index position 1:

In [44] df.iloc[1]

Out [44] X 3
 Y 4
 Name: B, dtype: int64

We can use the loc and iloc accessors to pull rows from a MultiIndex DataFrame.
Let’s start slow and work our way up.

 The neighborhoods DataFrame’s MultiIndex has three levels: State, City, and
Address. If we know the values to target in each level, we can pass them in a tuple
within the square brackets. When we provide a value for a level, we remove the need
for the level to exist in the result. The next example provides "TX" for the State level,
"Kingchester" for the City level, and "534 Gordon Falls" for the Address level.
Pandas returns a Series object with an index constructed from the column headers
in neighborhoods:

In [45] neighborhoods.loc[("TX", "Kingchester", "534 Gordon Falls")]

Out [45] Category Subcategory
 Culture Restaurants C
 Museums D+
 Services Police B
 Schools B
 Name: (TX, Kingchester, 534 Gordon Falls), dtype: object

183Selecting with a MultiIndex
If we pass a single label in the square brackets, pandas looks for it in the outermost
MultiIndex level. The next example selects the rows with a State value of "CA". State
is the first level of the rows’ MultiIndex:

In [46] neighborhoods.loc["CA"]

Out [46]

Category Culture Services
Subcategory Restaurants Museums Police Schools
City Street

Dustinmouth 793 Cynthia ... A- A+ C- A
North Jennifer 303 Alisha Road D- C+ C+ A+
Ryanfort 934 David Run F B+ F D-

Pandas returns a DataFrame with a two-level MultiIndex. Notice that the State level
is not present. There is no longer a need for it because all three rows belong to that
level; there is no longer any variation to display.

 Usually, the second argument to the square brackets denotes the column(s) we’d
like to extract, but we can also provide the value to look for in the next MultiIndex
level. The next example targets rows with a State value of "CA" and a City value of
"Dustinmouth". Once again, pandas returns a DataFrame with one fewer level.
Because only one level is left, pandas falls back to a plain Index object to store the
row labels from the Street level:

In [47] neighborhoods.loc["CA", "Dustinmouth"]

Out [47]

Category Culture Services
Subcategory Restaurants Museums Police Schools
Street

793 Cynthia Square A- A+ C- A

We can still use the second argument to loc to declare the column(s) to extract. The
next example extracts rows with a State value of "CA" in the row MultiIndex and a
Category value of "Culture" in the column MultiIndex:

In [48] neighborhoods.loc["CA", "Culture"]

Out [48]

Subcategory Restaurants Museums
City Street

Dustinmouth 793 Cynthia Square A- A+
North Jennifer 303 Alisha Road D- C+
Ryanfort 934 David Run F B+

The syntax in the previous two examples is not ideal because of its ambiguity. The sec-
ond argument to loc can represent either a value from the second level of the rows’
MultiIndex or a value from the first level of the columns’ MultiIndex.

184 CHAPTER 7 MultiIndex DataFrames
 The pandas documentation1 recommends the following indexing strategy to avoid
uncertainty. Use the first argument to loc for row index labels and the second argu-
ment for column index labels. Wrap all arguments for a given index inside a tuple.
Following this standard, we should place our row levels’ values inside a tuple and our
column levels’ values inside a tuple as well. The recommended way to access rows with
a State value of "CA" and a City value of "Dustinmouth" looks like this:

In [49] neighborhoods.loc[("CA", "Dustinmouth")]

Out [49]

Category Culture Services
Subcategory Restaurants Museums Police Schools
Street

793 Cynthia Square A- A+ C- A

This syntax is more straightforward and more consistent; it allows loc’s second argu-
ment to always represent the columns’ index labels to target. The next example pulls
out the Services columns for the same state of "CA" and city of "Dustinmouth". We
pass "Services" inside a tuple. A one-element tuple requires a comma for Python to
recognize it as a tuple:

In [50] neighborhoods.loc[("CA", "Dustinmouth"), ("Services",)]

Out [50]

Subcategory Police Schools
Street

793 Cynthia Square C- A

Here’s another helpful hint: pandas distinguishes between list and tuple arguments to
accessors. Use a list to store multiple keys. Use a tuple to store the components of one
multilevel key.

 We can pass a tuple as the second argument to loc to provide values for levels in
the columns’ MultiIndex. The next example targets

 "CA" and "Dustinmouth" in the rows’ MultiIndex levels
 "Services" and "Schools" in the columns’ MultiIndex levels

The placement of "Services" and "Schools" in a single tuple tells pandas to view
them as components that make up a single label. "Services" is the value for the Cat-
egory level, and "Schools" is the value for the Subcategory level:

In [51] neighborhoods.loc[("CA", "Dustinmouth"), ("Services", "Schools")]

Out [51] Street
 793 Cynthia Square A
 Name: (Services, Schools), dtype: object

1 See “Advanced indexing with hierarchical index,” http://mng.bz/5WJO.

http://mng.bz/5WJO

185Selecting with a MultiIndex
What about selecting sequential rows? We can use Python’s list-slicing syntax. We place
a colon between our starting point and our ending point. The next code sample pulls
all consecutive rows with a State value between "NE" and "NH". In pandas slicing, the
endpoint (the value after the colon) is inclusive:

In [52] neighborhoods["NE":"NH"]

Out [52]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

NE Barryborough 460 Anna Tunnel A+ A+ B A
 Shawnchester 802 Cook Cliff D- D+ D A
 South Kennet... 346 Wallace ... C- B- A A-
 South Nathan 821 Jake Fork C+ D D+ A
NH Courtneyfort 697 Spencer ... A+ A+ C+ A+
 East Deborah... 271 Ryan Mount B C D+ B-
 Ingramton 430 Calvin U... C+ D+ C C-
 North Latoya 603 Clark Mount D- A- B+ B-
 South Tara 559 Michael ... C- C- F B

We can combine list-slicing syntax with tuple arguments. The next example extracts
all rows that

 Start from a value of "NE" in the State level and "Shawnchester" in the City level
 End with a value of "NH" in the State level and "North Latoya" in the City level

In [53] neighborhoods.loc[("NE", "Shawnchester"):("NH", "North Latoya")]

Out [53]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

NE Shawnchester 802 Cook Cliff D- D+ D A
 South Kennet... 346 Wallace ... C- B- A A-
 South Nathan 821 Jake Fork C+ D D+ A
NH Courtneyfort 697 Spencer ... A+ A+ C+ A+
 East Deborah... 271 Ryan Mount B C D+ B-
 Ingramton 430 Calvin U... C+ D+ C C-
 North Latoya 603 Clark Mount D- A- B+ B-

Be careful with this syntax; a single missing parenthesis or comma can raise an excep-
tion. We can simplify the code by assigning the tuples to descriptive variables and
breaking the extraction into smaller pieces. The next example returns the same result
set but is significantly easier to read:

In [54] start = ("NE", "Shawnchester")
 end = ("NH", "North Latoya")
 neighborhoods.loc[start:end]

Out [54]

186 CHAPTER 7 MultiIndex DataFrames
Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

NE Shawnchester 802 Cook Cliff D- D+ D A
 South Kennet... 346 Wallace ... C- B- A A-
 South Nathan 821 Jake Fork C+ D D+ A
NH Courtneyfort 697 Spencer ... A+ A+ C+ A+
 East Deborah... 271 Ryan Mount B C D+ B-
 Ingramton 430 Calvin U... C+ D+ C C-
 North Latoya 603 Clark Mount D- A- B+ B-

We do not have to provide each tuple values for each level. The next example does
not include a City-level value for the second tuple:

In [55] neighborhoods.loc[("NE", "Shawnchester"):("NH")]

Out [55]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

NE Shawnchester 802 Cook Cliff D- D+ D A
 South Kennet... 346 Wallace ... C- B- A A-
 South Nathan 821 Jake Fork C+ D D+ A
NH Courtneyfort 697 Spencer ... A+ A+ C+ A+
 East Deborah... 271 Ryan Mount B C D+ B-
 Ingramton 430 Calvin U... C+ D+ C C-
 North Latoya 603 Clark Mount D- A- B+ B-
 South Tara 559 Michael ... C- C- F B

Pandas pulls rows starting from ("NE", "Shawnchester") until it reaches the end
of all rows with a State value of "NH".

7.4.3 Extracting one or more rows with iloc

The iloc accessor extracts rows and columns by index position. The following exam-
ples should be a refresher on concepts covered in chapter 4. We can pass an index
position to iloc to extract a single row:

In [56] neighborhoods.iloc[25]

Out [56] Category Subcategory
 Culture Restaurants A+
 Museums A
 Services Police A+
 Schools C+
 Name: (CT, East Jessicaland, 208 Todd Knolls), dtype: object

We can pass two arguments to iloc to represent the row and column indices. The next
example targets the row with index position 25 and the column with index position 2:

In [57] neighborhoods.iloc[25, 2]

Out [57] 'A+'

187Selecting with a MultiIndex
We can pull out multiple rows by wrapping their index positions in a list:

In [58] neighborhoods.iloc[[25, 30]]

Out [58]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

CT East Jessica... 208 Todd Knolls A+ A A+ C+
DC East Lisaview 910 Sandy Ramp A- A+ B B

There’s a big difference between loc and iloc when it comes to slicing. When we’re
index slicing with iloc, the endpoint is exclusive. In the preceding example, the
record with a street of "910 Sandy Ramp" has index position 30. When we provide 30
as the iloc endpoint in the next example, pandas pulls up to that index but does not
include it:

In [59] neighborhoods.iloc[25:30]

Out [59]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

CT East Jessica... 208 Todd Knolls A+ A A+ C+
 New Adrianhaven 048 Brian Cove A- C+ A+ D-
 Port Mike 410 Keith Lodge D- A B+ D
 Sethstad 139 Bailey G... C C- C+ A+
DC East Jessica 149 Norman C... A- C- C+ A-

Column slicing follows the same principles. The next example pulls the columns from
index positions 1 to 3 (exclusive):

In [60] neighborhoods.iloc[25:30, 1:3]

Out [60]

Category Culture Services
Subcategory Museums Police
State City Street

CT East Jessica... 208 Todd Knolls A A+
 New Adrianhaven 048 Brian Cove C+ A+
 Port Mike 410 Keith Lodge A B+
 Sethstad 139 Bailey G... C- C+
DC East Jessica 149 Norman C... C- C+

Pandas also permits negative slices. The next example pulls rows starting from the
fourth-to-last row and the columns starting from the second-to-last column:

In [61] neighborhoods.iloc[-4:, -2:]

Out [61]

188 CHAPTER 7 MultiIndex DataFrames
Category Services
Subcategory Police Schools
State City Street

WY Lake Nicole 933 Jennifer... A- C
 Martintown 013 Bell Mills A- B-
 Port Jason 624 Faulkner... C+ C+
 Reneeshire 717 Patel Sq... D A

Pandas assigns each DataFrame row an index position, not each value in a given
index level. Thus, we cannot index across consecutive MultiIndex levels with iloc.
This limitation is an intentional design decision by the pandas development team. As
developer Jeff Reback states, iloc serves as a “strict positional indexer” that “does not
regard the structure [of the DataFrame] at all.”2

7.5 Cross-sections
The xs method allows us to extract rows by providing a value for one MultiIndex
level. We pass the method a key parameter with the value to look for. We pass the
level parameter either the numeric position or the name of the index level in which
to look for the value. For example, let’s say we wanted to find all addresses in a city of
Lake Nicole, regardless of the state or street. City is the second level in the Multi-
Index; it has an index position of 1 in the level hierarchy:

In [62] # The two lines below are equivalent
 neighborhoods.xs(key = "Lake Nicole", level = 1)
 neighborhoods.xs(key = "Lake Nicole", level = "City")

Out [62]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State Street

OR 650 Angela Track D C- D F
WY 754 Weaver Turnpike B D- B D
 933 Jennifer Burg C A+ A- C

There are three addresses in a city of "Lake Nicole" across two states. Notice that
pandas removes the City level from the new DataFrame’s MultiIndex. The City
value is fixed ("Lake Nicole"), so there is no need for pandas to include it.

 We can apply the same extraction techniques to columns by passing the axis
parameter an argument of "columns". The next example selects the columns with a
key of "Museums" in the Subcategory level of the column MultiIndex. Only one col-
umn fits that description:

In [63] neighborhoods.xs(
 axis = "columns", key = "Museums", level = "Subcategory"
).head()

Out [63]

2 See Jeff Reback, “Inconsistent behavior of loc and iloc for MultiIndex,” https://github.com/pandas-dev/
pandas/issues/15228.

https://github.com/pandas-dev/pandas/issues/15228
https://github.com/pandas-dev/pandas/issues/15228

189Manipulating the Index
Category Culture
State City Street

AK Rowlandchester 386 Rebecca Cove A-
 Scottstad 082 Leblanc Freeway C-
 114 Jones Garden D-
 Stevenshire 238 Andrew Rue A
AL Clarkland 430 Douglas Mission F

Notice that the Subcategory level is not present in the returned DataFrame, but the
Category level is still present. Pandas includes it because there is still potential for vari-
ation (such as multiple values) in the Category level. When we pull out values from an
intermediate level, they can belong to multiple top-level labels.

 We can also provide the xs method with keys across nonconsecutive MultiIndex
levels. We pass them in a tuple. Suppose that we want the rows with a Street value of
"238 Andrew Rue" and a State of "AK", irrespective of the City value. That’s not a
problem with xs:

In [64] # The two lines below are equivalent
 neighborhoods.xs(
 key = ("AK", "238 Andrew Rue"), level = ["State", "Street"]
)

 neighborhoods.xs(
 key = ("AK", "238 Andrew Rue"), level = [0, 2]
)

Out [64]

Category Culture Services
Subcategory Restaurants Museums Police Schools
City

Stevenshire D- A A- A-

The ability to target values in only one level is a powerful feature of MultiIndexes.

7.6 Manipulating the Index
At the start of the chapter, we contorted our neighborhoods data set into its current
shape by altering the parameters to the read_csv function. Pandas also allows us to
manipulate the index on an existing DataFrame. Let’s take a look.

7.6.1 Resetting the index

The neighborhoods DataFrame currently has State as its outermost MultiIndex
level, followed by City and Street:

In [65] neighborhoods.head()

Out [65]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City Street

AK Rowlandchester 386 Rebecca Cove C- A- A+ C
 Scottstad 082 Leblanc Fr... D C- D B+
 114 Jones Garden D- D- D D

190 CHAPTER 7 MultiIndex DataFrames
 Stevenshire 238 Andrew Rue D- A A- A-
AL Clarkland 430 Douglas Mi... A F C+ B+

The reorder_levels method arranges the MultiIndex levels in a specified order.
We pass its order parameter a list of levels in a desired order. The next example swaps
the positions of the City and State levels:

In [66] new_order = ["City", "State", "Street"]
 neighborhoods.reorder_levels(order = new_order).head()

Out [66]

Category Culture Services
Subcategory Restaurants Museums Police Schools
City State Street

Rowlandchester AK 386 Rebecca ... C- A- A+ C
Scottstad AK 082 Leblanc ... D C- D B+
 114 Jones Ga... D- D- D D
Stevenshire AK 238 Andrew Rue D- A A- A-
Clarkland AL 430 Douglas ... A F C+ B+

We can also pass the order parameter a list of integers. The numbers must represent
the current index positions of the MultiIndex levels. If we want State to be the first
level in the new MultiIndex, for example, we have to start the list with 1—the State
level’s index position in the current MultiIndex. The next code sample returns the
same result as the preceding one:

In [67] neighborhoods.reorder_levels(order = [1, 0, 2]).head()

Out [67]

Category Culture Services
Subcategory Restaurants Museums Police Schools
City State Street

Rowlandchester AK 386 Rebecca ... C- A- A+ C
Scottstad AK 082 Leblanc ... D C- D B+
 114 Jones Ga... D- D- D D
Stevenshire AK 238 Andrew Rue D- A A- A-
Clarkland AL 430 Douglas ... A F C+ B+

What if we want to get rid of the index? Perhaps we want to set a different combina-
tion of columns as the index labels. The reset_index method returns a new Data-
Frame that integrates the former MultiIndex levels as columns. Pandas replaces the
former MultiIndex with its standard numeric one:

In [68] neighborhoods.reset_index().tail()

Out [68]

Category State City Street Culture Services
Subcategory Restaurants Museums Police Schools

246 WY Lake... 754 ... B D- B D
247 WY Lake... 933 ... C A+ A- C
248 WY Mart... 013 ... C- D A- B-

191Manipulating the Index
249 WY Port... 624 ... A- F C+ C+
250 WY Rene... 717 ... B B+ D A

Notice that the three new columns (State, City, and Street) become values in Cate-
gory, the outermost level of the columns’ MultiIndex. To ensure consistency among
columns (making each one a tuple of two values), pandas assigns the three new col-
umns a Subcategory value of an empty string.

 We can add the three columns to an alternate MultiIndex level. Pass the desired
level’s index position or name to the reset_index method’s col_level parameter.
The next example integrates the State, City, and Street columns into the Subcategory
level of the columns’ MultiIndex:

In [69] # The two lines below are equivalent
 neighborhoods.reset_index(col_level = 1).tail()
 neighborhoods.reset_index(col_level = "Subcategory").tail()

Out [69]

Category Culture Services
Subcategory State City Street Restaurants Museums Police Schools

246 WY Lake... 754 ... B D- B D
247 WY Lake... 933 ... C A+ A- C
248 WY Mart... 013 ... C- D A- B-
249 WY Port... 624 ... A- F C+ C+
250 WY Rene... 717 ... B B+ D A

Now pandas will default to an empty string for Category, the parent level that holds
the Subcategory level under which State, City, and Street fall. We can replace the
empty string with a value of our choice by passing an argument to the col_fill
parameter. In the next example, we group the three new columns under an Address
parent level. Now the outer Category level holds the three distinct values Address, Cul-
ture, and Services:

In [70] neighborhoods.reset_index(
 col_fill = "Address", col_level = "Subcategory"
).tail()

Out [70]

Category Address Culture Services
Subcategory State City Street Restaurants Museums Police Schools

246 WY Lake... 754 ... B D- B D
247 WY Lake... 933 ... C A+ A- C
248 WY Mart... 013 ... C- D A- B-
249 WY Port... 624 ... A- F C+ C+
250 WY Rene... 717 ... B B+ D A

The standard invocation of reset_index transforms all index levels into regular col-
umns. We can also move a single index level by passing its name to the levels param-
eter. The next example moves the Street level from the MultiIndex to a regular
DataFrame column:

192 CHAPTER 7 MultiIndex DataFrames
In [71] neighborhoods.reset_index(level = "Street").tail()

Out [71]

Category Street Culture Services
Subcategory Restaurants Museums Police Schools
State City

WY Lake Nicole 754 Weaver Tur... B D- B D
 Lake Nicole 933 Jennifer Burg C A+ A- C
 Martintown 013 Bell Mills C- D A- B-
 Port Jason 624 Faulkner O... A- F C+ C+
 Reneeshire 717 Patel Square B B+ D A

We can move multiple index levels by passing them in a list:

In [72] neighborhoods.reset_index(level = ["Street", "City"]).tail()

Out [72]

Category City Street Culture Services
Subcategory Restaurants Museums Police Schools
State

WY Lake Nicole 754 Weav... B D- B D
WY Lake Nicole 933 Jenn... C A+ A- C
WY Martintown 013 Bell... C- D A- B-
WY Port Jason 624 Faul... A- F C+ C+
WY Reneeshire 717 Pate... B B+ D A

What about removing a level from the MultiIndex? If we pass the reset_index
method’s drop parameter a value of True, pandas will delete the specified level
instead of adding it to the columns. The next reset_index example removes the
Street level:

In [73] neighborhoods.reset_index(level = "Street", drop = True).tail()

Out [73]

Category Culture Services
Subcategory Restaurants Museums Police Schools
State City

WY Lake Nicole B D- B D
 Lake Nicole C A+ A- C
 Martintown C- D A- B-
 Port Jason A- F C+ C+
 Reneeshire B B+ D A

To set ourselves up for section 7.6.2, let’s make our index reset permanent by overwrit-
ing the neighborhoods variable with the new DataFrame. This operation moves all
three index levels to columns in the DataFrame:

In [74] neighborhoods = neighborhoods.reset_index()

193Manipulating the Index
Now we have seven columns in neighborhoods with a MultiIndex on only the col-
umn axis.

7.6.2 Setting the index

Let’s check in on our DataFrame to jog our memory:

In [75] neighborhoods.head(3)

Out [75]

Category State City Street Culture Services
Subcategory Restaurants Museums Police Schools

0 AK Rowl... 386 ... C- A- A+ C
1 AK Scot... 082 ... D C- D B+
2 AK Scot... 114 ... D- D- D D

The set_index method sets one or more DataFrame columns as the new index. We
can pass the column(s) to use to its keys parameter:

In [76] neighborhoods.set_index(keys = "City").head()

Out [76]

Category State Street Culture Services
Subcategory Restaurants Museums Police Schools
City

Rowlandchester AK 386 Rebecca... C- A- A+ C
Scottstad AK 082 Leblanc... D C- D B+
Scottstad AK 114 Jones G... D- D- D D
Stevenshire AK 238 Andrew Rue D- A A- A-
Clarkland AL 430 Douglas... A F C+ B+

What if we want one of the last four columns to serve as the index?. The next example
passes the keys parameter a tuple with the values to target at each MultiIndex level:

In [77] neighborhoods.set_index(keys = ("Culture", "Museums")).head()

Out [77]

Category State City Street Culture Services
Subcategory Restaurants Police Schools
(Cultur...

A- AK Rowlan... 386 Re... C- A+ C
C- AK Scottstad 082 Le... D D B+
D- AK Scottstad 114 Jo... D- D D
A AK Steven... 238 An... D- A- A-
F AL Clarkland 430 Do... A C+ B+

To create a MultiIndex on the row axis, we can pass a list with multiple columns to
the keys parameter:

In [78] neighborhoods.set_index(keys = ["State", "City"]).head()

Out [78]

194 CHAPTER 7 MultiIndex DataFrames
Category Street Culture Services
Subcategory Restaurants Museums Police Schools
State City

AK Rowlandchester 386 Rebecca... C- A- A+ C
 Scottstad 082 Leblanc... D C- D B+
 Scottstad 114 Jones G... D- D- D D
 Stevenshire 238 Andrew Rue D- A A- A-
AL Clarkland 430 Douglas... A F C+ B+

As we’ve seen frequently in pandas, there are many permutations and combinations
for shaping a data set for analysis. When defining a DataFrame’s indices, ask yourself
which values matter most to your current problem. What is the key piece of
information? Are several pieces of data intrinsically tied together? Which data points
would you like to store as rows versus columns? Do rows or columns comprise a
group or category? For many of these problems, a MultiIndex can provide an effec-
tive solution for storing your data.

7.7 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

7.7.1 Problems

The investments.csv data set holds more than 27,000 records of startup investments
gathered from the website Crunchbase. Each startup has a Name, a Market, a Status, a
State of operation, and a number of Funding Rounds:

In [79] investments = pd.read_csv("investments.csv")
 investments.head()

Out [79]

 Name Market Status State Funding Rounds

0 #waywire News Acquired NY 1
1 &TV Communications Games Operating CA 2
2 -R- Ranch and Mine Tourism Operating TX 2
3 004 Technologies Software Operating IL 1
4 1-4 All Software Operating NC 1

Let’s add a MultiIndex to this DataFrame. We can begin by identifying the number
of unique values in each column with the nunique method. Columns with a small
number of unique items usually represent categorical data and are good candidates
for index levels:

In [80] investments.nunique()

Out [80] Name 27763
 Market 693
 Status 3
 State 61
 Funding Rounds 16
 dtype: int64

195Coding challenge
Let’s create a three-level MultiIndex with the Status, Funding Rounds, and State col-
umns. We’ll order the columns so that the ones with the smallest number of values
come first. The fewer unique values in a level, the quicker pandas can extract its rows.
We’ll also sort the DataFrame index to accelerate lookup time:

In [81] investments = investments.set_index(
 keys = ["Status", "Funding Rounds", "State"]
).sort_index()

Here’s what investments currently looks like:

In [82] investments.head()

Out [82]
 Name Market
Status Funding Rounds State

Acquired 1 AB Hallpass Media Games
 AL EnteGreat Enterprise Soft...
 AL Onward Behaviora... Biotechnology
 AL Proxsys Biotechnology
 AZ Envox Group Public Relations

Here are the challenges for this section:

1 Extract all rows with a Status of "Closed".
2 Extract all rows with a Status of "Acquired" and 10 funding rounds.
3 Extract all rows with a Status of "Operating", six funding rounds, and a State

of "NJ".
4 Extract all rows with a Status of "Closed" and eight funding rounds. Pull out

only the Name column.
5 Extract all rows with a State of "NJ", irrespective of the values in the Status and

Funding Rounds levels.
6 Reincorporate the MultiIndex levels back into the DataFrame as columns.

7.7.2 Solutions

Let’s tackle the problems one by one:

1 To extract all rows with a Status of "Closed", we can use the loc accessor. We’ll
pass a tuple with a single value of "Closed". Remember that a one-element
tuple requires a comma:

In [83] investments.loc[("Closed",)].head()

Out [83]

 Name Market
Funding Rounds State

1 AB Cardinal Media Technologies Social Network Media
 AB Easy Bill Online Tracking
 AB Globel Direct Public Relations
 AB Ph03nix New Media Games
 AL Naubo News

196 CHAPTER 7 MultiIndex DataFrames
2 Next, we need to pull out rows that fit two conditions: a Status value of
"Acquired" and a Funding Rounds value of 10. These are sequential levels in
the MultiIndex. We can pass a tuple with the proper values to the loc accessor:

In [84] investments.loc[("Acquired", 10)]

Out [84]

 Name Market
State

NY Genesis Networks Web Hosting
TX ACTIVE Network Software

3 We can use the same solution that we used for the preceding two problems.
This time around, we need to provide a tuple of three values, one for each Mul-
tiIndex level:

In [85] investments.loc[("Operating", 6, "NJ")]

Out [85]

 Name Market
Status Funding Rounds State

Operating 6 NJ Agile Therapeutics Biotechnology
 NJ Agilence Retail Technology
 NJ Edge Therapeutics Biotechnology
 NJ Nistica Web Hosting

4 To extract DataFrame columns, we can pass a second argument to the loc
accessor. For this problem, we’ll pass a one-element tuple with the Name col-
umn. The first argument still holds the values for the Status and Funding
Rounds levels:

In [86] investments.loc[("Closed", 8), ("Name",)]

Out [86]

 Name
State

CA CipherMax
CA Dilithium Networks
CA Moblyng
CA SolFocus
CA Solyndra
FL Extreme Enterprises
GA MedShape
NC Biolex Therapeutics
WA Cozi Group

5 The next challenge asks us to extract rows with a value of "NJ" in the State
level. We can use the xs method, passing either the level’s index position or the
level’s name to the level parameter:

197Summary
In [87] # The two lines below are equivalent
 investments.xs(key = "NJ", level = 2).head()
 investments.xs(key = "NJ", level = "State").head()

Out [87]

 Name Market
Status Funding Rounds

Acquired 1 AkaRx Biotechnology
 1 Aptalis Pharma Biotechnology
 1 Cadent Software
 1 Cancer Genetics Health And Wellness
 1 Clacendix E-Commerce

6 Finally, we want to add the MultiIndex levels back to the DataFrame as col-
umns. We’ll invoke the reset_index method to reincorporate the index levels
and overwrite the investments DataFrame to make the change permanent:

In [88] investments = investments.reset_index()
 investments.head()

Out [88]

 Status Funding Rounds State Name Market

0 Acquired 1 AB Hallpass Media Games
1 Acquired 1 AL EnteGreat Enterprise Software
2 Acquired 1 AL Onward Behaviora... Biotechnology
3 Acquired 1 AL Proxsys Biotechnology
4 Acquired 1 AZ Envox Group Public Relations

Congratulations on completing the coding challenge!

Summary
 A MultiIndex is an index made of multiple levels.
 A MultiIndex uses tuples of values to store its labels.
 A DataFrame can store a MultiIndex on both its row and column axis.
 The sort_index method sorts MultiIndex levels. Pandas can sort index lev-

els individually or as a group.
 The label-based loc and the position-based iloc accessors require additional

arguments to extract the proper combination of rows and columns.
 Pass tuples to the loc and iloc accessors to avoid ambiguity.
 The reset_index method integrates index levels as DataFrame columns.
 Pass the set_index method a list of columns to build a MultiIndex from

existing DataFrame columns.

Reshaping and pivoting
A data set can arrive in a format unsuited for the analysis that we’d like to perform
on it. Sometimes, issues are confined to a specific column, row, or cell. A column
may have the wrong data type, a row may have missing values, or a cell may have
incorrect character casing. At other times, a data set may have larger structural
problems that extend beyond the data. Perhaps the data set stores its values in a for-
mat that makes it easy to extract a single row but difficult to aggregate the data.

 Reshaping a data set means manipulating it into a different shape, one that tells
a story that could not be gleaned from its original presentation. Reshaping offers a

This chapter covers
 Comparing wide and narrow data

 Generating a pivot table from a DataFrame

 Aggregating values by sum, average, count, and
more

 Stacking and unstacking DataFrame index
levels

 Melting a DataFrame
198

199Wide vs. narrow data
new view or perspective on the data. This skill is critical; one study estimates that 80%
of data analysis consists of cleaning up data and contorting it into the proper shape.1

 In this chapter, we’ll explore new pandas techniques for molding data sets into the
shapes we desire. First, we’ll look at how to summarize a larger data set in a concise
pivot table. Then we’ll proceed in the opposite direction, learning how to split an
aggregated data set. By the end, you’ll be a master of contorting data into whatever
presentation best fits your analysis.

8.1 Wide vs. narrow data
Before we dive into more methods, let’s talk briefly about data set structure. A data set
can store its values in wide or narrow format. A narrow data set is also called a long or a
tall data set. These names reflect the direction in which the data set expands as we add
more values to it. A wide data set increases in width; it grows out. A narrow/long/tall
data set increases in height; it grows down.

 Take a peek at the following table, which measures temperatures in two cities over
two days:

 Weekday Miami New York

0 Monday 100 65
1 Tuesday 105 70

Consider the variables, the measurements that vary. One might think that the only vari-
ables in this data set are the weekdays and the temperatures. But an additional vari-
able is hiding in the column names: the city. This data set stores the same variable—
temperature—across two columns instead of one. The Miami and New York headers
do not describe the data their columns store—that is, 100 is not a type of Miami in
the same way that Monday is a type of Weekday. The data set has hidden the varying
cities variable by storing it in the column headers. We can categorize this table as
being a wide data set. A wide data set expands horizontally.

 Suppose that we introduced temperature measurements for two more cities. We
would have to add two new columns for the same variable: the temperature. Notice
the direction in which the data set expands. The data grows wider, not taller:

 Weekday Miami New York Chicago San Francisco

0 Monday 100 65 50 60
1 Tuesday 105 70 58 62

Is horizontal expansion a bad thing? Not necessarily. A wide data set is ideal for seeing
the aggregate picture—the complete story. If what we care about is the temperatures
on Monday and Tuesday, the data set is easy to read and understand. But the wide for-
mat has its share of disadvantages too. The data set becomes more difficult to work
with as we add more columns. Suppose that we wrote code to calculate the average
temperature across all days. Now the temperatures are stored across four columns. If

1 See Hadley Wickham, “Tidy Data,” Journal of Statistical Software, https://vita.had.co.nz/papers/tidy-data.pdf.

https://vita.had.co.nz/papers/tidy-data.pdf

200 CHAPTER 8 Reshaping and pivoting
we added another city column, we’d have to alter our calculation logic to include it.
The design is less flexible.

 A narrow data set grows vertically. A narrow format makes it easier to manipulate
existing data and to add new records. Each variable is isolated to a single column.
Compare the first table in this section with the following table:

 Weekday City Temperature

0 Monday Miami 100
1 Monday New York 65
2 Tuesday Miami 105
3 Tuesday New York 70

To include temperatures for two more cities, we would add rows instead of columns.
The data grows taller, not wider:

 Weekday City Temperature

0 Monday Miami 100
1 Monday New York 65
2 Monday Chicago 50
3 Monday San Francisco 60
4 Tuesday Miami 105
5 Tuesday New York 70
6 Tuesday Chicago 58
7 Tuesday San Francisco 62

Is it easier to locate the temperatures for cities on Monday? I would argue no because
now the data is scattered across four rows. But it is easier to calculate the average tem-
perature because we have isolated the temperature values to a single column. As we
add more rows, the average calculation logic remains the same.

 The optimal storage format for a data set depends on the insight we’re trying to
glean from it. Pandas offers tools to transform DataFrames from narrow formats to
wide formats and vice versa. We’ll learn how to apply both transformations through-
out the rest of the chapter.

8.2 Creating a pivot table from a DataFrame
Our first data set, sales_by_employee.csv, is a list of business deals at a fictional com-
pany. Each row includes the sale’s Date, the salesman’s Name, the Customer, and the
Revenue and Expenses from the deal:

In [1] import pandas as pd

In [2] pd.read_csv("sales_by_employee.csv").head()

Out [2]

 Date Name Customer Revenue Expenses

0 1/1/20 Oscar Logistics XYZ 5250 531
1 1/1/20 Oscar Money Corp. 4406 661
2 1/2/20 Oscar PaperMaven 8661 1401
3 1/3/20 Oscar PaperGenius 7075 906
4 1/4/20 Oscar Paper Pound 2524 1767

201Creating a pivot table from a DataFrame
For utility’s sake, let’s convert the strings in the Date column to datetime objects with
the read_csv function’s parse_dates parameter. After that change, this import
looks good to go. We can assign the DataFrame to a sales variable:

In [3] sales = pd.read_csv(
 "sales_by_employee.csv", parse_dates = ["Date"]
)

 sales.tail()

Out [3]

 Date Name Customer Revenue Expenses

21 2020-01-01 Creed Money Corp. 4430 548
22 2020-01-02 Creed Average Paper Co. 8026 1906
23 2020-01-02 Creed Average Paper Co. 5188 1768
24 2020-01-04 Creed PaperMaven 3144 1314
25 2020-01-05 Creed Money Corp. 938 1053

With our data set loaded, let’s explore how we can aggregate its data with a pivot table.

8.2.1 The pivot_table method

A pivot table aggregates a column’s values and groups the results by using other col-
umns’ values. The word aggregate describes a summary computation that involves mul-
tiple values. Example aggregations include average, sum, median, and count. A pivot
table in pandas is similar to the Pivot Table feature in Microsoft Excel.

 As always, an example proves to be most helpful, so let’s tackle our first challenge.
Multiple salesmen closed deals on the same date. In addition, the same salesmen
closed multiple deals on the same date. What if we want to sum the revenue by date
and see how much each salesman contributed to the daily totals?

 We follow four steps to create a pivot table:

1 Select the column(s) whose values we want to aggregate.
2 Choose the aggregation operation to apply to the column(s).
3 Select the column(s) whose values will group the aggregated data into

categories.
4 Determine whether to place the groups on the row axis, the column axis, or

both axes.

Let’s proceed one step at a time. First, we’ll need to invoke the pivot_table method
on our existing sales DataFrame. The method’s index parameter accepts the col-
umn whose values will make up the pivot table’s index labels. Pandas will use the
unique values from that column to group the results.

 The next example uses the Date column’s values for the index labels of the pivot
table. The Date column contains five unique dates. Pandas applies its default
aggregation operation, an average, to all numeric columns in sales (Expenses and
Revenue):

202 CHAPTER 8 Reshaping and pivoting
In [4] sales.pivot_table(index = "Date")

Out [4]

 Expenses Revenue
Date

2020-01-01 637.500000 4293.500000
2020-01-02 1244.400000 7303.000000
2020-01-03 1313.666667 4865.833333
2020-01-04 1450.600000 3948.000000
2020-01-05 1196.250000 4834.750000

The method returns a regular DataFrame object. It may be a bit underwhelming, but
this DataFrame is a pivot table! The table shows average expenses and average reve-
nue organized by the five unique dates in the Date column.

 We declare the aggregation function with the aggfunc parameter; its default argu-
ment is "mean". The following code produces the same result as the preceding code:

In [5] sales.pivot_table(index = "Date", aggfunc = "mean")

Out [5]

 Expenses Revenue
Date

2020-01-01 637.500000 4293.500000
2020-01-02 1244.400000 7303.000000
2020-01-03 1313.666667 4865.833333
2020-01-04 1450.600000 3948.000000
2020-01-05 1196.250000 4834.750000

We’ll have to modify some method arguments to reach our original goal: a sum of
each date’s revenue organized by salesman. First, let’s swap the aggfunc parameter’s
argument to "sum" to add the values in Expenses and Revenue:

In [6] sales.pivot_table(index = "Date", aggfunc = "sum")

Out [6]

 Expenses Revenue
Date

2020-01-01 3825 25761
2020-01-02 6222 36515
2020-01-03 7882 29195
2020-01-04 7253 19740
2020-01-05 4785 19339

For now, we care only about summing the values in the Revenue column. The values
parameter accepts the DataFrame column(s) that pandas will aggregate. To aggregate
only one column’s values, we can pass the parameter a string with the column name:

In [7] sales.pivot_table(
 index = "Date", values = "Revenue", aggfunc = "sum"
)

203Creating a pivot table from a DataFrame
Out [7]

 Revenue
Date

2020-01-01 25761
2020-01-02 36515
2020-01-03 29195
2020-01-04 19740
2020-01-05 19339

To aggregate values across multiple columns, we can pass values a list of columns.
 We have a sum of revenue grouped by date. Our final step is communicating how

much each salesman contributed to the daily total. One presentational view that
seems to be optimal is placing each salesman’s name in a separate column. In other
words, we’d like to use the Name column’s unique values as the column headers in
the pivot table. Let’s add a columns parameter to the method invocation and pass it
an argument of "Name":

In [8] sales.pivot_table(
 index = "Date",
 columns = "Name",
 values = "Revenue",
 aggfunc = "sum"
)

Out [8]

Name Creed Dwight Jim Michael Oscar
Date

2020-01-01 4430.0 2639.0 1864.0 7172.0 9656.0
2020-01-02 13214.0 NaN 8278.0 6362.0 8661.0
2020-01-03 NaN 11912.0 4226.0 5982.0 7075.0
2020-01-04 3144.0 NaN 6155.0 7917.0 2524.0
2020-01-05 938.0 7771.0 NaN 7837.0 2793.0

That’s it! We have an aggregated sum of revenue organized by dates on the row axis and
salesmen on the column axis. Notice the presence of NaNs in the data set. A NaN
denotes that the salesman did not have a row in sales with a Revenue value for a given
date. Dwight does not have any sales row with a Date value of 2020-01-02, for example.
The pivot table needs the index label of 2020-01-02 to exist for the four salesmen who
have a revenue value for that date. Pandas plugs in the missing holes with NaNs. The
presence of NaN values also forces the coercion of integers into floating-point numbers.

 We can use the fill_value parameter to replace all pivot table NaNs with a fixed
value. Let’s fill in the data gaps with zeroes:

In [9] sales.pivot_table(
 index = "Date",
 columns = "Name",
 values = "Revenue",
 aggfunc = "sum",
 fill_value = 0
)

204 CHAPTER 8 Reshaping and pivoting
Out [9]

Name Creed Dwight Jim Michael Oscar
Date

2020-01-01 4430 2639 1864 7172 9656
2020-01-02 13214 0 8278 6362 8661
2020-01-03 0 11912 4226 5982 7075
2020-01-04 3144 0 6155 7917 2524
2020-01-05 938 7771 0 7837 2793

We may also want to see the revenue subtotals for each combination of date and sales-
man. We can pass an argument of True to the margins parameter to add totals for
each row and column:

In [10] sales.pivot_table(
 index = "Date",
 columns = "Name",
 values = "Revenue",
 aggfunc = "sum",
 fill_value = 0,
 margins = True
)

Out [10]

Name Creed Dwight Jim Michael Oscar All
Date

2020-01-01 00:00:00 4430 2639 1864 7172 9656 25761
2020-01-02 00:00:00 13214 0 8278 6362 8661 36515
2020-01-03 00:00:00 0 11912 4226 5982 7075 29195
2020-01-04 00:00:00 3144 0 6155 7917 2524 19740
2020-01-05 00:00:00 938 7771 0 7837 2793 19339
All 21726 22322 20523 35270 30709 130550

Notice that the inclusion of "All" in the row labels changes the visual representation
of the dates, which now include the hour, minute, and second. Pandas needs to sup-
port both dates and string index labels. A string is the only data type that can repre-
sent either a date or a text value. Thus, the library converts the index from a
DatetimeIndex for dates to a plain Index for strings. When converting a datetime
object to its string representation, pandas includes the time; it also assumes the start
of the day for a date without time.

 We can use the margins_name parameter to customize the subtotal labels. The
next example changes the labels from "All" to "Total":

In [11] sales.pivot_table(
 index = "Date",
 columns = "Name",
 values = "Revenue",
 aggfunc = "sum",
 fill_value = 0,
 margins = True,
 margins_name = "Total"
)

205Creating a pivot table from a DataFrame
Out [11]

Name Creed Dwight Jim Michael Oscar Total
Date

2020-01-01 00:00:00 4430 2639 1864 7172 9656 25761
2020-01-02 00:00:00 13214 0 8278 6362 8661 36515
2020-01-03 00:00:00 0 11912 4226 5982 7075 29195
2020-01-04 00:00:00 3144 0 6155 7917 2524 19740
2020-01-05 00:00:00 938 7771 0 7837 2793 19339
Total 21726 22322 20523 35270 30709 130550

Ideally, Excel users will feel right at home with these options.

8.2.2 Additional options for pivot tables

A pivot table supports a variety of aggregation operations. Suppose that we’re inter-
ested in the number of business deals closed per day. We can pass aggfunc an argu-
ment of "count" to count the number of sales rows for each combination of date
and employee:

In [12] sales.pivot_table(
 index = "Date",
 columns = "Name",
 values = "Revenue",
 aggfunc = "count"
)

Out [12]

Name Creed Dwight Jim Michael Oscar
Date

2020-01-01 1.0 1.0 1.0 1.0 2.0
2020-01-02 2.0 NaN 1.0 1.0 1.0
2020-01-03 NaN 3.0 1.0 1.0 1.0
2020-01-04 1.0 NaN 2.0 1.0 1.0
2020-01-05 1.0 1.0 NaN 1.0 1.0

Once again, a NaN value indicates that the salesman did not make a sale on a given
day. Creed did not close a single sale on 2020-01-03, for example, whereas Dwight
closed three. Some additional options for the aggfunc parameter are listed in the fol-
lowing table:

Argument Description

max The largest value in the grouping

min The smallest value in the grouping

std The standard deviation of the values in the grouping

median The median (midpoint) of the values in the grouping

size The number of values in the grouping (equivalent to count)

206 CHAPTER 8 Reshaping and pivoting
We can also pass a list of aggregation functions to the pivot_table function’s agg-
func parameter. The pivot table will create a MultiIndex on the column axis and
store the aggregations in its outermost level. The next example aggregates both the
sum of revenue by date and the count of revenue by date:

In [13] sales.pivot_table(
 index = "Date",
 columns = "Name",
 values = "Revenue",
 aggfunc = ["sum", "count"],
 fill_value = 0
)

Out [13]

 sum count
Name Creed Dwight Jim Michael Oscar Creed Dwight Jim Michael Oscar
Date

2020-01-01 4430 2639 1864 7172 9656 1 1 1 1 2
2020-01-02 13214 0 8278 6362 8661 2 0 1 1 1
2020-01-03 0 11912 4226 5982 7075 0 3 1 1 1
2020-01-04 3144 0 6155 7917 2524 1 0 2 1 1
2020-01-05 938 7771 0 7837 2793 1 1 0 1 1

We can apply different aggregations to different columns by passing a dictionary to
the aggfunc parameter. Use the dictionary’s keys to identify DataFrame columns
and the values to set the aggregation. The next example extracts the minimum reve-
nue and the maximum expense for each combination of date and salesman:

In [14] sales.pivot_table(
 index = "Date",
 columns = "Name",
 values = ["Revenue", "Expenses"],
 fill_value = 0,
 aggfunc = { "Revenue": "min", "Expenses": "max" }
)

Out [14]

 Expenses Revenue
Name Creed Dwight Jim Michael Oscar Creed Dwight Jim Michael Oscar
Date

20... 548 368 1305 412 531 4430 2639 1864 7172 5250
20... 1768 0 462 685 1401 8026 0 8278 6362 8661
20... 0 758 1923 1772 906 0 4951 4226 5982 7075
20... 1314 0 426 1857 1767 3144 0 3868 7917 2524
20... 1053 1475 0 1633 624 938 7771 0 7837 2793

We can also stack multiple groupings on a single axis by passing the index parameter
a list of columns. The next example aggregates the sum of expenses by salesman and
date on the row axis. Pandas return a DataFrame with a two-level MultiIndex:

In [15] sales.pivot_table(
 index = ["Name", "Date"], values = "Revenue", aggfunc = "sum"
).head(10)

207Stacking and unstacking index levels
Out [15]

 Revenue
Name Date

Creed 2020-01-01 4430
 2020-01-02 13214
 2020-01-04 3144
 2020-01-05 938
Dwight 2020-01-01 2639
 2020-01-03 11912
 2020-01-05 7771
Jim 2020-01-01 1864
 2020-01-02 8278
 2020-01-03 4226

Switch the order of strings in the index list to rearrange the levels in the pivot table’s
MultiIndex. The next example swaps the positions of Name and Date:

In [16] sales.pivot_table(
 index = ["Date", "Name"], values = "Revenue", aggfunc = "sum"
).head(10)

Out [16]

 Revenue
Date Name

2020-01-01 Creed 4430
 Dwight 2639
 Jim 1864
 Michael 7172
 Oscar 9656
2020-01-02 Creed 13214
 Jim 8278
 Michael 6362
 Oscar 8661
2020-01-03 Dwight 11912

The pivot table first organizes and sorts the Date values, and then organizes and sorts
the Name values within each Date.

8.3 Stacking and unstacking index levels
Here’s a reminder of what sales looks like currently:

In [17] sales.head()

Out [17]

 Date Name Customer Revenue Expenses

0 2020-01-01 Oscar Logistics XYZ 5250 531
1 2020-01-01 Oscar Money Corp. 4406 661
2 2020-01-02 Oscar PaperMaven 8661 1401
3 2020-01-03 Oscar PaperGenius 7075 906
4 2020-01-04 Oscar Paper Pound 2524 1767

208 CHAPTER 8 Reshaping and pivoting
Let’s pivot sales to organize revenue by employee name and date. We’ll place dates on
the column axis and names on the row axis:

In [18] by_name_and_date = sales.pivot_table(
 index = "Name",
 columns = "Date",
 values = "Revenue",
 aggfunc = "sum"
)

 by_name_and_date.head(2)

Out [18]

Date 2020-01-01 2020-01-02 2020-01-03 2020-01-04 2020-01-05
Name

Creed 4430.0 13214.0 NaN 3144.0 938.0
Dwight 2639.0 NaN 11912.0 NaN 7771.0

Sometimes, we may want to move an index level from one axis to another. This
change offers a different presentation of the data, and we can decide which view we
like better.

 The stack method moves an index level from the column axis to the row axis.
The next example moves the Date index level from the column axis to the row axis.
Pandas creates a MultiIndex to store the two row levels: Name and Date. Because
only one column of values remains, pandas returns a Series:

In [19] by_name_and_date.stack().head(7)

Out [19]

Name Date
Creed 2020-01-01 4430.0
 2020-01-02 13214.0
 2020-01-04 3144.0
 2020-01-05 938.0
Dwight 2020-01-01 2639.0
 2020-01-03 11912.0
 2020-01-05 7771.0
dtype: float64

Notice that the DataFrame’s NaNs are absent from the Series. Pandas kept cells with
NaNs in the by_name_and_date pivot table to maintain the structural integrity of the
rows and columns. The shape of this MultiIndex Series allows pandas to discard
the NaN values.

 The complementary unstack method moves an index level from the row axis to
the column axis. Consider the following pivot table, which groups revenue by cus-
tomer and salesman. The row axis has a two-level MultiIndex, and the column axis
has a regular index:

In [20] sales_by_customer = sales.pivot_table(
 index = ["Customer", "Name"],
 values = "Revenue",

209Melting a data set
 aggfunc = "sum"
)

 sales_by_customer.head()

Out [20]

 Revenue
Customer Name

Average Paper Co. Creed 13214
 Jim 2287
Best Paper Co. Dwight 2703
 Michael 15754
Logistics XYZ Dwight 9209

The unstack method moves the innermost level of the row index to the column index:

In [21] sales_by_customer.unstack()

Out [21]

 Revenue
Name Creed Dwight Jim Michael Oscar
Customer

Average Paper Co. 13214.0 NaN 2287.0 NaN NaN
Best Paper Co. NaN 2703.0 NaN 15754.0 NaN
Logistics XYZ NaN 9209.0 NaN 7172.0 5250.0
Money Corp. 5368.0 NaN 8278.0 NaN 4406.0
Paper Pound NaN 7771.0 4226.0 NaN 5317.0
PaperGenius NaN 2639.0 1864.0 12344.0 7075.0
PaperMaven 3144.0 NaN 3868.0 NaN 8661.0

In the new DataFrame, the column axis now has a two-level MultiIndex, and the
row axis has a regular one-level index.

8.4 Melting a data set
A pivot table aggregates the values in a data set. In this section, we’ll learn how to do
the opposite: break an aggregated collection of data into an unaggregated one.

 Let’s apply our wide-versus-narrow framework to the sales DataFrame. Here’s an
effective strategy to figure out whether a data set is in narrow format: navigate across
one row of values, and ask each cell whether its value is a single measurement of the
variable that the column header is describing. Here’s the first row of sales:

In [22] sales.head(1)

Out [22]

 Date Name Customer Revenue Expenses

0 2020-01-01 Oscar Logistics XYZ 5250 531

In the previous example, "2020-01-01" is a Date, "Oscar" is a Name, "Logistics
XYZ" is a Customer, 5250 is a Revenue amount, and 531 is an Expenses amount. The
sales DataFrame is an example of a narrow data set. Each row value represents a sin-
gle observation for a given variable. No variable repeats across multiple columns.

210 CHAPTER 8 Reshaping and pivoting
 We often have to choose between flexibility and readability when manipulating
data in a wide or narrow format. We could represent the last four columns (Name,
Customer, Revenue, Expenses) as fields in a single Category column (following exam-
ple), but there is no real benefit because the four variables are distinct and separate. It
is harder to aggregate data when it is stored in a format like this one:

 Date Category Value

0 2020-01-01 Name Oscar
1 2020-01-01 Customer Logistics XYZ
2 2020-01-01 Revenue 5250
3 2020-01-01 Expenses 531

The next data set, video_game_sales.csv, is a listing of regional sales for more than
16,000 video games. Each row includes the game’s name as well as the number of
units sold (in millions) in the North America (NA), Europe (EU), Japan (JP), and
other (Other) regions:

In [23] video_game_sales = pd.read_csv("video_game_sales.csv")
 video_game_sales.head()

Out [23]

 Name NA EU JP Other

0 Wii Sports 41.49 29.02 3.77 8.46
1 Super Mario Bros. 29.08 3.58 6.81 0.77
2 Mario Kart Wii 15.85 12.88 3.79 3.31
3 Wii Sports Resort 15.75 11.01 3.28 2.96
4 Pokemon Red/Poke... 11.27 8.89 10.22 1.00

Once again, let’s traverse a sample row and ask each cell whether it holds the correct
piece of information. Here’s the first row of video_game_sales:

In [24] video_game_sales.head(1)

Out [24]

 Name NA EU JP Other

0 Wii Sports 41.49 29.02 3.77 8.46

The first cell is fine; "Wii Sports" is an example of a Name. The next four cells are
problematic. 41.49 is not a type of NA or a measurement of NA. NA (North America)
is not a variable whose values vary throughout its column. The NA column’s real piece
of variable data is the sales numbers. NA represents the region for those sales num-
bers—a separate and distinct variable.

 Thus, video_game_sales stores its data in wide format. Four columns (NA, EU, JP,
and Other) store the same data point: the number of units sold. If we added more
regional sales columns, the data set would grow horizontally. If we can group multiple
column headers in a common category, it is a hint that the data set is storing its data in
wide format.

 Suppose that we moved the values "NA", "EU", "JP", and "Other" to a new
Region column. Compare the preceding presentation with the following one:

211Melting a data set
 Name Region Sales

0 Wii Sports NA 41.49
1 Wii Sports EU 29.02
2 Wii Sports JP 3.77
3 Wii Sports Other 8.46

In a way, we are unpivoting the video_game_sales DataFrame. We are converting an
aggregate, summary view of the data to one in which each column stores one variable
piece of information.

 Pandas melts a DataFrame with the melt method. (Melting is the process of con-
verting a wide data set to a narrow one.) The method accepts two primary parameters:

 The id_vars parameter sets the identifier column, the column for which the
wide data set aggregates data. Name is the identifier column in video_game_-
sales. The data set aggregates sales per video game.

 The value_vars parameter accepts the column(s) whose values pandas will
melt and store in a new column.

Let’s start simple, melting only the NA column’s values. In the next example, pandas
loops through each NA column value and assigns it to a separate row in a new Data-
Frame. The library stores the former column name (NA) in a new variable column:

In [25] video_game_sales.melt(id_vars = "Name", value_vars = "NA").head()

Out [25]

 Name variable value

0 Wii Sports NA 41.49
1 Super Mario Bros. NA 29.08
2 Mario Kart Wii NA 15.85
3 Wii Sports Resort NA 15.75
4 Pokemon Red/Pokemon Blue NA 11.27

Next, let’s melt all four of the regional sales columns. The next code sample passes
the value_vars parameter a list of the four regional sales columns from vid-
eo_game_sales:

In [26] regional_sales_columns = ["NA", "EU", "JP", "Other"]

 video_game_sales.melt(
 id_vars = "Name", value_vars = regional_sales_columns
)

Out [26]

 Name variable value

0 Wii Sports NA 41.49
1 Super Mario Bros. NA 29.08
2 Mario Kart Wii NA 15.85
3 Wii Sports Resort NA 15.75
4 Pokemon Red/Pokemon Blue NA 11.27
 … … … …
66259 Woody Woodpecker in Crazy Castle 5 Other 0.00
66260 Men in Black II: Alien Escape Other 0.00

212 CHAPTER 8 Reshaping and pivoting
66261 SCORE International Baja 1000: The Official Game Other 0.00
66262 Know How 2 Other 0.00
66263 Spirits & Spells Other 0.00

66264 rows × 3 columns

The melt method returns a DataFrame with 66,264 rows! By comparison, video_
game_sales has 16,566 rows. The new data set is four times longer because it has four
rows of data for each row in video_games_sales. The data set stores

 16,566 rows for each video game and its respective NA sales number
 16,566 rows for each video game and its respective EU sales number
 16,566 rows for each video game and its respective JP sales number
 16,566 rows for each video game and its respective Other sales number

The variable column holds the four regional column names from video_game_sales.
The value column holds the values from those four regional sales columns. In the pre-
vious output, the data tells us that the videogame "Woody Woodpecker in Crazy
Castle 5" had a value of 0.00 in the Other column of video_game_sales.

 We can customize the melted DataFrame’s column names by passing arguments
to the var_name and value_name parameters. The next example uses Region for the
variable column and Sales for the value column:

In [27] video_game_sales_by_region = video_game_sales.melt(
 id_vars = "Name",
 value_vars = regional_sales_columns,
 var_name = "Region",
 value_name = "Sales"
)

 video_game_sales_by_region.head()

Out [27]

 Name Region Sales

0 Wii Sports NA 41.49
1 Super Mario Bros. NA 29.08
2 Mario Kart Wii NA 15.85
3 Wii Sports Resort NA 15.75
4 Pokemon Red/Pokemon Blue NA 11.27

Narrow data is easier to aggregate than wide data. Let’s say we want to find the sum of
each video game’s sales across all regions. Given the melted data set, we can use the
pivot_table method to accomplish this task with a few lines of code:

In [28] video_game_sales_by_region.pivot_table(
 index = "Name", values = "Sales", aggfunc = "sum"
).head()

Out [28]

213Exploding a list of values
 Sales
Name

'98 Koshien 0.40
.hack//G.U. Vol.1//Rebirth 0.17
.hack//G.U. Vol.2//Reminisce 0.23
.hack//G.U. Vol.3//Redemption 0.17
.hack//Infection Part 1 1.26

The data set’s narrow shape simplified the process of pivoting it.

8.5 Exploding a list of values
Sometimes, a data set stores multiple values in the same cell. We may want to break up
the data cluster so that each row stores a single value. Consider recipes.csv, a collec-
tion of three recipes, each of which has a name and an ingredients list. The ingredi-
ents are stored in a single comma-separated string:

In [29] recipes = pd.read_csv("recipes.csv")
 recipes

Out [29]

 Recipe Ingredients

0 Cashew Crusted Chicken Apricot preserves, Dijon mustard, cu...
1 Tomato Basil Salmon Salmon filets, basil, tomato, olive ...
2 Parmesan Cheese Chicken Bread crumbs, Parmesan cheese, Itali...

Do you recall the str.split method we introduced in chapter 6? This method uses
a delimiter to split a string into substrings. We can split each Ingredients string by the
presence of a comma. In the next example, pandas returns a Series of lists. Each list
stores the ingredients for the row:

In [30] recipes["Ingredients"].str.split(",")

Out [30]

0 [Apricot preserves, Dijon mustard, curry pow...
1 [Salmon filets, basil, tomato, olive oil, ...
2 [Bread crumbs, Parmesan cheese, Italian seas...
Name: Ingredients, dtype: object

Let’s overwrite the original Ingredients column with the new one:

In [31] recipes["Ingredients"] = recipes["Ingredients"].str.split(",")
 recipes

Out [31]

 Recipe Ingredients

0 Cashew Crusted Chicken [Apricot preserves, Dijon mustard, ...
1 Tomato Basil Salmon [Salmon filets, basil, tomato, ol...
2 Parmesan Cheese Chicken [Bread crumbs, Parmesan cheese, It...

214 CHAPTER 8 Reshaping and pivoting
Now, how can we spread out each list’s values across multiple rows? The explode
method creates a separate row for each list element in a Series. We invoke the
method on a DataFrame and pass in the column with lists:

In [32] recipes.explode("Ingredients")

Out [32]

 Recipe Ingredients

0 Cashew Crusted Chicken Apricot preserves
0 Cashew Crusted Chicken Dijon mustard
0 Cashew Crusted Chicken curry powder
0 Cashew Crusted Chicken chicken breasts
0 Cashew Crusted Chicken cashews
1 Tomato Basil Salmon Salmon filets
1 Tomato Basil Salmon basil
1 Tomato Basil Salmon tomato
1 Tomato Basil Salmon olive oil
1 Tomato Basil Salmon Parmesan cheese
2 Simply Parmesan Cheese Bread crumbs
2 Simply Parmesan Cheese Parmesan cheese
2 Simply Parmesan Cheese Italian seasoning
2 Simply Parmesan Cheese egg
2 Simply Parmesan Cheese chicken breasts

Beautiful! We’ve isolated each ingredient to a separate line. Note that the explode
method requires a Series of lists to work properly.

8.6 Coding challenge
Here’s an opportunity to practice the reshaping, pivoting, and melting concepts intro-
duced in this chapter.

8.6.1 Problems

We have two data sets for you to play with. The used_cars.csv file is a listing of used
cars for sale on the classifieds website Craigslist. Each row includes the car’s manufac-
turer, year of production, fuel type, transmission type, and price:

In [33] cars = pd.read_csv("used_cars.csv")
 cars.head()

Out [33]

 Manufacturer Year Fuel Transmission Price

0 Acura 2012 Gas Automatic 10299
1 Jaguar 2011 Gas Automatic 9500
2 Honda 2004 Gas Automatic 3995
3 Chevrolet 2016 Gas Automatic 41988
4 Kia 2015 Gas Automatic 12995

The minimum_wage.csv data set is a collection of minimum wages across the United
States. The data set has a State column and multiple year columns:

215Coding challenge
In [34] min_wage = pd.read_csv("minimum_wage.csv")
 min_wage.head()

Out [34]

 State 2010 2011 2012 2013 2014 2015 2016 2017

0 Alabama 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 Alaska 8.90 8.63 8.45 8.33 8.20 9.24 10.17 10.01
2 Arizona 8.33 8.18 8.34 8.38 8.36 8.50 8.40 10.22
3 Arkansas 7.18 6.96 6.82 6.72 6.61 7.92 8.35 8.68
4 California 9.19 8.91 8.72 8.60 9.52 9.51 10.43 10.22

Here are the challenges:

1 Aggregate the sum of car prices in cars. Group the results by fuel type on the
row axis.

2 Aggregate the count of cars in cars. Group the results by manufacturer on the
index axis and transmission type on the column axis. Show the subtotals for
both the rows and columns.

3 Aggregate the average of car prices in cars. Group the results by year and fuel
type on the index axis and transmission type on the column axis.

4 Given a DataFrame from the preceding challenge, move the transmission level
from the column axis to the row axis.

5 Convert the min_wage from wide format to narrow format. In other words,
move the data from the eight year columns (2010–17) to a single column.

8.6.2 Solutions

Let’s tackle the problems one by one:

1 The pivot_table method is an optimal solution for adding the values in the
Price column and organizing the totals by fuel type. We can use the method’s
index parameter to set the pivot table’s index labels; we’ll pass an argument of
"Fuel". We’ll specify the aggregation operation as "sum" with the aggfunc
parameter:

In [35] cars.pivot_table(
 values = "Price", index = "Fuel", aggfunc = "sum"
)

Out [35]

 Price
Fuel

Diesel 986177143
Electric 18502957
Gas 86203853926
Hybrid 44926064
Other 242096286

216 CHAPTER 8 Reshaping and pivoting
2 We can also use the pivot_table method to count cars by manufacturer and
transmission type. We’ll use the columns parameter to set the Transmission col-
umn’s values as the pivot table’s column labels. Remember to pass the margins
parameter an argument of True to show subtotals for rows and columns:

In [36] cars.pivot_table(
 values = "Price",
 index = "Manufacturer",
 columns = "Transmission",
 aggfunc = "count",
 margins = True
).tail()

Out [36]

Transmission Automatic Manual Other All
Manufacturer

Tesla 179.0 NaN 59.0 238
Toyota 31480.0 1367.0 2134.0 34981
Volkswagen 7985.0 1286.0 236.0 9507
Volvo 2665.0 155.0 50.0 2870
All 398428.0 21005.0 21738.0 441171

3 To organize average car prices by year and fuel type on the pivot table’s row axis,
we can pass a list of strings to the pivot_table function’s index parameter:

 In [37] cars.pivot_table(
 values = "Price",
 index = ["Year", "Fuel"],
 columns = ["Transmission"],
 aggfunc = "mean"
)

Out [37]

Transmission Automatic Manual Other
Year Fuel

2000 Diesel 11326.176962 14010.164021 11075.000000
 Electric 1500.000000 NaN NaN
 Gas 4314.675996 6226.140327 3203.538462
 Hybrid 2600.000000 2400.000000 NaN
 Other 16014.918919 11361.952381 12984.642857
 … … … … …
2020 Diesel 63272.595930 1.000000 1234.000000
 Electric 8015.166667 2200.000000 20247.500000
 Gas 34925.857933 36007.270833 20971.045455
 Hybrid 35753.200000 NaN 1234.000000
 Other 22210.306452 NaN 2725.925926

102 rows × 3 columns

Let’s assign the previous pivot table to a report variable for the next challenge:

In [38] report = cars.pivot_table(
 values = "Price",
 index = ["Year", "Fuel"],

217Coding challenge
 columns = ["Transmission"],
 aggfunc = "mean"
)

4 The next exercise is to move the transmission type from the column index to
the row index. The stack method does the trick here. The method returns a
MultiIndex Series. The Series has three levels: Year, Fuel, and the newly
added Transmission:

In [39] report.stack()

Out [39]

Year Fuel Transmission
2000 Diesel Automatic 11326.176962
 Manual 14010.164021
 Other 11075.000000
 Electric Automatic 1500.000000
 Gas Automatic 4314.675996
 ...
2020 Gas Other 20971.045455
 Hybrid Automatic 35753.200000
 Other 1234.000000
 Other Automatic 22210.306452
 Other 2725.925926
Length: 274, dtype: float64

5 Next, we’d like to convert the min_wage data set from wide format to narrow
format. Eight columns store the same variable: the wages themselves. The solu-
tion is the melt method. We can declare the State column as the identifier col-
umn and the eight year columns as the variable columns:

In [40] year_columns = [
 "2010", "2011", "2012", "2013",
 "2014", "2015", "2016", "2017"
]

 min_wage.melt(id_vars = "State", value_vars = year_columns)

Out [40]

 State variable value

0 Alabama 2010 0.00
1 Alaska 2010 8.90
2 Arizona 2010 8.33
3 Arkansas 2010 7.18
4 California 2010 9.19
 … … … …
435 Virginia 2017 7.41
436 Washington 2017 11.24
437 West Virginia 2017 8.94
438 Wisconsin 2017 7.41
439 Wyoming 2017 5.26

440 rows × 3 columns

218 CHAPTER 8 Reshaping and pivoting
Here’s a bonus tip: we can remove the value_vars parameter from the melt
method invocation and still get the same DataFrame. By default, pandas melts
data from all columns except the one we pass to the id_vars parameter:

In [41] min_wage.melt(id_vars = "State")

Out [41]

 State variable value

0 Alabama 2010 0.00
1 Alaska 2010 8.90
2 Arizona 2010 8.33
3 Arkansas 2010 7.18
4 California 2010 9.19
 … … … …
435 Virginia 2017 7.41
436 Washington 2017 11.24
437 West Virginia 2017 8.94
438 Wisconsin 2017 7.41
439 Wyoming 2017 5.26

440 rows × 3 columns

We can also customize the column names with the var_name and value_name
parameters. The next example uses "Year" and "Wage" to better explain what
each column represents:

In [42] min_wage.melt(
 id_vars = "State", var_name = "Year", value_name = "Wage"
)

Out [42]

 State Year Wage

0 Alabama 2010 0.00
1 Alaska 2010 8.90
2 Arizona 2010 8.33
3 Arkansas 2010 7.18
4 California 2010 9.19
 … … … …
435 Virginia 2017 7.41
436 Washington 2017 11.24
437 West Virginia 2017 8.94
438 Wisconsin 2017 7.41
439 Wyoming 2017 5.26

440 rows × 3 columns

Congratulations on completing the coding challenge!

Summary
 The pivot_table method aggregates a DataFrame’s data.
 Pivot table aggregations include sum, count, and average.
 We can customize the pivot table’s row labels and column labels.

219Summary
 We can use one or more columns’ values as the index labels of the pivot table.
 The stack method moves an index level from the column index to the row

index.
 The unstack method moves an index level from the row index to the column

index.
 The melt method “unpivots” an aggregated table by distributing its data across

individual rows. The process converts a wide data set to a narrow one.
 The explode method creates a separate row entry for each element in a list; it

requires a Series of lists.

The GroupBy object
The pandas library’s GroupBy object is a storage container for grouping Data-
Frame rows into buckets. It provides a set of methods to aggregate and analyze
each independent group in the collection. It allows us to extract rows at specific
index positions within each group. It also offers a convenient way to iterate over the
groups of rows. There’s lots of power packed into a GroupBy object, so let’s see
what it’s capable of doing.

This chapter covers
 Splitting a DataFrame into groups by using the

groupby method

 Extracting first and last rows from groups in a
GroupBy object

 Performing aggregate operations on GroupBy
groups

 Iterating over DataFrames in a GroupBy object
220

221Creating a GroupBy object from scratch
9.1 Creating a GroupBy object from scratch
Let’s create a new Jupyter Notebook and import the pandas library:

In [1] import pandas as pd

We’ll kick things off with a small example and dive into more of the technical details
in section 9.2. Let’s begin by creating a DataFrame that stores the prices of fruits and
vegetables in a supermarket:

In [2] food_data = {
 "Item": ["Banana", "Cucumber", "Orange", "Tomato", "Watermelon"],
 "Type": ["Fruit", "Vegetable", "Fruit", "Vegetable", "Fruit"],
 "Price": [0.99, 1.25, 0.25, 0.33, 3.00]
 }

 supermarket = pd.DataFrame(data = food_data)

 supermarket

Out [2]

 Item Type Price

0 Banana Fruit 0.99
1 Cucumber Vegetable 1.25
2 Orange Fruit 0.25
3 Tomato Vegetable 0.33
4 Watermelon Fruit 3.00

The Type column identifies the group to which an Item belongs. There are two
groups of items in the supermarket data set: fruits and vegetables. We can use terms
such as groups, buckets, and clusters interchangeably to describe the same idea. Multiple
rows fall into the same category.

 The GroupBy object organizes DataFrame rows into buckets based on shared val-
ues in a column. Suppose that we are interested in the average price of a fruit and the
average price of a vegetable. If we could isolate the "Fruit" rows and "Vegetable"
rows into separate groups, it would be easier to perform the calculations.

 Let’s begin by invoking the groupby method on the supermarket DataFrame. We
need to pass it the column whose values pandas will use to create the groups. The next
example provides the Type column. The method returns an object we haven’t seen
yet: a DataFrameGroupBy. The DataFrameGroupBy object is separate and distinct
from a DataFrame:

In [3] groups = supermarket.groupby("Type")
 groups

Out [3] <pandas.core.groupby.generic.DataFrameGroupBy object at
 0x114f2db90>

222 CHAPTER 9 The GroupBy object
The Type column has two unique values, so the GroupBy object will store two groups.
The get_group method accepts a group name and returns a DataFrame with the
corresponding rows. Let’s pull out the "Fruit" rows:

In [4] groups.get_group("Fruit")

Out [4]

 Item Type Price

0 Banana Fruit 0.99
2 Orange Fruit 0.25
4 Watermelon Fruit 3.00

We can also pull out the "Vegetable" rows:

In [5] groups.get_group("Vegetable")

Out [5]

 Item Type Price

1 Cucumber Vegetable 1.25
3 Tomato Vegetable 0.33

The GroupBy object excels at aggregate operations. Our original goal was to calculate
the average price of the fruits and vegetables in supermarket. We can invoke the mean
method on groups to calculate the average price of items within each group. With a
few lines of code, we’ve successfully split, aggregated, and analyzed a data set:

In [6] groups.mean()

Out [6]

 Price
Type

Fruit 1.413333
Vegetable 0.790000

With the foundational knowledge under our belts, let’s move on to a more complex
data set.

9.2 Creating a GroupBy object from a data set
The Fortune 1000 is a listing of the 1,000 largest companies in the United States by
revenue. The list is updated annually by the business magazine Fortune. The for-
tune1000.csv file is a collection of Fortune 1000 companies from 2018. Each row
includes a company’s name, revenue, profits, employee count, sector, and industry:

In [7] fortune = pd.read_csv("fortune1000.csv")
 fortune

Out [7]

 Company Revenues Profits Employees Sector Industry

0 Walmart 500343.0 9862.0 2300000 Retailing General M...
1 Exxon Mobil 244363.0 19710.0 71200 Energy Petroleum...

223Creating a GroupBy object from a data set
2 Berkshire... 242137.0 44940.0 377000 Financials Insurance...
3 Apple 229234.0 48351.0 123000 Technology Computers...
4 UnitedHea... 201159.0 10558.0 260000 Health Care Health Ca...
… … … … … … …
995 SiteOne L... 1862.0 54.6 3664 Wholesalers Wholesale...
996 Charles R... 1858.0 123.4 11800 Health Care Health Ca...
997 CoreLogic 1851.0 152.2 5900 Business ... Financial...
998 Ensign Group 1849.0 40.5 21301 Health Care Health Ca...
999 HCP 1848.0 414.2 190 Financials Real estate

1000 rows × 6 columns

A sector can have many companies. Apple and Amazon.com both belong to the
"Technology" sector, for example.

 An industry is a subcategory within a sector. The "Pipelines" and "Petroleum
Refining" industries fall in the "Energy" sector, for example.

 The Sector column holds 21 unique sectors. Suppose that we want to find the aver-
age revenue across the companies within each sector. Before we use the GroupBy
object, let’s solve the problem by taking an alternative approach. Chapter 5 showed us
how to create a Boolean Series to extract a subset of rows from a DataFrame. The
next example pulls out all companies with a Sector value of "Retailing":

In [8] in_retailing = fortune["Sector"] == "Retailing"
 retail_companies = fortune[in_retailing]
 retail_companies.head()

Out [8]

 Company Revenues Profits Employees Sector Industry

0 Walmart 500343.0 9862.0 2300000 Retailing General Mercha...
7 Amazon.com 177866.0 3033.0 566000 Retailing Internet Servi...
14 Costco 129025.0 2679.0 182000 Retailing General Mercha...
22 Home Depot 100904.0 8630.0 413000 Retailing Specialty Reta...
38 Target 71879.0 2934.0 345000 Retailing General Mercha...

We can pull out the Revenues column from the subset by using square brackets:

In [9] retail_companies["Revenues"].head()

Out [9] 0 500343.0
 7 177866.0
 14 129025.0
 22 100904.0
 38 71879.0
 Name: Revenues, dtype: float64

Finally, we can calculate the Retailing sector’s average revenue by invoking the mean
method on the Revenues column:

In [10] retail_companies["Revenues"].mean()

Out [10] 21874.714285714286

The preceding code is suitable for calculating the average revenue of one sector. We’ll
need to write a lot of additional code, however, to apply the same logic to the other 20

224 CHAPTER 9 The GroupBy object
sectors in fortune. The code is not particularly scalable. Python can automate some
of the repetition, but the GroupBy object offers the best solution out of the box. The
pandas developers have already solved this problem for us.

 Let’s invoke the groupby method on the fortune DataFrame. The method
accepts the column whose values pandas will use to group the rows. A column is a
good candidate for a grouping if it stores categorical data for the rows. Make sure that
there are parent categories under which multiple rows fall. The data set has 1,000
unique companies but only 21 unique sectors, for example, so the Sector column is a
good fit for aggregate analysis:

In [11] sectors = fortune.groupby("Sector")

Let’s output the sectors variable to see what kind of object we’re working with:

In [12] sectors

Out [12] <pandas.core.groupby.generic.DataFrameGroupBy object at
 0x1235b1d10>

A DataFrameGroupBy object is a bundle of DataFrames. Behind the scenes, pandas
repeated the extraction process we used for the "Retailing" sector but for all 21 val-
ues in the Sector column.

 We can count the number of groups in sectors by passing the GroupBy object
into Python’s built-in len function:

In [13] len(sectors)

Out [13] 21

The sectors GroupBy object has 21 DataFrames. The number is equal to the num-
ber of unique values in fortune’s Sector column, which we can discover by invoking
the nunique method:

In [14] fortune["Sector"].nunique()

Out [14] 21

What are the 21 sectors, and how many companies from fortune belong to each one?
The size method on the GroupBy object returns a Series with an alphabetical list
of the groups and their row counts. The following output tells us that 25 fortune com-
panies have a Sector value of "Aerospace & Defense", 14 have a value of
"Apparel", and so on:

In [15] sectors.size()

Out [15] Sector
 Aerospace & Defense 25
 Apparel 14
 Business Services 53
 Chemicals 33
 Energy 107

225Attributes and methods of a GroupBy object
 Engineering & Construction 27
 Financials 155
 Food & Drug Stores 12
 Food, Beverages & Tobacco 37
 Health Care 71
 Hotels, Restaurants & Leisure 26
 Household Products 28
 Industrials 49
 Materials 45
 Media 25
 Motor Vehicles & Parts 19
 Retailing 77
 Technology 103
 Telecommunications 10
 Transportation 40
 Wholesalers 44
 dtype: int64

Now that we’ve bucketed our fortune rows, let’s explore what we can do with a
GroupBy object.

9.3 Attributes and methods of a GroupBy object
One way to visualize our GroupBy object is as a dictionary that maps the 21 sectors to
a collection of fortune rows belonging to each one. The groups attribute stores a dic-
tionary with these group-to-row associations; its keys are sector names, and its values
are Index objects storing the row index positions from the fortune DataFrame. The
dictionary has 21 total key-value pairs, but I’ve limited the following output to the first
two pairs to save space:

In [16] sectors.groups

Out [16]

'Aerospace & Defense': Int64Index([26, 50, 58, 98, 117, 118, 207, 224,
 275, 380, 404, 406, 414, 540, 660,
 661, 806, 829, 884, 930, 954, 955,
 959, 975, 988], dtype='int64'),
 'Apparel': Int64Index([88, 241, 331, 420, 432, 526, 529, 554, 587, 678,
 766, 774, 835, 861], dtype='int64'),

The output tells us that rows with index positions 26, 50, 58, 98, and so on have a value
of "Aerospace & Defense" in fortune’s Sector column.

 Chapter 4 introduced the loc accessor for extracting DataFrame rows and col-
umns by index label. Its first argument is the row index label, and its second argument
is the column index label. Let’s extract a sample fortune row to confirm that pandas is
pulling it into the correct sector group. We’ll try 26, the first index position listed in
the "Aerospace & Defense" group:

In [17] fortune.loc[26, "Sector"]

Out [17] 'Aerospace & Defense'

226 CHAPTER 9 The GroupBy object
What if we want to find the highest-performing company (by revenue) within each
sector? The GroupBy object’s first method extracts the first row listed for each sec-
tor in fortune. Because our fortune DataFrame is sorted by revenue, the first com-
pany pulled out for each sector will be the highest-performing company within that
sector. The return value of first is a 21-row DataFrame (one company per sector):

In [18] sectors.first()

Out [18]

 Company Revenues Profits Employees Industry
Sector

Aerospace &... Boeing 93392.0 8197.0 140800 Aerospace ...
Apparel Nike 34350.0 4240.0 74400 Apparel
Business Se... ManpowerGroup 21034.0 545.4 29000 Temporary ...
Chemicals DowDuPont 62683.0 1460.0 98000 Chemicals
Energy Exxon Mobil 244363.0 19710.0 71200 Petroleum ...
 … … … … … …
Retailing Walmart 500343.0 9862.0 2300000 General Me...
Technology Apple 229234.0 48351.0 123000 Computers,...
Telecommuni... AT&T 160546.0 29450.0 254000 Telecommun...
Transportation UPS 65872.0 4910.0 346415 Mail, Pack...
Wholesalers McKesson 198533.0 5070.0 64500 Wholesaler...

The complementary last method extracts the last company from fortune that belongs
to each sector. Again, pandas pulls the rows out in the order in which they appear in the
DataFrame. Because fortune sorts companies in descending order by revenue, the fol-
lowing results reveal the companies with the lowest revenue per sector:

In [19] sectors.last()

Out [19]

 Company Revenues Profits Employees Industry
Sector

Aerospace &... Aerojet Ro... 1877.0 -9.2 5157 Aerospace ...
Apparel Wolverine ... 2350.0 0.3 3700 Apparel
Business Se... CoreLogic 1851.0 152.2 5900 Financial ...
Chemicals Stepan 1925.0 91.6 2096 Chemicals
Energy Superior E... 1874.0 -205.9 6400 Oil and Ga...
 … … … … … …
Retailing Childrens ... 1870.0 84.7 9800 Specialty ...
Technology VeriFone S... 1871.0 -173.8 5600 Financial ...
Telecommuni... Zayo Group... 2200.0 85.7 3794 Telecommun...
Transportation Echo Globa... 1943.0 12.6 2453 Transporta...
Wholesalers SiteOne La... 1862.0 54.6 3664 Wholesaler...

The GroupBy object assigns index positions to the rows in each sector group. The first
fortune row in the "Aerospace & Defense" sector has an index position of 0 within
its group. Likewise, the first fortune row in the "Apparel" sector has an index posi-
tion of 0 within its group. The index positions are independent between groups.

 The nth method extracts the row at a given index position within its group. If we
invoke the nth method with an argument of 0, we get the first company within each
sector. The next DataFrame is identical to the one returned by the first method:

227Attributes and methods of a GroupBy object
In [20] sectors.nth(0)

Out [20]

 Company Revenues Profits Employees Industry
Sector

Aerospace &... Boeing 93392.0 8197.0 140800 Aerospace ...
Apparel Nike 34350.0 4240.0 74400 Apparel
Business Se... ManpowerGroup 21034.0 545.4 29000 Temporary ...
Chemicals DowDuPont 62683.0 1460.0 98000 Chemicals
Energy Exxon Mobil 244363.0 19710.0 71200 Petroleum ...
 … … … … … …
Retailing Walmart 500343.0 9862.0 2300000 General Me...
Technology Apple 229234.0 48351.0 123000 Computers,...
Telecommuni... AT&T 160546.0 29450.0 254000 Telecommun...
Transportation UPS 65872.0 4910.0 346415 Mail, Pack...
Wholesalers McKesson 198533.0 5070.0 64500 Wholesaler...

The next example passes an argument of 3 to the nth method to pull out the fourth
row from each sector in the fortune DataFrame. The results include the 21 compa-
nies that are ranked fourth-best by revenue in their sector:

In [21] sectors.nth(3)

Out [21]

 Company Revenues Profits Employees Industry
Sector

Aerospace &... General Dy... 30973.0 2912.0 98600 Aerospace ...
Apparel Ralph Lauren 6653.0 -99.3 18250 Apparel
Business Se... Aramark 14604.0 373.9 215000 Diversifie...
Chemicals Monsanto 14640.0 2260.0 21900 Chemicals
Energy Valero Energy 88407.0 4065.0 10015 Petroleum ...
 … … … … … …
Retailing Home Depot 100904.0 8630.0 413000 Specialty ...
Technology IBM 79139.0 5753.0 397800 Informatio...
Telecommuni... Charter Co... 41581.0 9895.0 94800 Telecommun...
Transportation Delta Air ... 41244.0 3577.0 86564 Airlines
Wholesalers Sysco 55371.0 1142.5 66500 Wholesaler...

Notice that the value for the "Apparel" sector is "Ralph Lauren". We can confirm
the output is correct by filtering for the "Apparel" rows in fortune. Notice that
"Ralph Lauren" is fourth in line:

In [22] fortune[fortune["Sector"] == "Apparel"].head()

Out [22]

 Company Revenues Profits Employees Sector Industry

88 Nike 34350.0 4240.0 74400 Apparel Apparel
241 VF 12400.0 614.9 69000 Apparel Apparel
331 PVH 8915.0 537.8 28050 Apparel Apparel
420 Ralph Lauren 6653.0 -99.3 18250 Apparel Apparel
432 Hanesbrands 6478.0 61.9 67200 Apparel Apparel

228 CHAPTER 9 The GroupBy object
The head method extracts multiple rows from each group. In the next example,
head(2) extracts the first two rows for each sector within fortune. The result is a Data-
Frame with 42 rows (21 unique sectors, with two rows for each sector). Don’t confuse
this head method on a GroupBy object with the head method on a DataFrame object:

In [23] sectors.head(2)

Out [23]

 Company Revenues Profits Employees Sector Industry

0 Walmart 500343.0 9862.0 2300000 Retailing General M...
1 Exxon Mobil 244363.0 19710.0 71200 Energy Petroleum...
2 Berkshire... 242137.0 44940.0 377000 Financials Insurance...
3 Apple 229234.0 48351.0 123000 Technology Computers...
4 UnitedHea... 201159.0 10558.0 260000 Health Care Health Ca...
 … … … … … … …
160 Visa 18358.0 6699.0 15000 Business ... Financial...
162 Kimberly-... 18259.0 2278.0 42000 Household... Household...
163 AECOM 18203.0 339.4 87000 Engineeri... Engineeri...
189 Sherwin-W... 14984.0 1772.3 52695 Chemicals Chemicals
241 VF 12400.0 614.9 69000 Apparel Apparel

The complementary tail method extracts the last rows from each group. tail(3)
pulls the last three rows for each sector, for example. The result is a 63-row Data-
Frame (21 sectors x 3 rows):

In [24] sectors.tail(3)

Out [24]

 Company Revenues Profits Employees Sector Industry

473 Windstrea... 5853.0 -2116.6 12979 Telecommu... Telecommu...
520 Telephone... 5044.0 153.0 9900 Telecommu... Telecommu...
667 Weis Markets 3467.0 98.4 23000 Food & D... Food and ...
759 Hain Cele... 2853.0 67.4 7825 Food, Bev... Food Cons...
774 Fossil Group 2788.0 -478.2 12300 Apparel Apparel
 … … … … … … …
995 SiteOne L... 1862.0 54.6 3664 Wholesalers Wholesale...
996 Charles R... 1858.0 123.4 11800 Health Care Health Ca...
997 CoreLogic 1851.0 152.2 5900 Business ... Financial...
998 Ensign Group 1849.0 40.5 21301 Health Care Health Ca...
999 HCP 1848.0 414.2 190 Financials Real estate

63 rows × 6 columns

We can use the get_group method to extract all rows in a given group. The method
returns a DataFrame containing the rows. The next example shows all companies in
the "Energy" sector:

In [25] sectors.get_group("Energy").head()

Out [25]

 Company Revenues Profits Employees Sector Industry

1 Exxon Mobil 244363.0 19710.0 71200 Energy Petroleum R...
12 Chevron 134533.0 9195.0 51900 Energy Petroleum R...

229Aggregate operations
27 Phillips 66 91568.0 5106.0 14600 Energy Petroleum R...
30 Valero Energy 88407.0 4065.0 10015 Energy Petroleum R...
40 Marathon Pe... 67610.0 3432.0 43800 Energy Petroleum R...

Now that we understand a GroupBy object’s mechanics, let’s discuss how we can
aggregate the values in every nested group.

9.4 Aggregate operations
We can invoke methods on the GroupBy object to apply aggregate operations to every
nested group. The sum method, for example, adds the column values in each group.
By default, pandas targets all numeric columns in the original DataFrame. In the
next example, the sum method calculates the sum per sector for the three numeric
columns (Revenues, Profits, and Employees) in the fortune DataFrame. We invoke
the sum method on the GroupBy object:

In [26] sectors.sum().head(10)

Out [26]

 Revenues Profits Employees
Sector

Aerospace & Defense 383835.0 26733.5 1010124
Apparel 101157.3 6350.7 355699
Business Services 316090.0 37179.2 1593999
Chemicals 251151.0 20475.0 474020
Energy 1543507.2 85369.6 981207
Engineering & Construction 172782.0 7121.0 420745
Financials 2442480.0 264253.5 3500119
Food & Drug Stores 405468.0 8440.3 1398074
Food, Beverages & Tobacco 510232.0 54902.5 1079316
Health Care 1507991.4 92791.1 2971189

Let’s double-check a sample calculation. Pandas lists the sum of company revenue in
"Aerospace & Defense" as $383,835. We can use the get_group method to
retrieve the nested "Aerospace & Defense" DataFrame, target its Revenues col-
umn, and use the sum method to calculate its sum:

In [27] sectors.get_group("Aerospace & Defense").head()

Out [27]

 Company Revenues Profits Employees Sector Industry

26 Boeing 93392.0 8197.0 140800 Aerospace... Aerospace...
50 United Te... 59837.0 4552.0 204700 Aerospace... Aerospace...
58 Lockheed ... 51048.0 2002.0 100000 Aerospace... Aerospace...
98 General D... 30973.0 2912.0 98600 Aerospace... Aerospace...
117 Northrop ... 25803.0 2015.0 70000 Aerospace... Aerospace...

In [28] sectors.get_group("Aerospace & Defense").loc[:,"Revenues"].head()

Out [28] 26 93392.0
 50 59837.0
 58 51048.0

230 CHAPTER 9 The GroupBy object
 98 30973.0
 117 25803.0
 Name: Revenues, dtype: float64

In [29] sectors.get_group("Aerospace & Defense").loc[:, "Revenues"].sum()

Out [29] 383835.0

The values are equal. Pandas is correct! With a single sum method call, the library
applied the calculation logic to each nested DataFrame in the sectors GroupBy
object. We’ve performed an aggregate analysis for all of a column’s groups with a min-
imal amount of code.

 The GroupBy object supports many other aggregation methods. The next exam-
ple invokes the mean method to calculate the average of the Revenues, Profits, and
Employees columns per sector. Again, pandas includes only numeric columns in its
calculations:

In [30] sectors.mean().head()

Out [30]

 Revenues Profits Employees
Sector

Aerospace & Defense 15353.400000 1069.340000 40404.960000
Apparel 7225.521429 453.621429 25407.071429
Business Services 5963.962264 701.494340 30075.452830
Chemicals 7610.636364 620.454545 14364.242424
Energy 14425.300935 805.373585 9170.158879

We can target a single fortune column by passing its name inside square brackets after
the GroupBy object. Pandas returns a new object, a SeriesGroupBy:

In [31] sectors["Revenues"]

Out [31] <pandas.core.groupby.generic.SeriesGroupBy object at 0x114778210>

Under the hood, the DataFrameGroupBy object stores a collection of Series-
GroupBy objects. The SeriesGroupBy objects can perform aggregate operations on
individual columns from fortune. Pandas will organize the results by sector. The next
example calculates the sum of revenue by sector:

In [32] sectors["Revenues"].sum().head()

Out [32] Sector
 Aerospace & Defense 383835.0
 Apparel 101157.3
 Business Services 316090.0
 Chemicals 251151.0
 Energy 1543507.2
 Name: Revenues, dtype: float64

231Aggregate operations
The next example calculates the average number of employees per sector:

In [33] sectors["Employees"].mean().head()

Out [33] Sector
 Aerospace & Defense 40404.960000
 Apparel 25407.071429
 Business Services 30075.452830
 Chemicals 14364.242424
 Energy 9170.158879
 Name: Employees, dtype: float64

The max method returns the maximum value from a given column. In the next exam-
ple, we extract the highest Profits column value for each sector. The best-performing
company in the "Aerospace & Defense" sector has profits of $8,197:

In [34] sectors["Profits"].max().head()

Out [34] Sector
 Aerospace & Defense 8197.0
 Apparel 4240.0
 Business Services 6699.0
 Chemicals 3000.4
 Energy 19710.0
 Name: Profits, dtype: float64

The complementary min method returns the minimum value in a given column. The
next example displays the minimum employee count per sector. The smallest number
of employees at a company in the "Aerospace & Defense" sector is 5,157:

In [35] sectors["Employees"].min().head()

Out [35] Sector
 Aerospace & Defense 5157
 Apparel 3700
 Business Services 2338
 Chemicals 1931
 Energy 593
 Name: Employees, dtype: int64

The agg method applies multiple aggregate operations to different columns and
accepts a dictionary as its argument. In each key-value pair, the key denotes a Data-
Frame column, and the value specifies the aggregate operation to apply to the col-
umn. The next example extracts the lowest revenue, highest profit, and average
number of employees for each sector:

In [36] aggregations = {
 "Revenues": "min",
 "Profits": "max",
 "Employees": "mean"
 }

 sectors.agg(aggregations).head()

232 CHAPTER 9 The GroupBy object
Out [36]

 Revenues Profits Employees
Sector

Aerospace & Defense 1877.0 8197.0 40404.960000
Apparel 2350.0 4240.0 25407.071429
Business Services 1851.0 6699.0 30075.452830
Chemicals 1925.0 3000.4 14364.242424
Energy 1874.0 19710.0 9170.158879

Pandas returns a DataFrame with the aggregation dictionary’s keys as column head-
ers. The sectors remain index labels.

9.5 Applying a custom operation to all groups
Suppose that we want to apply a custom operation to each nested group in a GroupBy
object. In section 9.4, we used the GroupBy object’s max method to find each sector’s
maximum revenue. Let’s say we want to identify the company with the highest reve-
nue in each sector. We solved this problem earlier, but let’s now assume that fortune is
unordered.

 A DataFrame’s nlargest method extracts the rows with the greatest value in a
given column. Here’s a quick refresher. The next example returns the five fortune
rows with the greatest values in the Profits column:

In [37] fortune.nlargest(n = 5, columns = "Profits")

Out [37]

 Company Revenues Profits Employees Sector Industry

3 Apple 229234.0 48351.0 123000 Technology Computers...
2 Berkshire... 242137.0 44940.0 377000 Financials Insurance...
15 Verizon 126034.0 30101.0 155400 Telecommu... Telecommu...
8 AT&T 160546.0 29450.0 254000 Telecommu... Telecommu...
19 JPMorgan ... 113899.0 24441.0 252539 Financials Commercia...

If we could invoke the nlargest method on each nested DataFrame in sectors, we’d
get the results we seek. We’d get the company with the highest revenue in each sector.

 We can use the GroupBy object’s apply method here. The method expects a func-
tion as an argument. It invokes the function once for each group in the GroupBy
object. Then it collects the return values from the function invocations and returns
them in a new DataFrame.

 First, let’s define a get_largest_row function that accepts a single argument: a
DataFrame. The function will return the DataFrame row with the greatest value in
the Revenues column. The function is dynamic; it can perform the logic on any
DataFrame as long as it has a Revenues column:

In [38] def get_largest_row(df):
 return df.nlargest(1, "Revenues")

233Grouping by multiple columns
 Next, we can invoke the apply method and pass in the uninvoked get_larg-
est_row function. Pandas invokes get_largest_row once for each sector and
returns a DataFrame with the companies with the highest revenue in their sector:

In [39] sectors.apply(get_largest_row).head()

Out [39]

 Company Revenues Profits Employees Industry
Sector

Aerospace ... 26 Boeing 93392.0 8197.0 140800 Aerospace...
Apparel 88 Nike 34350.0 4240.0 74400 Apparel
Business S... 142 ManpowerG... 21034.0 545.4 29000 Temporary...
Chemicals 46 DowDuPont 62683.0 1460.0 98000 Chemicals
Energy 1 Exxon Mobil 244363.0 19710.0 71200 Petroleum...

Use the apply method when pandas does not support a custom aggregation you’d
like to apply to each nested group.

9.6 Grouping by multiple columns
We can create a GroupBy object with values from multiple DataFrame columns. This
operation is optimal when a combination of column values serves as the best identifier
for a group. The next example passes a list of two strings to the groupby method.
Pandas groups the rows first by the Sector column’s values and then by the Industry
column’s values. Remember that a company’s industry is a subcategory within a larger
sector:

In [40] sector_and_industry = fortune.groupby(by = ["Sector", "Industry"])

The GroupBy object’s size method now returns a MultiIndex Series with a count
of rows for each internal group. This GroupBy object has a length of 82, which means
that fortune has 82 unique combinations of sector and industry:

In [41] sector_and_industry.size()

Out [41]

Sector Industry

Aerospace & Defense Aerospace and Defense 25
Apparel Apparel 14
Business Services Advertising, marketing 2
 Diversified Outsourcing Services 14
 Education 2
 ..
Transportation Trucking, Truck Leasing 11
Wholesalers Wholesalers: Diversified 24
 Wholesalers: Electronics and Office Equipment 8
 Wholesalers: Food and Grocery 6
 Wholesalers: Health Care 6
Length: 82, dtype: int64

234 CHAPTER 9 The GroupBy object
The get_group method requires a tuple of values to extract a nested DataFrame
from the GroupBy collection. The next example targets rows with a sector of
"Business Services" and industry of "Education":

In [42] sector_and_industry.get_group(("Business Services", "Education"))

Out [42]

 Company Revenues Profits Employees Sector Industry

567 Laureate ... 4378.0 91.5 54500 Business ... Education
810 Graham Ho... 2592.0 302.0 16153 Business ... Education

For all aggregations, pandas returns a MultiIndex DataFrame with the calculations.
The next example calculates the sum of the three numeric columns in fortune (Rev-
enues, Profits, and Employees), grouped first by sector and then by the industries
within each sector:

In [43] sector_and_industry.sum().head()

Out [43]

 Revenues Profits Employees
Sector Industry

Aerospace & Defense Aerospace and Def... 383835.0 26733.5 1010124
Apparel Apparel 101157.3 6350.7 355699
Business Services Advertising, mark... 23156.0 1667.4 127500
 Diversified Outso... 74175.0 5043.7 858600
 Education 6970.0 393.5 70653

We can target individual fortune columns for aggregation by using the same syntax as
in section 9.5. Enter the column in square brackets after the GroupBy object; then
invoke the aggregation method. The next example calculates the average revenue for
companies within each sector/industry combo:

In [44] sector_and_industry["Revenues"].mean().head(5)

Out [44]

Sector Industry

Aerospace & Defense Aerospace and Defense 15353.400000
Apparel Apparel 7225.521429
Business Services Advertising, marketing 11578.000000
 Diversified Outsourcing Services 5298.214286
 Education 3485.000000
Name: Revenues, dtype: float64

In summary, a GroupBy object is an optimal data structure for splitting, organizing,
and aggregating a DataFrame’s values. If you need to use multiple columns to iden-
tify buckets, pass the groupby method a list of columns.

235Coding challenge
9.7 Coding challenge
This coding challenge’s data set, cereals.csv, is a listing of 80 popular breakfast cereals.
Each row includes a cereal’s name, manufacturer, type, calories, grams of fiber, and
grams of sugar. Let’s take a look:

In [45] cereals = pd.read_csv("cereals.csv")
 cereals.head()

Out [45]

 Name Manufacturer Type Calories Fiber Sugars

0 100% Bran Nabisco Cold 70 10.0 6
1 100% Natural Bran Quaker Oats Cold 120 2.0 8
2 All-Bran Kellogg's Cold 70 9.0 5
3 All-Bran with Ex... Kellogg's Cold 50 14.0 0
4 Almond Delight Ralston Purina Cold 110 1.0 8

Good luck!

9.7.1 Problems

Here are the challenges:

1 Group the cereals, using the Manufacturer column’s values.
2 Determine the total number of groups, and the number of cereals per group.
3 Extract the cereals that belong to the manufacturer/group "Nabisco".
4 Calculate the average of values in the Calories, Fiber, and Sugars columns for

each manufacturer.
5 Find the maximum value in the Sugars column for each manufacturer.
6 Find the minimum value in the Fiber column for each manufacturer.
7 Extract the cereal with the lowest amount of grams of sugar per manufacturer

in a new DataFrame.

9.7.2 Solutions

Let’s dive into the solutions:

1 To group the cereals by manufacturer, we can invoke the groupby method on
the cereals DataFrame and pass in the Manufacturer column. Pandas will use
the column’s unique values to organize the groups:

In [46] manufacturers = cereals.groupby("Manufacturer")

2 To find the total number of groups/manufacturers, we can pass the GroupBy
object into Python’s built-in len function:

In [47] len(manufacturers)

Out [47] 7

236 CHAPTER 9 The GroupBy object
If you’re curious, the GroupBy object’s size method returns a Series with a
count of cereals per group:

In [48] manufacturers.size()

Out [48] Manufacturer
 American Home Food Products 1
 General Mills 22
 Kellogg's 23
 Nabisco 6
 Post 9
 Quaker Oats 8
 Ralston Purina 8
 dtype: int64

3 To identify cereals belonging to the "Nabisco" group, we can invoke the
get_group method on our GroupBy object. Pandas will return the nested
DataFrame with "Nabisco" rows:

In [49] manufacturers.get_group("Nabisco")

Out [49]

 Name Manufacturer Type Calories Fiber Sugars

0 100% Bran Nabisco Cold 70 10.0 6
20 Cream of Wheat (Quick) Nabisco Hot 100 1.0 0
63 Shredded Wheat Nabisco Cold 80 3.0 0
64 Shredded Wheat 'n'Bran Nabisco Cold 90 4.0 0
65 Shredded Wheat spoon ... Nabisco Cold 90 3.0 0
68 Strawberry Fruit Wheats Nabisco Cold 90 3.0 5

4 To calculate the averages of the numeric columns in cereals, we can invoke
the mean method on the manufacturers GroupBy object. Pandas will aggre-
gate all numeric columns in cereals by default:

In [50] manufacturers.mean()

Out [50]

 Calories Fiber Sugars
Manufacturer

American Home Food Products 100.000000 0.000000 3.000000
General Mills 111.363636 1.272727 7.954545
Kellogg's 108.695652 2.739130 7.565217
Nabisco 86.666667 4.000000 1.833333
Post 108.888889 2.777778 8.777778
Quaker Oats 95.000000 1.337500 5.250000
Ralston Purina 115.000000 1.875000 6.125000

5 Next, we are tasked with finding the maximum Sugars value per manufacturer.
We can use square brackets after a GroupBy object to identify which column’s
values to aggregate. Then we provide the correct aggregate method, which is
max in this case:

237Coding challenge
In [51] manufacturers["Sugars"].max()

Out [51] Manufacturer
 American Home Food Products 3
 General Mills 14
 Kellogg's 15
 Nabisco 6
 Post 15
 Quaker Oats 12
 Ralston Purina 11
 Name: Sugars, dtype: int64

6 To find the smallest fiber value per manufacturer, we can swap the column to
Fiber and invoke the min method:

In [52] manufacturers["Fiber"].min()

Out [52] Manufacturer
 American Home Food Products 0.0
 General Mills 0.0
 Kellogg's 0.0
 Nabisco 1.0
 Post 0.0
 Quaker Oats 0.0
 Ralston Purina 0.0
 Name: Fiber, dtype: float64

7 Finally, we need to identify the cereal row for each manufacturer with the low-
est value in the Sugars column. We can solve this problem by using the apply
method and a custom function. The smallest_sugar_row function uses the
nsmallest method to pull the DataFrame row with the smallest value in the
Sugars column. Then we use apply to invoke the custom function on each
GroupBy group:

In [53] def smallest_sugar_row(df):
 return df.nsmallest(1, "Sugars")

In [54] manufacturers.apply(smallest_sugar_row)

Out [54]

 Name Manufacturer Type Calories Fiber Sugars
Manufacturer

American H... 43 Maypo American ... Hot 100 0.0 3
General Mills 11 Cheerios General M... Cold 110 2.0 0
Nabisco 20 Cream of ... Nabisco Hot 100 1.0 0
Post 33 Grape-Nuts Post Cold 110 3.0 3
Quaker Oats 57 Quaker Oa... Quaker Oats Hot 100 2.7 -1
Ralston Pu... 61 Rice Chex Ralston P... Cold 110 0.0 2

Congratulations on completing the coding challenge!

238 CHAPTER 9 The GroupBy object
Summary
 A GroupBy object is a container of DataFrames.
 Pandas buckets rows into GroupBy DataFrames by using values across one or

more columns.
 The first and last methods return the first and last rows from each

GroupBy group. The row order in the original DataFrame determines the row
order in each group.

 The head and tail methods extract multiple rows from each group in the
GroupBy object based on the row’s positions in the original DataFrame.

 The nth method extracts a row from each GroupBy group by its index position.
 Pandas can perform aggregate calculations such as sum, average, max, and min

for each group in a GroupBy object.
 The agg method applies different aggregate operations to different columns.

We pass it a dictionary with columns as keys and aggregation as values.
 The apply method invokes a function on each DataFrame in a GroupBy

object.

Merging, joining,
and concatenating
As a business domain grows in complexity, it becomes increasingly difficult to store
all data in a single collection. To solve this problem, data administrators split data
across multiple tables. Then they associate the tables with one another so it is easy
to identify the relationships among them.

 You may have previously worked with a database such as PostgreSQL, MySQL, or
Oracle. Relational database management systems (RDBMS) follow the paradigm
described in the preceding paragraph. A database consists of tables. A table holds
records for one domain model. A table consists of rows and columns. A row stores
information for one record. A column stores an attribute for that record. Tables

This chapter covers
 Concatenating DataFrames on the vertical and

horizontal axes

 Merging DataFrames with inner joins, outer joins,
and left joins

 Finding unique and shared values between
DataFrames

 Joining DataFrames by index labels
239

240 CHAPTER 10 Merging, joining, and concatenating
connect through column keys. If you haven’t worked with databases before, you can
consider a table to be effectively equivalent to a pandas DataFrame.

 Here’s a real-world example. Imagine that we’re building an e-commerce site and
want to create a users table to store the website’s registered users. Following rela-
tional database conventions, we would assign a unique numeric identifier to each
record. We’ll store the values in an id column. The id column’s values are called pri-
mary keys because they are the primary identifiers for specific rows.

Let’s imagine that our next goal is to keep track of users’ orders on our site. We’ll cre-
ate an orders table to store order details such as item name and price. But how do we
connect each order to the user who placed it? Take a peek at the following table:

To establish a relationship between two tables, database administrators create a col-
umn of foreign keys. A foreign key is a reference to a record in another table. It is
labeled foreign because the key exists outside the current table’s scope.

 Each orders table row stores the ID of the user who placed the order in the
user_id column. Thus, the user_id column stores foreign keys; its values are refer-
ences to records in another table, the users table. Using the established relationship
between the two tables, we can determine that order 1 was placed by the user with an
id of 1, Homer Simpson.

 The advantage of foreign keys is the reduction of data duplication. The orders
table does not need to copy the user’s first name, last name, and email for each order,
for example. Rather, it needs only to store a single reference to the correct users
record. The business entities of users and orders live separately, but we can connect
them when necessary.

 When it comes time to combine tables, we can always turn to pandas. The library
excels at appending, concatenating, joining, merging, and combining DataFrames in
both vertical and horizontal directions. It can identify unique and shared records
between DataFrames. It can perform SQL operations such as inner joins, outer joins,

Users

id first_name last_name email gender

1 Homer Simpson donutfan@simpson.com Male

2 Bart Simpson troublemaker@simpson.com Male

Orders

id item price quantity user_id

1 Donut Box 4.99 4 1

2 Slingshot 19.99 1 2

241Introducing the data sets
left joins, and right joins. In this chapter, we’ll explore the differences among these
joins and the situations in which each one can prove to be advantageous.

10.1 Introducing the data sets
Let’s import the pandas library and assign it an alias of pd:

In [1] import pandas as pd

This chapter’s data sets come from the online social service Meetup, a website where
users join groups for common interests such as hiking, literature, and board games.
Group organizers schedule remote or in-person events that group members attend.
Meetup’s domain has several data models, including groups, categories, and cities.

 The meetup directory houses all data sets for this chapter. Let’s begin our explora-
tion by importing the groups1.csv and groups2.csv files. These files hold a sample of
Meetup’s registered groups. Each group includes an ID, name, associated category ID,
and associated city ID. Here’s what groups1 looks like:

In [2] groups1 = pd.read_csv("meetup/groups1.csv")
 groups1.head()

Out [2]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
1 6510 Alternative Energy Meetup 4 10001
2 8458 NYC Animal Rights 26 10001
3 8940 The New York City Anime Group 29 10001
4 10104 NYC Pit Bull Group 26 10001

Let’s also import groups2.csv. Notice that both CSVs have the same four columns. We
can imagine that the groups data was somehow split and stored across two files instead
of one:

In [3] groups2 = pd.read_csv("meetup/groups2.csv")
 groups2.head()

Out [3]

 group_id name category_id city_id

0 18879327 BachataMania 5 10001
1 18880221 Photoshoot Chicago - Photography and ... 27 60601
2 18880426 Chicago Adult Push / Kick Scooter Gro... 31 60601
3 18880495 Chicago International Soccer Club 32 60601
4 18880695 Impact.tech San Francisco Meetup 2 94101

Each group has a category_id foreign key. We can find information on categories in
the categories.csv file. Each row in this file stores the category’s ID and name:

In [4] categories = pd.read_csv("meetup/categories.csv")

 categories.head()

242 CHAPTER 10 Merging, joining, and concatenating
Out [4]

 category_id category_name

0 1 Arts & Culture
1 3 Cars & Motorcycles
2 4 Community & Environment
3 5 Dancing
4 6 Education & Learning

Each group also has a city_id foreign key. The cities.csv data set stores the city infor-
mation. A city has a unique ID, name, state, and zip code. Let’s take a look:

In [5] pd.read_csv("meetup/cities.csv").head()

Out [5]

 id city state zip

0 7093 West New York NJ 7093
1 10001 New York NY 10001
2 13417 New York Mills NY 13417
3 46312 East Chicago IN 46312
4 56567 New York Mills MN 56567

The cities data set has a small issue. Look at the zip value in the first row. 7093 is an
invalid zip code; the value in the CSV is in fact 07093. Zip codes can start with a lead-
ing zero. Unfortunately, pandas assumes that the zip codes are integers and thus strips
the leading zeroes from the values. To solve this problem, we can add the dtype
parameter to the read_csv function. dtype accepts a dictionary in which keys
denote column names and values denote the data type to assign to that column. Let’s
make sure that pandas imports the zip column’s values as strings:

In [6] cities = pd.read_csv(
 "meetup/cities.csv", dtype = {"zip": "string"}
)
 cities.head()

Out [6]

 id city state zip

0 7093 West New York NJ 07093
1 10001 New York NY 10001
2 13417 New York Mills NY 13417
3 46312 East Chicago IN 46312
4 56567 New York Mills MN 56567

Excellent; we’re ready to proceed. To summarize, each group in groups1 and groups2
belongs to a category and a city. The category_id and group_id columns store foreign
keys. The category_id column values map to the category_id column in categories.
The city_id column values map to the id column in cities. With our data tables loaded
into Jupyter, we’re ready to start joining them.

243Concatenating data sets
10.2 Concatenating data sets
The simplest way to combine two data sets is with concatenation—appending one
DataFrame to the end of another.

 The groups1 and groups2 DataFrames both have the same four column names.
Let’s assume that they are two halves of a greater whole. We’d like to combine their
rows into a single DataFrame. Pandas has a convenient concat function at the top
level of the library. We can pass its objs parameter a list of DataFrames. Pandas will
concatenate the objects in the order in which they appear in the objs list. The next
example concatenates the rows in groups2 to the end of groups1:

In [7] pd.concat(objs = [groups1, groups2])

Out [7]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
1 6510 Alternative Energy Meetup 4 10001
2 8458 NYC Animal Rights 26 10001
3 8940 The New York City Anime Group 29 10001
4 10104 NYC Pit Bull Group 26 10001
 … … … … …
8326 26377464 Shinect 34 94101
8327 26377698 The art of getting what you want [... 14 94101
8328 26378067 Streeterville Running Group 9 60601
8329 26378128 Just Dance NYC 23 10001
8330 26378470 FREE Arabic Chicago Evanston North... 31 60601

16330 rows × 4 columns

The concatenated DataFrame has 16,330 rows! As you might have guessed, its length
is equal to the sum of the lengths of the groups1 and groups2 DataFrames:

In [8] len(groups1)

Out [8] 7999

In [9] len(groups2)

Out [9] 8331

In [10] len(groups1) + len(groups2)

Out [10] 16330

Pandas preserves the original index labels from both DataFrames in the concatena-
tion, which is why we see a final index position of 8,330 in the concatenated Data-
Frame even though it has more than 16,000 rows. What we are seeing is the 8,330
index from the end of the groups2 DataFrame. Pandas does not care that the same
index number appears in both groups1 and groups2. As a result, the concatenated
index has duplicate index labels.

244 CHAPTER 10 Merging, joining, and concatenating
 We can pass the concat function’s ignore_index parameter an argument of
True to generate pandas’ standard numeric index. The concatenated DataFrame will
discard the original index labels:

In [11] pd.concat(objs = [groups1, groups2], ignore_index = True)

Out [11]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
1 6510 Alternative Energy Meetup 4 10001
2 8458 NYC Animal Rights 26 10001
3 8940 The New York City Anime Group 29 10001
4 10104 NYC Pit Bull Group 26 10001
 … … … … …
16325 26377464 Shinect 34 94101
16326 26377698 The art of getting what you want ... 14 94101
16327 26378067 Streeterville Running Group 9 60601
16328 26378128 Just Dance NYC 23 10001
16329 26378470 FREE Arabic Chicago Evanston Nort... 31 60601

16330 rows × 4 columns

What if we wanted the best of both worlds: to create a nonduplicate index but also
preserve which DataFrame each row of data came from? One solution is to add a
keys parameter and pass it a list of strings. Pandas will associate each string in the
keys list with the DataFrame at the same index position in the objs list. The keys
and objs lists must be of equal length.

 The next example assigns the groups1 DataFrame a key of "G1" and the groups2
DataFrame a key of "G2". The concat function returns a MultiIndex DataFrame.
The MultiIndex’s first level stores the keys, and its second level stores the index
labels from the respective DataFrame:

In [12] pd.concat(objs = [groups1, groups2], keys = ["G1", "G2"])

Out [12]

 group_id name category_id city_id

G1 0 6388 Alternative Health NYC 14 10001
 1 6510 Alternative Energy Meetup 4 10001
 2 8458 NYC Animal Rights 26 10001
 3 8940 The New York City Anime Group 29 10001
 4 10104 NYC Pit Bull Group 26 10001
 … … … … … …
G2 8326 26377464 Shinect 34 94101
 8327 26377698 The art of getting what you wan... 14 94101
 8328 26378067 Streeterville Running Group 9 60601
 8329 26378128 Just Dance NYC 23 10001
 8330 26378470 FREE Arabic Chicago Evanston No... 31 60601

16330 rows × 4 columns

245Missing values in concatenated DataFrames
We can extract the original DataFrames by accessing the G1 or G2 keys on the first
level of the MultiIndex. (See chapter 7 for a refresher on using the loc accessor on
MultiIndex DataFrames.) Before we proceed, let’s assign the concatenated Data-
Frame to a groups variable:

In [13] groups = pd.concat(objs = [groups1, groups2], ignore_index = True)

We’ll come back to groups in section 10.4.

10.3 Missing values in concatenated DataFrames
When concatenating two DataFrames, pandas places NaNs at intersections of row
labels and column labels that the data sets do not share. Consider the following two
DataFrames, both of which have a Football column. The sports_champions_A Data-
Frame has an exclusive Baseball column, and the sports_champions_B DataFrame
has an exclusive Hockey column:

In [14] sports_champions_A = pd.DataFrame(
 data = [
 ["New England Patriots", "Houston Astros"],
 ["Philadelphia Eagles", "Boston Red Sox"]
],
 columns = ["Football", "Baseball"],
 index = [2017, 2018]
)

 sports_champions_A

Out [14]

 Football Baseball

2017 New England Patriots Houston Astros
2018 Philadelphia Eagles Boston Red Sox

In [15] sports_champions_B = pd.DataFrame(
 data = [
 ["New England Patriots", "St. Louis Blues"],
 ["Kansas City Chiefs", "Tampa Bay Lightning"]
],
 columns = ["Football", "Hockey"],
 index = [2019, 2020]
)

 sports_champions_B

Out [15]

 Football Hockey

2019 New England Patriots St. Louis Blues
2020 Kansas City Chiefs Tampa Bay Lightning

246 CHAPTER 10 Merging, joining, and concatenating
If we concatenate the DataFrames, we will create missing values in the Baseball and
Hockey columns. The sports_champions_A DataFrame has no values to place in the
Hockey column, and the sports_champions_B DataFrame has no values to place in
the Baseball column:

In [16] pd.concat(objs = [sports_champions_A, sports_champions_B])

Out [16]

 Football Baseball Hockey

2017 New England Patriots Houston Astros NaN
2018 Philadelphia Eagles Boston Red Sox NaN
2019 New England Patriots NaN St. Louis Blues
2020 Kansas City Chiefs NaN Tampa Bay Lightning

By default, pandas concatenates rows on the horizontal axis. Sometimes, we want to
append the rows on the vertical axis instead. Consider the sports_champions_C
DataFrame, which has the same two index labels as sports_champions_A (2017 and
2018) but two different columns, Hockey and Basketball:

In [17] sports_champions_C = pd.DataFrame(
 data = [
 ["Pittsburgh Penguins", "Golden State Warriors"],
 ["Washington Capitals", "Golden State Warriors"]
],
 columns = ["Hockey", "Basketball"],
 index = [2017, 2018]
)

 sports_champions_C

Out [17]

 Hockey Basketball

2017 Pittsburgh Penguins Golden State Warriors
2018 Washington Capitals Golden State Warriors

When we concatenate sports_champions_A and sports_champions_C, pandas
appends the rows of the second DataFrame to the end of the first. The process cre-
ates duplicate 2017 and 2018 index labels:

In [18] pd.concat(objs = [sports_champions_A, sports_champions_C])

Out [18]

 Football Baseball Hockey Basketball

2017 New England P... Houston Astros NaN NaN
2018 Philadelphia ... Boston Red Sox NaN NaN
2017 NaN NaN Pittsburgh Pe... Golden State ...
2018 NaN NaN Washington Ca... Golden State ...

This result is not what we want. Rather, we’d like to align the duplicate index labels
(2017 and 2018) so that the columns have no missing values.

247Left joins
 The concat function includes an axis parameter. We can pass that parameter an
argument of either 1 or "columns" to concatenate the DataFrames across the col-
umn axis:

In [19] # The two lines below are equivalent
 pd.concat(
 objs = [sports_champions_A, sports_champions_C],
 axis = 1
)
 pd.concat(
 objs = [sports_champions_A, sports_champions_C],
 axis = "columns"
)

Out [19]

 Football Baseball Hockey Basketball

2017 New England P... Houston Astros Pittsburgh Pe... Golden State ...
2018 Philadelphia ... Boston Red Sox Washington Ca... Golden State ...

Much better!
 In summary, the concat function combines two DataFrames by appending one to

the end of the other on either the horizontal axis or the vertical axis. I like to describe
the process as "gluing" two data sets together.

10.4 Left joins
Compared with a concatenation, a join uses a logical criterion to determine which
rows or columns to merge between two data sets. A join can target only rows with
shared values between both data sets, for example. The following sections cover three
types of joins: left, inner, and outer. Let’s walk through them one by one.

 A left join uses keys from one data set to pull in values from another. It is equivalent
to a VLOOKUP operation in Excel. A left join is optimal when one data set is the focal
point of the analysis. We pull in the second data set to provide supplemental informa-
tion related to the primary data set. Consider the diagram in figure 10.1. Think of each
circle as being a DataFrame. The DataFrame on the left is the focus of the analysis.

Figure 10.1 Left join diagram

248 CHAPTER 10 Merging, joining, and concatenating
Here’s a quick reminder of what our groups data set looks like:

In [20] groups.head(3)

Out [20]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
1 6510 Alternative Energy Meetup 4 10001
2 8458 NYC Animal Rights 26 10001

The foreign keys in the category_id column reference the IDs in the categories data
set:

In [21] categories.head(3)

Out [21]

 category_id category_name

0 1 Arts & Culture
1 3 Cars & Motorcycles
2 4 Community & Environment

Let’s execute a left join on groups to add category information for each group. We’ll
use the merge method to merge one DataFrame into another. The method’s first
parameter, right, accepts a DataFrame. The terminology comes from the previous
diagram. The right DataFrame is the circle on the right, the “second” data set. We
can pass a string denoting the type of join to the method’s how parameter; we’ll pass
in "left". We also must tell pandas which columns to use to match values between
the two DataFrames. Let’s add an on parameter with a value of "category_id". We
can use the on parameter only when the column name is equal between DataFrames.
In our case, both the groups and categories DataFrames have a category_id column:

In [22] groups.merge(categories, how = "left", on = "category_id").head()

Out [22]

 group_id name category_id city_id category_name

0 6388 Alternative Heal... 14 10001 Health & Wellbeing
1 6510 Alternative Ener... 4 10001 Community & Envi...
2 8458 NYC Animal Rights 26 10001 NaN
3 8940 The New York Cit... 29 10001 Sci-Fi & Fantasy
4 10104 NYC Pit Bull Group 26 10001 NaN

There it is! Pandas pulls in the categories table’s columns whenever it finds a match
for the category_id value in groups. The one exception is the category_id column,
which is listed only once. Note that when the library does not find a category_id in cat-
egories, it displays NaN values in the category_name column from categories. We can
see an example on rows 2 and 4 of the previous output.

249Inner joins
10.5 Inner joins
An inner join targets values that exist
across two DataFrames. Consider figure
10.2; an inner join targets the colored
overlap in the middle of the circles.

 In an inner join, pandas excludes
values that exist only in the first Data-
Frame and only in the second Data-
Frame.

 Here’s a reminder of what the
groups and categories data sets look
like:

In [23] groups.head(3)

Out [23]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
1 6510 Alternative Energy Meetup 4 10001
2 8458 NYC Animal Rights 26 10001

In [24] categories.head(3)

Out [24]

 category_id category_name

0 1 Arts & Culture
1 3 Cars & Motorcycles
2 4 Community & Environment

Let’s identify the categories that exist in both data sets. From a technical perspective,
we once again want to target the rows from the two DataFrames with equal values in
the category_id columns. In this situation, it doesn’t matter whether we invoke the
merge method on group or categories. An inner join identifies common elements in
both data sets; the results will be the same regardless. For the next example, let’s call
the merge method on groups:

In [25] groups.merge(categories, how = "inner", on = "category_id")

Out [25]

 group_id name category_id city_id category_name

0 6388 Alternative He... 14 10001 Health & Wellb...
1 54126 Energy Healers... 14 10001 Health & Wellb...
2 67776 Flourishing Li... 14 10001 Health & Wellb...
3 111855 Hypnosis & NLP... 14 10001 Health & Wellb...
4 129277 The Live Food ... 14 60601 Health & Wellb...
 … … … … … …

Figure 10.2 Inner join diagram

250 CHAPTER 10 Merging, joining, and concatenating
8032 25536270 New York Cucko... 17 10001 Lifestyle
8033 25795045 Pagans Paradis... 17 10001 Lifestyle
8034 25856573 Fuck Yeah Femm... 17 94101 Lifestyle
8035 26158102 Chicago Crossd... 17 60601 Lifestyle
8036 26219043 Corporate Goes... 17 10001 Lifestyle

8037 rows × 5 columns

The merged DataFrame includes all columns from both the groups and categories
DataFrames. The values in the category_id column appear in both groups and cate-
gories. The category_id column is listed only once. We don’t need a duplicate column
because the values in category_id are the same for groups and categories in an inner
join.

 Let’s add some context to what pandas did. The first four rows in the merged
DataFrame have a category_id of 14. We can filter for that ID in the groups and cate-
gories DataFrames:

In [26] groups[groups["category_id"] == 14]

Out [26]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
52 54126 Energy Healers NYC 14 10001
78 67776 Flourishing Life Meetup 14 10001
121 111855 Hypnosis & NLP NYC - Update Your ... 14 10001
136 129277 The Live Food Chicago Community 14 60601
 … … … … …
16174 26291539 The Transformation Project: Colla... 14 94101
16201 26299876 Cognitive Empathy, How To Transla... 14 10001
16248 26322976 Contemplative Practices Group 14 94101
16314 26366221 The art of getting what you want:... 14 94101
16326 26377698 The art of getting what you want ... 14 94101

870 rows × 4 columns

In [27] categories[categories["category_id"] == 14]

Out [27]

 category_id category_name

8 14 Health & Wellbeing

The merged DataFrame creates one row for each group_id match across the two
DataFrames. There are 870 rows in groups and one row in categories with a group_id
of 14. Pandas pairs each of the 870 rows in groups with the single row in categories
and creates a total of 870 rows in the merged DataFrame. Because an inner join cre-
ates a new row for each value match, the merged DataFrame can be significantly
larger than the original ones. If there were three categories with an ID of 14, for
example, pandas would create 2610 rows (870 x 3).

251Outer joins
10.6 Outer joins
An outer join combines all records
across two data sets. Exclusivity does
not matter with an outer join. Figure
10.3 shows the results of an outer join;
pandas includes all values irrespective
of whether they belong in one data set
or both data sets.

 Here’s a reminder of what the
groups and cities DataFrames look like:

In [28] groups.head(3)

Out [28]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
1 6510 Alternative Energy Meetup 4 10001
2 8458 NYC Animal Rights 26 10001

In [29] cities.head(3)

Out [29]

 id city state zip

0 7093 West New York NJ 07093
1 10001 New York NY 10001
2 13417 New York Mills NY 13417

Let’s merge groups and cities with an outer join. We’ll pull in all cities: the ones exclu-
sive to groups, the ones exclusive to cities, and the ones common to both.

 So far, we’ve used only shared column names to merge data sets. When column
names differ between data sets, we must pass different parameters to the merge
method. Instead of the on parameter, we can use the merge method’s left_on and
right_on parameters. We pass left_on the column name in the left DataFrame
and right_on the column name in the right DataFrame. Here, we perform an outer
join to merge city information from cities into the groups DataFrame:

In [30] groups.merge(
 cities, how = "outer", left_on = "city_id", right_on = "id"
)

Out [30]

 group_id name category_id city_id city state zip

0 6388.0 Altern... 14.0 10001.0 New York NY 10001
1 6510.0 Altern... 4.0 10001.0 New York NY 10001
2 8458.0 NYC An... 26.0 10001.0 New York NY 10001
3 8940.0 The Ne... 29.0 10001.0 New York NY 10001
4 10104.0 NYC Pi... 26.0 10001.0 New York NY 10001
 … … … … … … … …

Figure 10.3 Outer join diagram

252 CHAPTER 10 Merging, joining, and concatenating
16329 243034... Midwes... 34.0 60064.0 North ... IL 60064
16330 NaN NaN NaN NaN New Yo... NY 13417
16331 NaN NaN NaN NaN East C... IN 46312
16332 NaN NaN NaN NaN New Yo... MN 56567
16333 NaN NaN NaN NaN Chicag... CA 95712

16334 rows × 8 columns

The final DataFrame has all city IDs from both data sets. If pandas finds a values
match between the city_id and id columns, it merges the columns from the two Data-
Frames in a single row. We can see some examples in the first five rows. The city_id
column stores the common id.

 If one DataFrame has a value that the other does not, pandas places a NaN value in
the city_id column. We can see some examples at the end of the data set. This place-
ment will happen irrespective of whether groups or cities has the exclusive value.

 We can pass True to the merge method’s indicator parameter to identify which
DataFrame a value belongs to. The merged DataFrame will include a _merge col-
umn that stores the values "both", "left_only", and "right_only":

In [31] groups.merge(
 cities,
 how = "outer",
 left_on = "city_id",
 right_on = "id",
 indicator = True
)

Out [31]

 group_id name category_id city_id city state zip _merge

0 6388.0 Alt... 14.0 100... New... NY 10001 both
1 6510.0 Alt... 4.0 100... New... NY 10001 both
2 8458.0 NYC... 26.0 100... New... NY 10001 both
3 8940.0 The... 29.0 100... New... NY 10001 both
4 101... NYC... 26.0 100... New... NY 10001 both
 … … … … … … … … …
16329 243... Mid... 34.0 600... Nor... IL 60064 both
16330 NaN NaN NaN NaN New... NY 13417 rig...
16331 NaN NaN NaN NaN Eas... IN 46312 rig...
16332 NaN NaN NaN NaN New... MN 56567 rig...
16333 NaN NaN NaN NaN Chi... CA 95712 rig...

16334 rows × 9 columns

We can use the _merge column to filter rows that belong to either of the DataFrames.
The next example extracts rows with a value of "right_only" in the _merge column
or, equivalently, the city IDs that are present only in cities, the right DataFrame:

In [32] outer_join = groups.merge(
 cities,
 how = "outer",
 left_on = "city_id",
 right_on = "id",
 indicator = True
)

253Merging on index labels
 in_right_only = outer_join["_merge"] == "right_only"

 outer_join[in_right_only].head()

Out [32]

 group_id name category_id city_id city state zip _merge

16330 NaN NaN NaN NaN New Y... NY 13417 right...
16331 NaN NaN NaN NaN East ... IN 46312 right...
16332 NaN NaN NaN NaN New Y... MN 56567 right...
16333 NaN NaN NaN NaN Chica... CA 95712 right...

With a few lines of code, we can easily filter out exclusive values in each data set.

10.7 Merging on index labels
Imagine that a DataFrame we’d like to join stores its primary keys in its index. Let’s
simulate this scenario. We can invoke the set_index method on cities to set its id col-
umn as its DataFrame index:

In [33] cities.head(3)

Out [33]

 id city state zip

0 7093 West New York NJ 07093
1 10001 New York NY 10001
2 13417 New York Mills NY 13417

In [34] cities = cities.set_index("id")

In [35] cities.head(3)

Out [35]

 city state zip
id

7093 West New York NJ 07093
10001 New York NY 10001
13417 New York Mills NY 13417

Let’s use a left join to merge cities into groups again. Here’s a quick reminder of what
groups looks like:

In [36] groups.head(3)

Out [36]

 group_id name category_id city_id

0 6388 Alternative Health NYC 14 10001
1 6510 Alternative Energy Meetup 4 10001
2 8458 NYC Animal Rights 26 10001

Now we want to compare the values in the city_id column in groups with the index
labels of cities. When we invoke the merge method, we’ll pass the how parameter an
argument of "left" for a left join. We’ll use the left_on parameter to tell pandas to

254 CHAPTER 10 Merging, joining, and concatenating
look for matches in the city_id column in groups, the left DataFrame. To look for
matches in the index of the right DataFrame, we can provide a different parameter,
right_index, and set it to True. The argument tells pandas to look for city_id
matches in the right DataFrame’s index:

In [37] groups.merge(
 cities,
 how = "left",
 left_on = "city_id",
 right_index = True
)

Out [37]

 group_id name category_id city_id city state zip

0 6388 Alterna... 14 10001 New York NY 10001
1 6510 Alterna... 4 10001 New York NY 10001
2 8458 NYC Ani... 26 10001 New York NY 10001
3 8940 The New... 29 10001 New York NY 10001
4 10104 NYC Pit... 26 10001 New York NY 10001
 … … … … … … … …
16325 26377464 Shinect 34 94101 San Fra... CA 94101
16326 26377698 The art... 14 94101 San Fra... CA 94101
16327 26378067 Streete... 9 60601 Chicago IL 60290
16328 26378128 Just Da... 23 10001 New York NY 10001
16329 26378470 FREE Ar... 31 60601 Chicago IL 60290

16330 rows × 7 columns

The method also supports a complementary left_index parameter. Pass that param-
eter an argument of True to tell pandas to look for matches in the left DataFrame’s
index. The left DataFrame is the one that we invoke the merge method on.

10.8 Coding challenge
We’ve reached the end of our exploration; thanks for joining us (pun intended)! Let’s
practice the concepts introduced in this chapter.

 This coding challenge’s tables summarize sales in a fictional restaurant. The
week_1_sales.csv and week_2_sales.csv files hold listings of weekly transactions. Each
restaurant order includes the ID of a customer who placed an order and the ID of the
food item they purchased. Here’s a preview of the first five rows of week_1_sales:

In [38] pd.read_csv("restaurant/week_1_sales.csv").head()

Out [38]

 Customer ID Food ID

0 537 9
1 97 4
2 658 1
3 202 2
4 155 9

255Coding challenge
The week_2_sales data set has an identical shape. Let’s import the two CSVs and
assign them to week1 and week2 variables:

In [39] week1 = pd.read_csv("restaurant/week_1_sales.csv")
 week2 = pd.read_csv("restaurant/week_2_sales.csv")

The Customer ID columns hold foreign keys that reference values in the ID column
in customers.csv. Each record in customers.csv includes a customer’s first name, last
name, gender, company, and occupation. Let’s import that data set with the
read_csv function and set its ID column as the DataFrame index with the
index_col parameter:

In [40] pd.read_csv("restaurant/customers.csv", index_col = "ID").head()

Out [40]

 First Name Last Name Gender Company Occupation
ID

1 Joseph Perkins Male Dynazzy Community Outreach Specialist
2 Jennifer Alvarez Female DabZ Senior Quality Engineer
3 Roger Black Male Tagfeed Account Executive
4 Steven Evans Male Fatz Registered Nurse
5 Judy Morrison Female Demivee Legal Assistant

In [41] customers = pd.read_csv(
 "restaurant/customers.csv", index_col = "ID"
)

There’s another column of foreign keys in the weeks1 and weeks2 DataFrames. The
Food ID foreign key connects to the ID column in foods.csv. A food item includes an
ID, a name, and a price. When we import this data set, let’s set its Food ID column as
the DataFrame index:

In [42] pd.read_csv("restaurant/foods.csv", index_col = "Food ID")

Out [42]

 Food Item Price
Food ID

1 Sushi 3.99
2 Burrito 9.99
3 Taco 2.99
4 Quesadilla 4.25
5 Pizza 2.49
6 Pasta 13.99
7 Steak 24.99
8 Salad 11.25
9 Donut 0.99
10 Drink 1.75

In [43] foods = pd.read_csv("restaurant/foods.csv", index_col = "Food ID")

With the data sets imported, we’re ready to tackle the exercises.

256 CHAPTER 10 Merging, joining, and concatenating
10.8.1 Problems

Here are the challenges:
1 Concatenate the two weeks of sales data into one DataFrame. Assign the week1

DataFrame a key of "Week 1" and the week2 DataFrame a key of "Week 2".
2 Find the customers who ate at the restaurant both weeks.
3 Find the customers who ate at the restaurant both weeks and ordered the same

item each week.

HINT You can join data sets on multiple columns by passing the on parame-
ter a list of columns.

4 Identify which customers came in only on Week 1 and only on Week 2.
5 Each row in the week1 DataFrame identifies a customer who purchased a food

item. For each row, pull in the customer’s information from the customers
DataFrame.

10.8.2 Solutions

Let’s explore the solutions:

1 Our first challenge is to combine the two weeks of restaurant sales data into a
single DataFrame. The concat function at the top level of pandas offers a per-
fect solution. We can pass the two DataFrames in a list to the function’s objs
parameter. To assign a MultiIndex level to each DataFrame in the result, we’ll
also provide the keys parameter a list with the level labels:

In [44] pd.concat(objs = [week1, week2], keys = ["Week 1", "Week 2"])

Out [44]

 Customer ID Food ID

Week 1 0 537 9
 1 97 4
 2 658 1
 3 202 2
 4 155 9
 … … … …
Week 2 245 783 10
 246 556 10
 247 547 9
 248 252 9
 249 249 6

500 rows × 2 columns

2 Next, we want to identify customers who visited the restaurant both weeks.
From a technical perspective, we need to find the Customer IDs present in both
the week1 and week2 DataFrames. An inner join is what we’re looking for here.
Let’s invoke the merge method on week1 and pass in week2 as the right
DataFrame. We’ll declare the join type as "inner" and tell pandas to look for
shared values in the Customer ID columns:

257Coding challenge
In [45] week1.merge(
 right = week2, how = "inner", on = "Customer ID"
).head()

Out [45]

 Customer ID Food ID_x Food ID_y

0 537 9 5
1 155 9 3
2 155 1 3
3 503 5 8
4 503 5 9

Remember that the inner join shows all matches of customer IDs across the
week1 and week2 DataFramess. Thus, there are duplicates in the result (cus-
tomers 155 and 503). If we wanted to remove duplicates, we could invoke the
drop_duplicates method introduced in chapter 5:

In [46] week1.merge(
 right = week2, how = "inner", on = "Customer ID"
).drop_duplicates(subset = ["Customer ID"]).head()

Out [46]

 Customer ID Food ID_x Food ID_y

0 537 9 5
1 155 9 3
3 503 5 8
5 550 6 7
6 101 7 4

3 The third challenge asks to find the customers who visited the restaurant both
weeks and ordered the same item. Once again, an inner join is the right option
for finding values present in both the left and right DataFrames. This time
around, however, we have to pass the on parameter a list with two columns. The
values in both the Customer ID and Food ID columns must match between
week1 and week2:

In [47] week1.merge(
 right = week2,
 how = "inner",
 on = ["Customer ID", "Food ID"]
)

Out [47]

 Customer ID Food ID

0 304 3
1 540 3
2 937 10
3 233 3
4 21 4
5 21 4
6 922 1
7 578 5
8 578 5s

258 CHAPTER 10 Merging, joining, and concatenating
4 One solution to identify the customers who came in only one week is to use an
outer join. We can match records across the two DataFrames by using values in
the Customer ID column. Let’s pass the indicator parameter a value of True
to add a _merge column. Pandas will indicate whether the Customer ID exists
in only the left table ("left_only"), only the right table ("right_only"),
or both tables ("both"):

In [48] week1.merge(
 right = week2,
 how = "outer",
 on = "Customer ID",
 indicator = True
).head()

Out [48]

 Customer ID Food ID_x Food ID_y _merge

0 537 9.0 5.0 both
1 97 4.0 NaN left_only
2 658 1.0 NaN left_only
3 202 2.0 NaN left_only
4 155 9.0 3.0 both

5 The final challenge asks to pull customer information into the week1 table. A
left join is an optimal solution. Invoke the merge method on the week1 Data-
Frame, passing in the customers DataFrame as the right data set. Pass the how
parameter an argument of "left".

The tricky part of this challenge is that the week1 DataFrame stores the cus-
tomer IDs in its Customer ID column, whereas the customers DataFrame stores
them in its index labels. To solve the problem, we can pass the left_on param-
eter the column name from the week1 DataFrame and the right_index
parameter a value of True:

In [49] week1.merge(
 right = customers,
 how = "left",
 left_on = "Customer ID",
 right_index = True
).head()

Out [49]

 Customer ID Food ID First Name Last Name Gender Company Occupation

0 537 9 Cheryl Carroll Female Zoombeat Regist...
1 97 4 Amanda Watkins Female Ozu Accoun...
2 658 1 Patrick Webb Male Browsebug Commun...
3 202 2 Louis Campbell Male Rhynoodle Accoun...
4 155 9 Carolyn Diaz Female Gigazoom Databa...

Congratulations on completing the coding challenge!

259Summary
Summary
 A primary key is a unique identifier for a record in a data set.
 A foreign key is a reference to a record in another data set.
 The concat function concatenates DataFrames on either the horizontal or

vertical axis.
 The merge method joins two DataFrames based on some logical criterion.
 An inner join identifies common values between two DataFrames. For any

matches, pandas pulls all columns from the right DataFrame into the left
DataFrame.

 An outer join merges two DataFrames. Pandas includes values whether they are
exclusive to one data set or shared.

 A left join pulls in columns from the right DataFrame when their values exist in
the left DataFrame. The operation is equivalent to a VLOOKUP in Excel.

 A left join is ideal when the second DataFrame contains supplemental informa-
tion that we’d like to attach to the primary DataFrame.

Working with dates
and times
A datetime is a data type for storing date and time. It can model a specific date (such
as October 4, 2021), a particular time (such as 11:50 a.m.), or both (such as Octo-
ber 4, 2021 at 11:50 a.m.). Datetimes are valuable because they allow us to track
trends over time. A financial analyst may use datetimes to determine the weekdays
when a stock performs best. A restaurant owner may use them to discover the peak
hours that customers are patronizing the business. An operations manager may use
them to identify the parts of a process that are creating bottlenecks in production.
The when in a data set can often lead to the why.

 In this chapter, we’ll review Python’s built-in datetime objects and see how pan-
das improves them with its Timestamp and Timedelta objects. We’ll also learn

This chapter covers
 Converting Series of strings to datetimes

 Retrieving date and time information from datetime
objects

 Rounding dates to week, month, and quarter ends

 Adding and subtracting datetimes to and from each
other
260

261Introducing the Timestamp object
how to use the library to convert strings to dates, add and subtract offsets of time, cal-
culate durations, and more. There’s no time to waste (pun intended), so let’s dive in.

11.1 Introducing the Timestamp object
A module is a file with Python code. Python's standard library is a collection of more
than 250 modules baked into the language that provide battle-tested solutions to com-
mon problems such as database connections, mathematics, and testing. The standard
library exists so developers can write software that uses core language features rather
than install additional dependencies. It’s often said that Python comes with “batteries
included”; like a toy, the language is ready to be used out of the box.

11.1.1 How Python works with datetimes

To reduce memory consumption, Python does not autoload its standard library mod-
ules by default. Instead, we must explicitly import any desired modules into our proj-
ect. As with an external package (such as pandas), we can import a module with the
import keyword and assign it an alias with the as keyword. The standard library’s
datetime module is our target; it stores classes for working with dates and times. dt is
a popular alias for the datetime module. Let’s spin up a fresh Jupyter Notebook and
import datetime along with the pandas library:

In [1] import datetime as dt
 import pandas as pd

Let’s review four classes in the module: date, time, datetime, and timedelta. (See
appendix B for more details on classes and objects.)

 A date models a single day in history. The object does not store any time. The
date class constructor accepts sequential year, month, and day parameters. All
parameters expect integers. The next example instantiates a date object for my birth-
day, April 12, 1991:

In [2] # The two lines below are equivalent
 birthday = dt.date(1991, 4, 12)
 birthday = dt.date(year = 1991, month = 4, day = 12)
 birthday

Out [2] datetime.date(1991, 4, 12)

The date object saves the constructor’s arguments as object attributes. We can access
their values with the year, month, and day attributes:

In [3] birthday.year

Out [3] 1991

In [4] birthday.month

Out [4] 4

262 CHAPTER 11 Working with dates and times
In [5] birthday.day

Out [5] 12

A date object is immutable—we cannot change its internal state after we create it.
Python will raise an AttributeError exception if we attempt to overwrite any date
attributes:

In [6] birthday.month = 10

AttributeError Traceback (most recent call last)
<ipython-input-15-2690a31d7b19> in <module>
----> 1 birthday.month = 10

AttributeError: attribute 'month' of 'datetime.date' objects is not writable

The complementary time class models a specific time of day. The date is irrelevant.
The time constructor’s first three parameters accept integer arguments for hour,
minute, and second. Like a date object, a time object is immutable. The next
example instantiates a time object modeling 6:43:25 a.m.:

In [7] # The two lines below are equivalent
 alarm_clock = dt.time(6, 43, 25)
 alarm_clock = dt.time(hour = 6, minute = 43, second = 25)
 alarm_clock

Out [7] datetime.time(6, 43, 25)

The default argument for all three parameters is 0. If we instantiate a time object
without arguments, it will represent midnight (12:00:00 a.m.). Midnight is 0 hours, 0
minutes, and 0 seconds into the day:

In [8] dt.time()

Out [8] datetime.time(0, 0)

The next example passes in 9 for the hour parameter, 42 for the second parameter,
and no value for the minute parameter. The time object substitutes 0 for the min-
utes value. The resulting time is 9:00:42 a.m.:

In [9] dt.time(hour = 9, second = 42)

Out [9] datetime.time(9, 0, 42)

The time constructor uses a 24-hour clock; we can pass it an hour value greater than
or equal to 12 to represent a time in the afternoon or evening,. The next example
models 19:43:22 or, equivalently, 7:43:22 p.m.:

In [10] dt.time(hour = 19, minute = 43, second = 22)

Out [10] datetime.time(19, 43, 22)

263Introducing the Timestamp object
The time object saves our constructor arguments as object attributes. We can access
their values with the hour, minute, and second attributes:

In [11] alarm_clock.hour

Out [11] 6

In [12] alarm_clock.minute

Out [12] 43

In [13] alarm_clock.second

Out [13] 25

Next in line is the datetime object, which holds both a date and a time. Its first six
parameters are the year, month, day, hour, minute, and second:

In [14] # The two lines below are equivalent
 moon_landing = dt.datetime(1969, 7, 20, 22, 56, 20)
 moon_landing = dt.datetime(
 year = 1969,
 month = 7,
 day = 20,
 hour = 22,
 minute = 56,
 second = 20
)
 moon_landing

Out [14] datetime.datetime(1969, 7, 20, 22, 56, 20)

The year, month, and day parameters are required. The time-related attributes are
optional and default to 0. The next example models midnight on January 1, 2020
(12:00:00 a.m.). We explicitly pass in the year, month, and day parameters; the hour,
minute, and second parameters implicitly fall back to 0:

In [15] dt.datetime(2020, 1, 1)

Out [15] datetime.datetime(2020, 1, 1, 0, 0)

Our final noteworthy object from the datetime module is timedelta, which models
a duration—a length of time. Its constructor’s parameters include weeks, days, and
hours. All the parameters are optional and default to 0. The constructor adds the
time lengths to calculate the total duration. In the next example, we add 8 weeks and
6 days for a total of 62 days (8 weeks * 7 days + 6 days). Python also adds 3 hours, 58
minutes, and 12 seconds for a grand total of 14,292 seconds (238 minutes * 60 sec-
onds + 12 seconds):

In [16] dt.timedelta(
 weeks = 8,
 days = 6,
 hours = 3,

264 CHAPTER 11 Working with dates and times
 minutes = 58,
 seconds = 12
)

Out [16] datetime.timedelta(days=62, seconds=14292)

Now that we’ve familiarized ourselves with how Python models dates, times, and dura-
tions, let’s explore how pandas builds on these concepts.

11.1.2 How pandas works with datetimes

Python’s datetime module has had its share of criticism. Some common complaints
include

 A large number of modules to keep track of. We introduced only datetime in
this chapter, but additional modules are available for calendars, time conver-
sions, utility functions, and more.

 A large number of classes to remember.
 Complex, difficult object APIs for time-zone logic.

Pandas introduces the Timestamp object as a replacement for Python’s datetime
object. We can view the Timestamp and datetime objects as being siblings; they are
often interchangeable in the pandas ecosystem, such as when being passed as method
arguments. Much as the Series expands on a Python list, the Timestamp adds fea-
tures to the more primitive datetime object. We’ll see some of these bells and whis-
tles as we progress through the chapter.

 The Timestamp constructor is available at the top level of pandas; it accepts the
same parameters as a datetime constructor. The three date-related parameters
(year, month, and day) are required. Time-related parameters are optional and
default to 0. Here, we again model April 12, 1991, a glorious day:

In [17] # The two lines below are equivalent
 pd.Timestamp(1991, 4, 12)
 pd.Timestamp(year = 1991, month = 4, day = 12)

Out [17] Timestamp('1991-04-12 00:00:00')

Pandas considers a Timestamp to be equal to a date/datetime if the two objects
store the same information. We can use the == symbols to compare object equality:

In [18] (pd.Timestamp(year = 1991, month = 4, day = 12)
 == dt.date(year = 1991, month = 4, day = 12))

Out [18] True

In [19] (pd.Timestamp(year = 1991, month = 4, day = 12, minute = 2)
 == dt.datetime(year = 1991, month = 4, day = 12, minute = 2))

Out [19] True

The two objects will be unequal if there is any difference in date or time. The next
example instantiates a Timestamp with a minute value of 2 and a datetime with a
minute value of 1. The equality comparison yields False:

265Introducing the Timestamp object
In [20] (pd.Timestamp(year = 1991, month = 4, day = 12, minute = 2)
 == dt.datetime(year = 1991, month = 4, day = 12, minute = 1))

Out [20] False

The Timestamp constructor is remarkably flexible and accepts a variety of inputs. The
next example passes the constructor a string instead of a sequence of integers. The text
stores a date in the common YYYY-MM-DD format (four-digit year, two-digit month, two-
digit day). Pandas correctly deciphers the month, day, and year from the input:

In [21] pd.Timestamp("2015-03-31")

Out [21] Timestamp('2015-03-31 00:00:00')

Pandas recognizes many standard datetime string formats. The next example replaces
the dashes in the date string with slashes:

In [22] pd.Timestamp("2015/03/31")

Out [22] Timestamp('2015-03-31 00:00:00')

The next example passes a string in MM/DD/YYYY format, which is no problem for
pandas:

In [23] pd.Timestamp("03/31/2015")

Out [23] Timestamp('2015-03-31 00:00:00')

We can also include the time in a variety of written formats:

In [24] pd.Timestamp("2021-03-08 08:35:15")

Out [24] Timestamp('2021-03-08 08:35:15')

In [25] pd.Timestamp("2021-03-08 6:13:29 PM")

Out [25] Timestamp('2021-03-08 18:13:29')

Finally, the Timestamp constructor accepts Python’s native date, time, and date-
time objects. The next example parses data from a datetime object:

In [26] pd.Timestamp(dt.datetime(2000, 2, 3, 21, 35, 22))

Out [26] Timestamp('2000-02-03 21:35:22')

The Timestamp object implements all datetime attributes, such as hour, minute,
and second. The next example saves the previous Timestamp to a variable and then
outputs several attributes:

In [27] my_time = pd.Timestamp(dt.datetime(2000, 2, 3, 21, 35, 22))
 print(my_time.year)
 print(my_time.month)
 print(my_time.day)
 print(my_time.hour)
 print(my_time.minute)
 print(my_time.second)

266 CHAPTER 11 Working with dates and times
Out [27] 2000
 2
 3
 21
 35
 22

Pandas does its best to ensure that its datetime objects work similarly to Python’s built-
in ones. We can consider the objects to be effectively swappable in pandas operations.

11.2 Storing multiple timestamps in a DatetimeIndex
An index is the collection of identifier labels attached to a pandas data structure. The
most common index we’ve encountered so far is the RangeIndex, a sequence of
ascending or descending numeric values. We can access the index of a Series or a
DataFrame via the index attribute:

In [28] pd.Series([1, 2, 3]).index

Out [28] RangeIndex(start=0, stop=3, step=1)

Pandas uses an Index object to store a collection of string labels. In the next example,
notice that the index object pandas attaches to a Series changes based on its contents:

In [29] pd.Series([1, 2, 3], index = ["A", "B", "C"]).index

Out [29] Index(['A', 'B', 'C'], dtype='object')

The DatetimeIndex is an index for storing Timestamp objects. If we pass a list of
Timestamps to the Series constructor’s index parameter, pandas will attach a
DatetimeIndex to the Series:

In [30] timestamps = [
 pd.Timestamp("2020-01-01"),
 pd.Timestamp("2020-02-01"),
 pd.Timestamp("2020-03-01"),
]

 pd.Series([1, 2, 3], index = timestamps).index

Out [30] DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01'],
 dtype='datetime64[ns]', freq=None)

Pandas will also use a DatetimeIndex if we pass a list of Python datetime objects:

In [31] datetimes = [
 dt.datetime(2020, 1, 1),
 dt.datetime(2020, 2, 1),
 dt.datetime(2020, 3, 1),
]

 pd.Series([1, 2, 3], index = datetimes).index

Out [31] DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01'],
 dtype='datetime64[ns]', freq=None)

267Storing multiple timestamps in a DatetimeIndex
We can also create a DatetimeIndex from scratch. Its constructor is available at the
top level of pandas. The constructor’s data parameter accepts any iterable collection
of dates. We can pass the dates as strings, datetimes, Timestamps, or even a mix of
data types. Pandas will convert all values to equivalent Timestamps and store them
within the index:

In [32] string_dates = ["2018/01/02", "2016/04/12", "2009/09/07"]
 pd.DatetimeIndex(data = string_dates)

Out [32] DatetimeIndex(['2018-01-02', '2016-04-12', '2009-09-07'],
 dtype='datetime64[ns]', freq=None)

In [33] mixed_dates = [
 dt.date(2018, 1, 2),
 "2016/04/12",
 pd.Timestamp(2009, 9, 7)
]

 dt_index = pd.DatetimeIndex(mixed_dates)
 dt_index

Out [33] DatetimeIndex(['2018-01-02', '2016-04-12', '2009-09-07'],
 dtype='datetime64[ns]', freq=None)

Now that we have a DatetimeIndex assigned to a dt_index variable, let’s attach it to
a pandas data structure. The next example connects the index to a sample Series:

In [34] s = pd.Series(data = [100, 200, 300], index = dt_index)
 s

Out [34] 2018-01-02 100
 2016-04-12 200
 2009-09-07 300
 dtype: int64

Date- and time-related operations become possible in pandas only when we store our
values as Timestamps rather than strings. Pandas can’t deduce a day of the week from
a string like "2018-01-02" because it views it as being a collection of digits and
dashes, not an actual date. That’s why it’s imperative to convert all relevant string col-
umns to datetimes when importing a data set for the first time.

 We can use the sort_index method to sort a DatetimeIndex in ascending or
descending order. The next example sorts the index dates in ascending order (earli-
est to latest):

In [35] s.sort_index()

Out [35] 2009-09-07 300
 2016-04-12 200
 2018-01-02 100
 dtype: int64

Pandas accounts for both date and time when sorting or comparing datetimes. If two
Timestamps use the same date, pandas will compare their hours, minutes, seconds,
and so on.

268 CHAPTER 11 Working with dates and times
 A variety of sorting and comparison operations are available for Timestamps out
of the box. The less-than symbol (<) , for example, checks whether one Timestamp
occurs earlier than another:

In [36] morning = pd.Timestamp("2020-01-01 11:23:22 AM")
 evening = pd.Timestamp("2020-01-01 11:23:22 PM")

 morning < evening

Out [36] True

In section 11.7, we’ll learn how to apply these types of comparisons to all values in a
Series.

11.3 Converting column or index values to datetimes
Our first data set for this chapter, disney.csv, holds nearly 60 years’ worth of stock
prices for the Walt Disney Company, one of the world’s most recognized entertain-
ment brands. Each row includes a date, the stock’s highest and lowest value through-
out that day, and its opening and closing price:

In [37] disney = pd.read_csv("disney.csv")
 disney.head()

Out [37]

 Date High Low Open Close

0 1962-01-02 0.096026 0.092908 0.092908 0.092908
1 1962-01-03 0.094467 0.092908 0.092908 0.094155
2 1962-01-04 0.094467 0.093532 0.094155 0.094155
3 1962-01-05 0.094779 0.093844 0.094155 0.094467
4 1962-01-08 0.095714 0.092285 0.094467 0.094155

The read_csv function defaults to importing all values in non-numeric columns as
strings. We can access the dtypes attribute on the DataFrame to see the columns’
data types. Notice that the Date column has a data type of "object", the pandas des-
ignation for a string:

In [38] disney.dtypes

Out [38] Date object
 High float64
 Low float64
 Open float64
 Close float64
 dtype: object

We must explicitly tell pandas which columns’ values to convert to datetimes. One
option we’ve seen before is the read_csv function’s parse_dates parameter, intro-
duced in chapter 3. We can pass the parameter a list of columns whose values pandas
should convert to datetimes:

In [39] disney = pd.read_csv("disney.csv", parse_dates = ["Date"])

269Using the DatetimeProperties object
An alternative solution is the to_datetime conversion function at the top level of
pandas. The function accepts an iterable object (such as a Python list, tuple, Series,
or index), converts its values to datetimes, and returns the new values in a Dateti-
meIndex. Here’s a small example:

In [40] string_dates = ["2015-01-01", "2016-02-02", "2017-03-03"]
 dt_index = pd.to_datetime(string_dates)
 dt_index

Out [40] DatetimeIndex(['2015-01-01', '2016-02-02', '2017-03-03'],
 dtype='datetime64[ns]', freq=None)

Let’s pass the Date Series from the disney DataFrame to the to_datetime
function:

In [41] pd.to_datetime(disney["Date"]).head()

Out [41] 0 1962-01-02
 1 1962-01-03
 2 1962-01-04
 3 1962-01-05
 4 1962-01-08
 Name: Date, dtype: datetime64[ns]

We’ve got a Series of datetimes, so let’s overwrite the original DataFrame. The next
code sample replaces the original Date column with the new datetime Series.
Remember that Python evaluates the right side of an equal sign first:

In [42] disney["Date"] = pd.to_datetime(disney["Date"])

Let’s check on the Date column again via the dtypes attribute:

In [43] disney.dtypes

Out [43] Date datetime64[ns]
 High float64
 Low float64
 Open float64
 Close float64
 dtype: object

Excellent; we have a datetime column! With our Date values stored correctly, we can
explore the powerful datetime functionalities that pandas provides out of the box.

11.4 Using the DatetimeProperties object
A datetime Series holds a special dt attribute that exposes a DatetimeProperties
object:

In [44] disney["Date"].dt

Out [44] <pandas.core.indexes.accessors.DatetimeProperties object at
 0x116247950>

270 CHAPTER 11 Working with dates and times
We can access attributes and invoke methods on the DatetimeProperties object to
extract information from the columns’ datetime values. The dt attribute is to date-
times what the str attribute is to strings. (See chapter 6 for a review of str.) Both
attributes specialize in manipulations of a specific type of data.

 Let’s begin our exploration of the DatetimeProperties object with the day attri-
bute, which pulls out the day from each date. Pandas returns the values in a new Series:

In [45] disney["Date"].head(3)

Out [45] 0 1962-01-02
 1 1962-01-03
 2 1962-01-04
 Name: Date, dtype: datetime64[ns]

In [46] disney["Date"].dt.day.head(3)

Out [46] 0 2
 1 3
 2 4
 Name: Date, dtype: int64

The month attribute returns a Series with the month numbers. January has a month
value of 1, February has a month value of 2, and so on. It’s important to note that this
is different from how we typically count in Python/pandas, where we assign the first
item a value of 0:

In [47] disney["Date"].dt.month.head(3)

Out [47] 0 1
 1 1
 2 1
 Name: Date, dtype: int64

The year attribute returns a new Series with the years:

In [48] disney["Date"].dt.year.head(3)

Out [48] 0 1962
 1 1962
 2 1962
 Name: Date, dtype: int64

The previous attributes are pretty simple. We can ask pandas to extract more-interest-
ing pieces of information. One example is the dayofweek attribute, which returns a
Series of numbers for each date’s day of the week. 0 denotes Monday, 1 denotes
Tuesday, and so on up to 6 for Sunday. In the following output, the value of 1 at index
position 0 indicates that January 2, 1962, fell on a Tuesday:

In [49] disney["Date"].dt.dayofweek.head()

Out [49] 0 1
 1 2
 2 3
 3 4

271Using the DatetimeProperties object
 4 0
 Name: Date, dtype: int64

What if we wanted the weekday’s name instead of its number? The day_name method
does the trick. Be careful with the syntax. We invoke the method on the dt object, not
on the Series itself:

In [50] disney["Date"].dt.day_name().head()

Out [50] 0 Tuesday
 1 Wednesday
 2 Thursday
 3 Friday
 4 Monday
 Name: Date, dtype: object

We can pair these dt attributes and methods with other pandas features for advanced
analyses. Here’s an example. Let’s calculate the average performance of Disney’s stock
by weekday. We’ll begin by attaching the Series returned from the dt.day_name
method to the disney DataFrame:

In [51] disney["Day of Week"] = disney["Date"].dt.day_name()

We can group the rows based on the values in the new Day of Week column (a tech-
nique introduced in chapter 7):

In [52] group = disney.groupby("Day of Week")

We can invoke the GroupBy object’s mean method to calculate the average of values
for each grouping:

In [53] group.mean()

Out [53]

 High Low Open Close
Day of Week

Friday 23.767304 23.318898 23.552872 23.554498
Monday 23.377271 22.930606 23.161392 23.162543
Thursday 23.770234 23.288687 23.534561 23.540359
Tuesday 23.791234 23.335267 23.571755 23.562907
Wednesday 23.842743 23.355419 23.605618 23.609873

In three lines of code, we’ve calculated the average stock performance by day of week.
 Let’s come back to dt object methods. The complementary month_name method

returns a Series with the dates’ month names:

In [54] disney["Date"].dt.month_name().head()

Out [54] 0 January
 1 January
 2 January
 3 January
 4 January
 Name: Date, dtype: object

272 CHAPTER 11 Working with dates and times
Some attributes on the dt object return Booleans. Suppose that we want to explore
Disney’s stock performance at the start of each quarter in its history. The four quarters
of a business year start on January 1, April 1, July 1, and October 1. The is_quar-
ter_start attribute returns a Boolean Series in which True denotes that the row’s
date fell on a quarter start day:

In [55] disney["Date"].dt.is_quarter_start.tail()

Out [55] 14722 False
 14723 False
 14724 False
 14725 True
 14726 False
 Name: Date, dtype: bool

We can use the Boolean Series to extract the disney rows that fell at the beginning of
a quarter. The next example uses the familiar square-bracket syntax to pull out the rows:

In [56] disney[disney["Date"].dt.is_quarter_start].head()

Out [56]

 Date High Low Open Close Day of Week

189 1962-10-01 0.064849 0.062355 0.063913 0.062355 Monday
314 1963-04-01 0.087989 0.086704 0.087025 0.086704 Monday
377 1963-07-01 0.096338 0.095053 0.096338 0.095696 Monday
441 1963-10-01 0.110467 0.107898 0.107898 0.110467 Tuesday
565 1964-04-01 0.116248 0.112394 0.112394 0.116248 Wednesday

We can use the is_quarter_end attribute to pull out dates that fell at the end of a
quarter:

In [57] disney[disney["Date"].dt.is_quarter_end].head()

Out [57]

 Date High Low Open Close Day of Week

251 1962-12-31 0.074501 0.071290 0.074501 0.072253 Monday
440 1963-09-30 0.109825 0.105972 0.108541 0.107577 Monday
502 1963-12-31 0.101476 0.096980 0.097622 0.101476 Tuesday
564 1964-03-31 0.115605 0.112394 0.114963 0.112394 Tuesday
628 1964-06-30 0.101476 0.100191 0.101476 0.100834 Tuesday

The complementary is_month_start and is_month_end attributes confirm that a
date fell at the beginning or end of a month:

In [58] disney[disney["Date"].dt.is_month_start].head()

Out [58]

 Date High Low Open Close Day of Week

22 1962-02-01 0.096338 0.093532 0.093532 0.094779 Thursday
41 1962-03-01 0.095714 0.093532 0.093532 0.095714 Thursday
83 1962-05-01 0.087296 0.085426 0.085738 0.086673 Tuesday
105 1962-06-01 0.079814 0.077943 0.079814 0.079814 Friday
147 1962-08-01 0.068590 0.068278 0.068590 0.068590 Wednesday

273Adding and subtracting durations of time
In [59] disney[disney["Date"].dt.is_month_end].head()

Out [59]

 Date High Low Open Close Day of Week

21 1962-01-31 0.093844 0.092908 0.093532 0.093532 Wednesday
40 1962-02-28 0.094779 0.093220 0.094155 0.093220 Wednesday
82 1962-04-30 0.087608 0.085738 0.087608 0.085738 Monday
104 1962-05-31 0.082308 0.079814 0.079814 0.079814 Thursday
146 1962-07-31 0.069214 0.068278 0.068278 0.068590 Tuesday

The is_year_start attribute returns True if a date falls at the start of a year. The
next example returns an empty DataFrame; the stock market is closed on New Year’s
Day, so no dates in the data set fit the criteria:

In [60] disney[disney["Date"].dt.is_year_start].head()

Out [60]

 Date High Low Open Close Day of Week

The complementary is_year_end attribute returns True if a date falls at the end of
a year:

In [61] disney[disney["Date"].dt.is_year_end].head()

Out [61]

 Date High Low Open Close Day of Week

251 1962-12-31 0.074501 0.071290 0.074501 0.072253 Monday
502 1963-12-31 0.101476 0.096980 0.097622 0.101476 Tuesday
755 1964-12-31 0.117853 0.116890 0.116890 0.116890 Thursday
1007 1965-12-31 0.154141 0.150929 0.153498 0.152214 Friday
1736 1968-12-31 0.439301 0.431594 0.434163 0.436732 Tuesday

Regardless of the attribute, the filtering process remains the same: create a Boolean
Series and then pass it inside square brackets after the DataFrame.

11.5 Adding and subtracting durations of time
We can add or subtract consistent durations of time with the DateOffset object. Its
constructor is available at the top level of pandas. The constructor accepts parameters
for years, months, days, and more. The next example models a time of three years,
four months, and three days:

In [62] pd.DateOffset(years = 3, months = 4, days = 5)

Out [62] <DateOffset: days=5, months=4, years=3>

Here’s a reminder of the first five rows of the disney DataFrame:

In [63] disney["Date"].head()

Out [63] 0 1962-01-02
 1 1962-01-03
 2 1962-01-04

274 CHAPTER 11 Working with dates and times
 3 1962-01-05
 4 1962-01-08
 Name: Date, dtype: datetime64[ns]

For the sake of example, let’s imagine that our recordkeeping system malfunctioned,
and the dates in the Date column are off by five days. We can add a consistent amount
of time to each date in a datetime Series with a plus sign (+) and a DateOffset
object. The plus sign means “move forward” or “into the future.” The next example
adds five days to each date in the Date column:

In [64] (disney["Date"] + pd.DateOffset(days = 5)).head()

Out [64] 0 1962-01-07
 1 1962-01-08
 2 1962-01-09
 3 1962-01-10
 4 1962-01-13
 Name: Date, dtype: datetime64[ns]

When paired with a DateOffset, the minus sign (-) subtracts a duration from each
date in a datetime Series. The minus sign means “move backward” or “into the
past.” The next example moves each date back three days:

In [65] (disney["Date"] - pd.DateOffset(days = 3)).head()

Out [65] 0 1961-12-30
 1 1961-12-31
 2 1962-01-01
 3 1962-01-02
 4 1962-01-05
 Name: Date, dtype: datetime64[ns]

Although the previous output does not show it, the Timestamp objects do store a time
internally. When we converted the Date column’s values to datetimes, pandas assumed
a time of midnight for each date. The next example adds an hours parameter to the
DateOffset constructor to add a consistent time to each datetime in Date. The
resulting Series displays the date and time:

In [66] (disney["Date"] + pd.DateOffset(days = 10, hours = 6)).head()

Out [66] 0 1962-01-12 06:00:00
 1 1962-01-13 06:00:00
 2 1962-01-14 06:00:00
 3 1962-01-15 06:00:00
 4 1962-01-18 06:00:00
 Name: Date, dtype: datetime64[ns]

Pandas applies the same logic when subtracting a duration. The next example sub-
tracts one year, three months, ten days, six hours, and three minutes from each date:

In [67] (
 disney["Date"]
 - pd.DateOffset(
 years = 1, months = 3, days = 10, hours = 6, minutes = 3

275Date offsets
)
).head()

Out [67] 0 1960-09-21 17:57:00
 1 1960-09-22 17:57:00
 2 1960-09-23 17:57:00
 3 1960-09-24 17:57:00
 4 1960-09-27 17:57:00
 Name: Date, dtype: datetime64[ns]

The DateOffset constructor supports additional keyword parameters for seconds,
microseconds, and nanoseconds. See the pandas documentation for more info.

11.6 Date offsets
The DateOffset object is optimal for adding or subtracting a consistent amount of
time to or from each date. Real-world analyses often demand a more dynamic calcula-
tion. Let’s say we want to round each date to the end of its current month. Each date
is a different number of days from the end of its month, so a consistent DateOffset
addition won’t suffice.

 Pandas ships with prebuilt offset objects for dynamic time-based calculations.
These objects are defined in offsets.py, a module within the library. In our code,
we have to prefix these offsets with their complete path: pd.offsets.

 One sample offset is MonthEnd, which rounds each date to the next month-end.
Here’s a refresher on the last five rows in the Date column:

In [68] disney["Date"].tail()

Out [68] 14722 2020-06-26
 14723 2020-06-29
 14724 2020-06-30
 14725 2020-07-01
 14726 2020-07-02
 Name: Date, dtype: datetime64[ns]

We can apply the addition and subtraction syntax from section 11.5 to pandas’ offset
objects. The next example returns a new Series that rounds each datetime to the
month-end. The plus sign moves forward in time, so we move to the next month-end:

In [69] (disney["Date"] + pd.offsets.MonthEnd()).tail()

Out [69] 14722 2020-06-30
 14723 2020-06-30
 14724 2020-07-31
 14725 2020-07-31
 14726 2020-07-31
 Name: Date, dtype: datetime64[ns]

There has to be some movement in the intended direction. Pandas cannot round a
date to the same date. Thus, if a date falls at the end of a month, the library rounds it
to the end of the following month. Pandas rounds 2020-06-30 at index position 14724
to 2020-07-31, the next available month-end.

276 CHAPTER 11 Working with dates and times
 The minus sign moves each date backward in time. The next example uses the
MonthEnd offset to round the dates to the previous month-end. Pandas rounds the
first three dates (2020-06-26, 2020-06-29, and 2020-06-30) to 2020-05-31, the last day in
May. It rounds the final two dates (2020-07-01 and 2020-07-02) to 2020-06-30, the last
day in June:

In [70] (disney["Date"] - pd.offsets.MonthEnd()).tail()

Out [70] 14722 2020-05-31
 14723 2020-05-31
 14724 2020-05-31
 14725 2020-06-30
 14726 2020-06-30
 Name: Date, dtype: datetime64[ns]

The complementary MonthBegin offset rounds to the first date of a month. The next
example uses a + sign to round each date to the next month’s beginning. Pandas
rounds the first three dates (2020-06-26, 2020-06-29, and 2020-06-30) to 2020-07-01,
the beginning of July. Pandas rounds the two remaining July dates (2020-07-01 and
2020-07-02) to 2020-08-01, the first day of August:

In [71] (disney["Date"] + pd.offsets.MonthBegin()).tail()

Out [71] 14722 2020-07-01
 14723 2020-07-01
 14724 2020-07-01
 14725 2020-08-01
 14726 2020-08-01
 Name: Date, dtype: datetime64[ns]

We can pair the MonthBegin offset with the minus sign to round dates backward to
the beginning of a month. In the next example, pandas rounds the first three dates
(2020-06-26, 2020-06-29, and 2020-06-30) to the start of June, 2020-06-01. It rounds the
last date, 2020-07-02, to the beginning of July, 2020-07-01. The curious case is 2020-07-
01 at index position 14725. As we mentioned earlier, pandas cannot round a date to
the same date. There has to be some movement backward, so pandas rounds to the
previous month’s start, 2020-06-01:

In [72] (disney["Date"] - pd.offsets.MonthBegin()).tail()

Out [72] 14722 2020-06-01
 14723 2020-06-01
 14724 2020-06-01
 14725 2020-06-01
 14726 2020-07-01
 Name: Date, dtype: datetime64[ns]

A special group of offsets is available for business time calculations; their names begin
with a capital "B". The Business Month End (BMonthEnd) offset, for example, rounds
to the month’s last business day. The five business days are Monday, Tuesday, Wednes-
day, Thursday, and Friday.

277The Timedelta object
 Consider the following Series of three datetimes. The three dates fall on Thurs-
day, Friday, and Saturday, respectively:

In [73] may_dates = ["2020-05-28", "2020-05-29", "2020-05-30"]
 end_of_may = pd.Series(pd.to_datetime(may_dates))
 end_of_may

Out [73] 0 2020-05-28
 1 2020-05-29
 2 2020-05-30
 dtype: datetime64[ns]

Let’s compare the MonthEnd and BMonthEnd offsets. When we pair the MonthEnd
offset with a plus sign, pandas rounds all three dates to the last day of May, 2020-05-31.
Whether that date falls on a business day or the weekend is irrelevant:

In [74] end_of_may + pd.offsets.MonthEnd()

Out [74] 0 2020-05-31
 1 2020-05-31
 2 2020-05-31
 dtype: datetime64[ns]

The BMonthEnd offset returns a different set of results. The last business day of May
2020 is Friday, May 29. Pandas rounds the first date in the Series, 2020-05-28, to the
29th. The next date, 2020-05-29, falls on the month’s last business date. Pandas cannot
round a date to the same date, so it rounds 2020-05-29 to June’s last business day,
2020-06-30, a Tuesday. The last date in the Series, 2020-05-30, is a Saturday. No busi-
ness days are left in May, so pandas similarly rounds the date to June’s last business
day, 2020-06-30:

In [75] end_of_may + pd.offsets.BMonthEnd()

Out [75] 0 2020-05-29
 1 2020-06-30
 2 2020-06-30
 dtype: datetime64[ns]

The pd.offsets module includes additional offsets for rounding to the starts and
ends of quarters, business quarters, years, business years, and more. Feel free to
explore them in your free time.

11.7 The Timedelta object
You may recall Python’s native timedelta object from earlier in the chapter. A time-
delta models duration—the distance between two times. A duration such as one
hour represents a length of time; it does not have a specific date or time attached.
Pandas models a duration with its own Timedelta object.

NOTE It’s easy to confuse the two objects. timedelta is built into Python,
whereas Timedelta is built into pandas. The two are interchangeable when
used with pandas operations.

278 CHAPTER 11 Working with dates and times
The Timedelta constructor is available at the top level of pandas. It accepts keyword
parameters for units of time such as days, hours, minutes, and seconds. The next
example instantiates a Timedelta modeling eight days, seven hours, six minutes, and
five seconds:

In [76] duration = pd.Timedelta(
 days = 8,
 hours = 7,
 minutes = 6,
 seconds = 5
)

 duration

Out [76] Timedelta('8 days 07:06:05')

The to_timedelta function at the top level of pandas converts its argument to a
Timedelta object. We can pass in a string, as in the next example:

In [77] duration = pd.to_timedelta("3 hours, 5 minutes, 12 seconds")

Out [77] Timedelta('0 days 03:05:12')

We can also pass an integer to the to_timedelta function along with a unit param-
eter. The unit parameter declares the unit of time that the number represents.
Accepted arguments include "hour", "day", and "minute". The next example’s
Timedelta models a five-hour duration:

In [78] pd.to_timedelta(5, unit = "hour")

Out [78] Timedelta('0 days 05:00:00')

We can pass an iterable object such as a list to the to_timedelta function to convert
its values to Timedeltas. Pandas will store the Timedeltas in a TimedeltaIndex, a
pandas index for storing durations:

In [79] pd.to_timedelta([5, 10, 15], unit = "day")

Out [79] TimedeltaIndex(['5 days', '10 days', '15 days'],
 dtype='timedelta64[ns]', freq=None)

Usually, Timedelta objects are derived rather than created from scratch. The
subtraction of one Timestamp from another, for example, returns a Timedelta
automatically:

In [80] pd.Timestamp("1999-02-05") - pd.Timestamp("1998-05-24")

Out [80] Timedelta('257 days 00:00:00')

Now that we’ve gotten acquainted with Timedeltas, let’s import our second data set
for the chapter: deliveries.csv. The CSV tracks product shipments for a fictional com-
pany. Each row includes an order date and a delivery date:

279The Timedelta object
In [81] deliveries = pd.read_csv("deliveries.csv")
 deliveries.head()

Out [81]

 order_date delivery_date

0 5/24/98 2/5/99
1 4/22/92 3/6/98
2 2/10/91 8/26/92
3 7/21/92 11/20/97
4 9/2/93 6/10/98

Let’s practice converting the values in the two columns to datetimes. Yes, we can use
the parse_dates parameter, but let’s try another approach. One option is invoking
the to_datetime function twice, once for the order_date column and once for the
delivery_date column, and overwriting the existing DataFrame columns:

In [82] deliveries["order_date"] = pd.to_datetime(
 deliveries["order_date"]
)

 deliveries["delivery_date"] = pd.to_datetime(
 deliveries["delivery_date"]
)

A more scalable solution is to iterate over the column names with a for loop. We can
reference a deliveries column dynamically, use to_datetime to create a Datetime-
Index of Timestamps from it, and then overwrite the original column:

In [83] for column in ["order_date", "delivery_date"]:
 deliveries[column] = pd.to_datetime(deliveries[column])

Let’s take a look at deliveries. The new column format confirms that we’ve converted
the strings to datetimes:

In [84] deliveries.head()

Out [84]

 order_date delivery_date

0 1998-05-24 1999-02-05
1 1992-04-22 1998-03-06
2 1991-02-10 1992-08-26
3 1992-07-21 1997-11-20
4 1993-09-02 1998-06-10

Let’s calculate the duration of each shipment. With pandas, this calculation is as sim-
ple as subtracting the order_date column from the delivery_date column:

In [85] (deliveries["delivery_date"] - deliveries["order_date"]).head()

Out [85] 0 257 days
 1 2144 days
 2 563 days

280 CHAPTER 11 Working with dates and times
 3 1948 days
 4 1742 days
 dtype: timedelta64[ns]

Pandas returns a Series of timedeltas. Let’s attach the new Series to the end of
the deliveries DataFrame:

In [86] deliveries["duration"] = (
 deliveries["delivery_date"] - deliveries["order_date"]
)
 deliveries.head()

Out [86]

 order_date delivery_date duration

0 1998-05-24 1999-02-05 257 days
1 1992-04-22 1998-03-06 2144 days
2 1991-02-10 1992-08-26 563 days
3 1992-07-21 1997-11-20 1948 days
4 1993-09-02 1998-06-10 1742 days

Now we have two Timestamp columns and one Timedelta column:

In [87] deliveries.dtypes

Out [87] order_date datetime64[ns]
 delivery_date datetime64[ns]
 duration timedelta64[ns]
 dtype: object

We can add or subtract Timedeltas from Timestamp objects. The next example sub-
tracts each row’s duration from the delivery_date column. Predictably, the values in
the new Series are identical to the values in the order_date column:

In [88] (deliveries["delivery_date"] - deliveries["duration"]).head()

Out [88] 0 1998-05-24
 1 1992-04-22
 2 1991-02-10
 3 1992-07-21
 4 1993-09-02
 dtype: datetime64[ns]

A plus symbol adds a Timedelta to a Timestamp. Let’s say we wanted to find the date
of delivery if each package took twice as long to arrive. We can add the Timedelta
values in the duration column to the Timestamp values in the delivery_date column:

In [89] (deliveries["delivery_date"] + deliveries["duration"]).head()

Out [89] 0 1999-10-20
 1 2004-01-18
 2 1994-03-12
 3 2003-03-22
 4 2003-03-18
 dtype: datetime64[ns]

281The Timedelta object
The sort_values method works with Timedelta Series. The next example sorts
the duration column in ascending order, from the shortest delivery to the longest one:

In [90] deliveries.sort_values("duration")

Out [90]

 order_date delivery_date duration

454 1990-05-24 1990-06-01 8 days
294 1994-08-11 1994-08-20 9 days
10 1998-05-10 1998-05-19 9 days
499 1993-06-03 1993-06-13 10 days
143 1997-09-20 1997-10-06 16 days
 … … … …
152 1990-09-18 1999-12-19 3379 days
62 1990-04-02 1999-08-16 3423 days
458 1990-02-13 1999-11-15 3562 days
145 1990-03-07 1999-12-25 3580 days
448 1990-01-20 1999-11-12 3583 days

501 rows × 3 columns

Mathematical methods are also available on Timedelta Series. The next few exam-
ples highlight three methods we’ve used throughout the book: max for the largest
value, min for the smallest value, and mean for the average:

In [91] deliveries["duration"].max()

Out [91] Timedelta('3583 days 00:00:00')

In [92] deliveries["duration"].min()

Out [92] Timedelta('8 days 00:00:00')

In [93] deliveries["duration"].mean()

Out [93] Timedelta('1217 days 22:53:53.532934')

Here’s the next challenge. Let’s filter the DataFrame for packages that took more
than a year to deliver. We can use the greater-than symbol (>) to compare each dura-
tion column value to a fixed duration. We can specify the length of time as a Time-
delta or as a string. The next example uses "365 days":

In [94] # The two lines below are equivalent
 (deliveries["duration"] > pd.Timedelta(days = 365)).head()
 (deliveries["duration"] > "365 days").head()

Out [94] 0 False
 1 True
 2 True
 3 True
 4 True
 Name: Delivery Time, dtype: bool

282 CHAPTER 11 Working with dates and times
Let’s use the Boolean Series to filter for the deliveries rows with a delivery time
greater than 365 days:

In [95] deliveries[deliveries["duration"] > "365 days"].head()

Out [95]

 order_date delivery_date duration

1 1992-04-22 1998-03-06 2144 days
2 1991-02-10 1992-08-26 563 days
3 1992-07-21 1997-11-20 1948 days
4 1993-09-02 1998-06-10 1742 days
6 1990-01-25 1994-10-02 1711 days

We can get as granular as needed with the comparison duration. The next example
includes the days, hours, and minutes in the string, separating the units of time with
commas:

In [96] long_time = (
 deliveries["duration"] > "2000 days, 8 hours, 4 minutes"
)

 deliveries[long_time].head()

Out [96]

 order_date delivery_date duration

1 1992-04-22 1998-03-06 2144 days
7 1992-02-23 1998-12-30 2502 days
11 1992-10-17 1998-10-06 2180 days
12 1992-05-30 1999-08-15 2633 days
15 1990-01-20 1998-07-24 3107 days

As a reminder, Pandas can sort Timedelta columns. To discover the longest or short-
est durations, we can invoke the sort_values method on the duration Series.

11.8 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

11.8.1 Problems

Citi Bike NYC is New York City’s official bike-sharing program. Residents and tourists
can pick up and drop off bicycles at hundreds of locations around the city. Ride data is
publicly available and released monthly by the city at https://www.citibikenyc.com/
system-data. citibike.csv is a collection of ~1.9 million rides that cyclists took in June
2020. For simplicity’s sake, the data set has been modified from its original version
and includes only two columns: each ride’s start time and end time. Let’s import the
data set and assign it to a citi_bike variable:

In [97] citi_bike = pd.read_csv("citibike.csv")
 citi_bike.head()

Out [97]

https://www.citibikenyc.com/system-data
https://www.citibikenyc.com/system-data

283Coding challenge
 start_time stop_time

0 2020-06-01 00:00:03.3720 2020-06-01 00:17:46.2080
1 2020-06-01 00:00:03.5530 2020-06-01 01:03:33.9360
2 2020-06-01 00:00:09.6140 2020-06-01 00:17:06.8330
3 2020-06-01 00:00:12.1780 2020-06-01 00:03:58.8640
4 2020-06-01 00:00:21.2550 2020-06-01 00:24:18.9650

The datetime entries in the start_time and stop_time columns include the year,
month, day, hour, minute, second, and microsecond. (A microsecond is a unit of time
equal to one millionth of a second.)

 We can use the info method to print a summary that includes the DataFrame’s
length, the columns’ data types, and the memory use. Notice that pandas has
imported the two columns’ values as strings:

In [98] citi_bike.info()

Out [98]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1882273 entries, 0 to 1882272
Data columns (total 2 columns):
 # Column Dtype
--- ------ -----
 0 start_time object
 1 stop_time object
dtypes: object(2)
memory usage: 28.7+ MB

Here are the challenges for this section:

1 Convert the start_time and stop_time columns to store datetime (Timestamp)
values instead of strings.

2 Count the rides that occurred on each day of the week (Monday, Tuesday, and
so on). Which weekday is the most popular for a bike ride? Use the start_time
column as your starting point.

3 Count the rides per week for each week within the month. To do so, round
each date in the start_time column to its previous or current Monday. Assume
that each week starts on a Monday and ends on a Sunday. Thus, the first week of
June would be Monday, June 1 through Sunday, June 7.

4 Calculate the duration of each ride, and save the results to a new duration
column.

5 Find the average duration of a bike ride.
6 Extract the five longest bike rides by duration from the data set.

11.8.2 Solutions

Let’s tackle the problems one by one:

1 The to_datetime conversion function at the top level of pandas works well to
convert the start_time and end_time columns’ values to Timestamps. The next

284 CHAPTER 11 Working with dates and times
code sample iterates over a list of the column names with a for loop, passes
each column into the to_datetime function, and overwrites the existing
string column with the new datetime Series:

In [99] for column in ["start_time", "stop_time"]:
 citi_bike[column] = pd.to_datetime(citi_bike[column])

Let’s invoke the info method again to confirm that the two columns store date-
time values:

In [100] citi_bike.info()

Out [100]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1882273 entries, 0 to 1882272
Data columns (total 2 columns):
 # Column Dtype
--- ------ -----
 0 start_time datetime64[ns]
 1 stop_time datetime64[ns]
dtypes: datetime64[ns](2)
memory usage: 28.7 MB

2 We’ll have to take two steps to count the number of bike rides per weekday.
First, we extract the weekday from each datetime in the start_time column; then
we count the weekdays’ occurrences. The dt.day_name method returns a
Series with the weekday names for each date:

In [101] citi_bike["start_time"].dt.day_name().head()

Out [101] 0 Monday
 1 Monday
 2 Monday
 3 Monday
 4 Monday
 Name: start_time, dtype: object

Then we can invoke the trusty value_counts method on the returned Series
to count the weekdays. In June 2020, Tuesday was the most popular day for a
bike ride:

In [102] citi_bike["start_time"].dt.day_name().value_counts()

Out [102] Tuesday 305833
 Sunday 301482
 Monday 292690
 Saturday 285966
 Friday 258479
 Wednesday 222647
 Thursday 215176
 Name: start_time, dtype: int64

285Coding challenge
3 The next challenge requires us to group each date into its corresponding week
bucket. We can do so by rounding the date to its previous or current Monday.
Here’s a clever solution: we can use the dayofweek attribute to return a
Series of numbers. 0 denotes Monday, 1 denotes Tuesday, 6 denotes Sunday,
and so on:

In [103] citi_bike["start_time"].dt.dayofweek.head()

Out [103] 0 0
 1 0
 2 0
 3 0
 4 0
 Name: start_time, dtype: int64

The weekday number also represents the distance in days from the closest Mon-
day. Monday, June 1, for example, has a dayofweek value of 0. The date is 0
days away from the closest Monday. Similarly, Tuesday, June 2, has a dayofweek
value of 1. The date is one day away from the closest Monday (June 1). Let’s
save this Series to a days_away_from_monday variable:

In [104] days_away_from_monday = citi_bike["start_time"].dt.dayofweek

If we subtract a date’s dayofweek value from the date itself, we’ll effectively
round each date to its previous Monday. We can pass the dayofweek Series
into the to_timedelta function to convert it to a Series of durations. We’ll
pass a unit parameter set to "day" to tell pandas to treat the numeric values as
the number of days:

In [105] citi_bike["start_time"] - pd.to_timedelta(
 days_away_from_monday, unit = "day"
)

Out [105] 0 2020-06-01 00:00:03.372
 1 2020-06-01 00:00:03.553
 2 2020-06-01 00:00:09.614
 3 2020-06-01 00:00:12.178
 4 2020-06-01 00:00:21.255
 ...
 1882268 2020-06-29 23:59:41.116
 1882269 2020-06-29 23:59:46.426
 1882270 2020-06-29 23:59:47.477
 1882271 2020-06-29 23:59:53.395
 1882272 2020-06-29 23:59:53.901
 Name: start_time, Length: 1882273, dtype: datetime64[ns]

Let’s save the new Series to a dates_rounded_to_monday variable:

In [106] dates_rounded_to_monday = citi_bike[
 "start_time"
] - pd.to_timedelta(days_away_from_monday, unit = "day")

286 CHAPTER 11 Working with dates and times
We’re halfway there. We’ve rounded the dates to the correct Mondays, but the
value_counts method won’t work yet. The differences in times between the
dates will lead pandas to deem them unequal:

In [107] dates_rounded_to_monday.value_counts().head()

Out [107] 2020-06-22 20:13:36.208 3
 2020-06-08 17:17:26.335 3
 2020-06-08 16:50:44.596 3
 2020-06-15 19:24:26.737 3
 2020-06-08 19:49:21.686 3
 Name: start_time, dtype: int64

Let’s use the dt.date attribute to return a Series with the dates from each
datetime:

In [108] dates_rounded_to_monday.dt.date.head()

Out [108] 0 2020-06-01
 1 2020-06-01
 2 2020-06-01
 3 2020-06-01
 4 2020-06-01
 Name: start_time, dtype: object

Now that we’ve isolated the dates, we can invoke the value_counts method to
count each value’s occurrences. The week of Monday, June 15 to Sunday, June
21 saw the highest number of bike rides throughout the month:

In [109] dates_rounded_to_monday.dt.date.value_counts()

Out [109] 2020-06-15 481211
 2020-06-08 471384
 2020-06-22 465412
 2020-06-01 337590
 2020-06-29 126676
 Name: start_time, dtype: int64

4 To calculate each ride’s duration, we can subtract the start_time column from
the stop_time column. Pandas will return a Series of Timedeltas. We’ll need
to save this Series for the next example, so let’s attach it to the DataFrame as
a new column called duration:

In [110] citi_bike["duration"] = (
 citi_bike["stop_time"] - citi_bike["start_time"]
)

 citi_bike.head()

Out [110]

 start_time stop_time duration

0 2020-06-01 00:00:03.372 2020-06-01 00:17:46.208 0 days 00:17:42.836000
1 2020-06-01 00:00:03.553 2020-06-01 01:03:33.936 0 days 01:03:30.383000
2 2020-06-01 00:00:09.614 2020-06-01 00:17:06.833 0 days 00:16:57.219000

287Summary
3 2020-06-01 00:00:12.178 2020-06-01 00:03:58.864 0 days 00:03:46.686000
4 2020-06-01 00:00:21.255 2020-06-01 00:24:18.965 0 days 00:23:57.710000

Note that the previous subtraction would raise an error if the columns were
storing strings; that’s why it’s imperative to convert them to datetimes first.

5 Next up, we have to find the average duration of all bike rides. This process is a
simple one: we can invoke the mean method on the new duration column for
the calculation. The average ride was 27 minutes and 19 seconds:

In [111] citi_bike["duration"].mean()

Out [111] Timedelta('0 days 00:27:19.590506853')

6 The final question asks to identify the five longest bike rides in the data set.
One solution is to sort the duration column values in descending order with the
sort_values method and then use the head method to view the first five
rows. These sessions likely belonged to people who forgot to check their bikes
in after finishing their ride:

In [112] citi_bike["duration"].sort_values(ascending = False).head()

Out [112] 50593 32 days 15:01:54.940000
 98339 31 days 01:47:20.632000
 52306 30 days 19:32:20.696000
 15171 30 days 04:26:48.424000
 149761 28 days 09:24:50.696000
 Name: duration, dtype: timedelta64[ns]

Another option is the nlargest method. We can invoke this method on either
the duration Series or the DataFrame as a whole. Let’s go with the latter
approach:

In [113] citi_bike.nlargest(n = 5, columns = "duration")

Out [113]

 start_time stop_time duration

50593 2020-06-01 21:30:17... 2020-07-04 12:32:12... 32 days 15:01:54.94...
98339 2020-06-02 19:41:39... 2020-07-03 21:29:00... 31 days 01:47:20.63...
52306 2020-06-01 22:17:10... 2020-07-02 17:49:31... 30 days 19:32:20.69...
15171 2020-06-01 13:01:41... 2020-07-01 17:28:30... 30 days 04:26:48.42...
149761 2020-06-04 14:36:53... 2020-07-03 00:01:44... 28 days 09:24:50.69...

There you have it: the five longest bike rides in the data set. Congratulations on com-
pleting the coding challenge!

Summary
 The pandas Timestamp object is a flexible, powerful replacement for Python’s

native datetime object.
 The dt accessor on a datetime Series reveals a DatetimeProperties object

with attributes and methods for extracting the day, month, weekday name, and
more.

288 CHAPTER 11 Working with dates and times
 The Timedelta object models a duration.
 Pandas creates a Timedelta object when we subtract two Timestamp objects

from each other.
 The offsets in the pd.offsets package dynamically round dates to the closest

week, month, quarter, and more. We can round forward with the plus sign and
backward with the minus sign.

 A DatetimeIndex is a container for Timestamp values. We can add it as an
index or column to a pandas data structure.

 The TimedeltaIndex is a container for Timedelta objects.
 The top-level to_datetime function converts an iterable of values to a Date-

timeIndex of Timestamps.

Imports and exports
Data sets come in a variety of file formats: comma-separated values (CSV), tab-sepa-
rated values (TSV), Excel workbooks (XLSX), and more. Some data formats do not
store data in tabular format; instead, they nest collections of related data inside a
key-value store. Consider the following two examples. Figure 12.1 stores data in a
table, and figure 12.2 stores the same data in a Python dictionary.

This chapter covers
 Importing JSON data

 Flattening a nested collection of records

 Downloading a CSV from an online website

 Reading from and writing to Excel workbooks

Figure 12.1 A table
of Oscar winners
289

290 CHAPTER 12 Imports and exports
Python’s dictionary is an example of a key-value data structure:

{
 2000: [
 {
 "Award": "Best Actor",
 "Winner": "Russell Crowe"
 },
 {
 "Award": "Best Actress",
 "Winner": "Julia Roberts"
 }
],
 2001: [
 {
 "Award": "Best Actor",
 "Winner": "Denzel Washington"
 },
 {
 "Award": "Best Actress",
 "Winner": "Halle Berry"
 }
]
}

Figure 12.2 A Python dictionary (key-value store) with the same data

Pandas ships with utility functions to manipulate key-value data into tabular data and
vice versa. When we have the data in a DataFrame, we can apply all our favorite tech-
niques to it. But contorting the data into the right shape often proves to be the most
challenging part of an analysis. In this chapter, we’ll learn how to resolve common
problems in data imports. We’ll also explore the other side of the equation: exporting
DataFrames to various file types and data structures.

12.1 Reading from and writing to JSON files
Let’s kick things off by talking about JSON, perhaps the most popular key-value stor-
age format available today. JavaScript Object Notation (JSON) is a format for storing and
transferring text data. Although the JavaScript programming language inspires its syn-
tax, JSON itself is language-independent. Most languages today, including Python, can
generate and parse JSON.

 A JSON response consists of key-value pairs, in which a key serves as a unique iden-
tifier for a value. The colon symbol (:) connects a key to a value:

"name":"Harry Potter"

Keys must be strings. Values can be of any data type, including strings, numbers, and
Booleans. JSON is similar to Python’s dictionary object.

291Reading from and writing to JSON files
 JSON is a popular response format for many modern application programming
interfaces (APIs), such as website servers. A raw JSON response from an API looks like
a plain string. Here’s what a response might look like:

{"name":"Harry Potter","age":17,"wizard":true}

Software programs called linters format JSON responses by placing each key-value pair
on a separate line. One popular example is JSONLint (https://jsonlint.com). Run-
ning the previous JSON through JSONLint produces the following output:

{
 "name": "Harry Potter",
 "age": 17,
 "wizard": true,
}

There is no technical difference between the two preceding code samples, but the lat-
ter is more readable.

 The JSON response holds three key-value pairs:

 The "name" key has a string value of "Harry Potter".
 The "age" key has an integer value of 17.
 The "wizard" key has a Boolean value of true. In JSON, Booleans are spelled

in lowercase. The concept is identical to a Python Boolean.

A key can also point to an array, an ordered collection of elements equivalent to a
Python list. The "friends" key in the next JSON example maps to an array of two
strings:

{
 "name": "Harry Potter",
 age": 17,
 "wizard": true,
 "friends": ["Ron Weasley", "Hermione Granger"],
}

JSON can store additional key-value pairs within nested objects, such as "address" in
the following example. In Pythonic terms, we can think of "address" as a dictionary
nested within another dictionary:

{
 "name": "Harry Potter",
 "age": 17,
 "wizard": true,
 "friends": ["Ron Weasley", "Hermione Granger"],
 "address": {
 "street": "4 Privet Drive",
 "town": "Little Whinging"
 }
}

Nested stores of key-value pairs help simplify the data by grouping related fields.

https://jsonlint.com/

292 CHAPTER 12 Imports and exports
12.1.1 Loading a JSON file Into a DataFrame

Let’s create a new Jupyter Notebook and import the pandas library. Make sure to cre-
ate the Notebook in the same directory as this chapter’s data files:

In [1] import pandas as pd

JSON can be stored in a plain-text file with a .json extension. This chapter’s prizes.json
file is a saved JSON response from the Nobel Prize API. The API stores Nobel Prize
laureates dating back to 1901. You can view the raw JSON response in your web
browser by navigating to http://api.nobelprize.org/v1/prize.json. Here’s a preview of
the JSON shape:

{
 "prizes": [
 {
 "year": "2019",
 "category": "chemistry",
 "laureates": [
 {
 "id": "976",
 "firstname": "John",
 "surname": "Goodenough",
 "motivation": "\"for the development of lithium-ion batteries\"",
 "share": "3"
 },
 {
 "id": "977",
 "firstname": "M. Stanley",
 "surname": "Whittingham",
 "motivation": "\"for the development of lithium-ion batteries\"",
 "share": "3"
 },
 {
 "id": "978",
 "firstname": "Akira",
 "surname": "Yoshino",
 "motivation": "\"for the development of lithium-ion batteries\"",
 "share": "3"
 }
]
 },

The JSON consists of a top-level prizes key that maps to an array of dictionaries, one
for each combination of year and category ("chemistry", "physics", "litera-
ture", and so on). The "year" and "category" keys are present for all winners,
whereas the "laureates" and "overallMotivation" keys are present for only
some. Here’s a sample dictionary with an "overallMotivation" key:

{
 year: "1972",
 category: "peace",
 overallMotivation: "No Nobel Prize was awarded this year. The prize
 money for 1972 was allocated to the Main Fund."
}

http://api.nobelprize.org/v1/prize.json

293Reading from and writing to JSON files
The "laureates" key connects to an array of dictionaries, each with its own "id",
"firstname", "surname", "motivation", and "share" keys. The "laureates"
key stores an array to accommodate years in which multiple people were awarded a
Nobel Prize in the same category. The "laureates" key uses a list even if a year had
only one winner. Here is an example:

{
 year: "2019",
 category: "literature",
 laureates: [
 {
 id: "980",
 firstname: "Peter",
 surname: "Handke",
 motivation: "for an influential work that with linguistic
 ingenuity has explored the periphery and the specificity of
 human experience",
 share: "1"
 }
]
},

Import functions in pandas have a consistent naming scheme; each one consists of a
read prefix followed by a file type. We’ve used the read_csv function many times
throughout the book, for example. To import a JSON file, we’ll use the complemen-
tary read_json function. Its first argument is the file path. The next example passes
the nobel.json file. Pandas returns a one-column DataFrame with a prizes column:

In [2] nobel = pd.read_json("nobel.json")
 nobel.head()

Out [2]

 prizes

0 {'year': '2019', 'category': 'chemistry', 'laureates': [{'id': '97...
1 {'year': '2019', 'category': 'economics', 'laureates': [{'id': '98...
2 {'year': '2019', 'category': 'literature', 'laureates': [{'id': '9...
3 {'year': '2019', 'category': 'peace', 'laureates': [{'id': '981', ...
4 {'year': '2019', 'category': 'physics', 'overallMotivation': '"for...

We’ve successfully imported the file into pandas, but unfortunately, not in a format
that’s ideal for analysis. Pandas set the JSON’s top-level prizes key as the column
name and created a Python dictionary for each key-value pair it parsed from the
JSON. Here’s a sample row value:

In [3] nobel.loc[2, "prizes"]

Out [3] {'year': '2019',
 'category': 'literature',
 'laureates': [{'id': '980',
 'firstname': 'Peter',
 'surname': 'Handke',

294 CHAPTER 12 Imports and exports
 'motivation': '"for an influential work that with linguistic
 ingenuity has explored the periphery and the specificity of
 human experience"',
 'share': '1'}]}

The next example passes the row value into Python’s built-in type function. We
indeed have a Series of dictionaries:

In [4] type(nobel.loc[2, "prizes"])

Out [4] dict

Our goal is to convert the data to tabular format. To do so, we’ll need to extract the
JSON’s top-level key-value pairs (year, category) to separate DataFrame columns.
We’ll also need to iterate over each dictionary in the "laureates" list and extract its
nested information. Our goal is a separate row for each Nobel laureate, connected to
their year and category. The DataFrame we’re aiming for looks like this:

 id firstname surname motivation share year category

0 976 John Goodenough "for the develop... 3 2019 chemistry
1 977 M. Stanley Whittingham "for the develop... 3 2019 chemistry
2 978 Akira Yoshino "for the develop... 3 2019 chemistry

The process of moving nested records of data into a single, one-dimensional list is
called flattening or normalizing. The pandas library includes a built-in json_normalize
function to take care of the heavy lifting. Let’s try it on a small example: a sample dic-
tionary from the nobel DataFrame. We’ll use the loc accessor to access the first row’s
dictionary and assign it to a chemistry_2019 variable:

In [5] chemistry_2019 = nobel.loc[0, "prizes"]
 chemistry_2019

Out [5] {'year': '2019',
 'category': 'chemistry',
 'laureates': [{'id': '976',
 'firstname': 'John',
 'surname': 'Goodenough',
 'motivation': '"for the development of lithium-ion batteries"',
 'share': '3'},
 {'id': '977',
 'firstname': 'M. Stanley',
 'surname': 'Whittingham',
 'motivation': '"for the development of lithium-ion batteries"',
 'share': '3'},
 {'id': '978',
 'firstname': 'Akira',
 'surname': 'Yoshino',
 'motivation': '"for the development of lithium-ion batteries"',
 'share': '3'}]}

Let’s pass the chemistry_2019 dictionary to the json_normalize function’s data
parameter. The good news is that pandas extracts the three top-level dictionary keys
("year", "category", and "laureates") to separate columns in a new

295Reading from and writing to JSON files
DataFrame. Unfortunately, the library still keeps the nested dictionaries from the
"laureates" list. Ultimately, we’d like to store the data in separate columns.

In [6] pd.json_normalize(data = chemistry_2019)

Out [6]

 year category laureates

0 2019 chemistry [{'id': '976', 'firstname': 'John', 'surname':...

We can use the json_normalize function’s record_path parameter to normalize
the nested "laureates" records. We pass the parameter a string denoting which key
in the dictionary holds the nested records. Let’s pass it "laureates":

In [7] pd.json_normalize(data = chemistry_2019, record_path = "laureates")

Out [7]

 id firstname surname motivation share

0 976 John Goodenough "for the development of li... 3
1 977 M. Stanley Whittingham "for the development of li... 3
2 978 Akira Yoshino "for the development of li... 3

One step forward, one step back. Pandas expanded the nested "laureates" dictio-
naries into new columns, but now we’ve lost the original year and category columns.
To preserve these top-level key-value pairs, we can pass a list with their names to a
parameter called meta:

In [8] pd.json_normalize(
 data = chemistry_2019,
 record_path = "laureates",
 meta = ["year", "category"],
)

Out [8]

 id firstname surname motivation share year category

0 976 John Goodenough "for the develop... 3 2019 chemistry
1 977 M. Stanley Whittingham "for the develop... 3 2019 chemistry
2 978 Akira Yoshino "for the develop... 3 2019 chemistry

That’s exactly the DataFrame we want. Our normalization strategy has worked suc-
cessfully on a single dictionary from the prizes column. Luckily, the json_normalize
function is smart enough to accept a Series of dictionaries and repeat the extraction
logic for each entry. Let’s see what happens when we pass it the prizes Series:

In [9] pd.json_normalize(
 data = nobel["prizes"],
 record_path = "laureates",
 meta = ["year", "category"]
)

KeyError Traceback (most recent call last)
<ipython-input-49-e09a24c19e5b> in <module>
 2 data = nobel["prizes"],

296 CHAPTER 12 Imports and exports
 3 record_path = "laureates",
----> 4 meta = ["year", "category"]
 5)

KeyError: 'laureates'

Unfortunately, Pandas raises a KeyError exception. Some dictionaries in the prizes
Series do not have a "laureates" key. The json_normalize function is unable to
extract nested laureates information from a nonexistent list. One way we can solve this
problem is to identify the dictionaries that lack a "laureates" key and manually
assign them the key. In those situations, we can provide the "laureates" key a value
of an empty list.

 Let’s take a second to review the setdefault method on a Python dictionary.
Consider this dictionary:

In [10] cheese_consumption = {
 "France": 57.9,
 "Germany": 53.2,
 "Luxembourg": 53.2
 }

The setdefault method assigns a key-value pair to a dictionary, but only if the dic-
tionary does not have the key. If the key exists, the method returns its existing value.
The method’s first argument is the key, and its second argument is the value.

 The following example attempts to add the key "France" to the cheese_con-
sumption dictionary with a value of 100. The key exists, so nothing changes. Python
keeps the original value of 57.9:

In [11] cheese_consumption.setdefault("France", 100)

Out [11] 57.9

In [12] cheese_consumption["France"]

Out [12] 57.9

By comparison, the next example invokes setdefault with an argument of
"Italy". The key "Italy" does not exist in the dictionary, so Python adds it and
assigns it a value of 48:

In [13] cheese_consumption.setdefault("Italy", 48)

Out [13] 48

In [14] cheese_consumption

Out [14] {'France': 57.9, 'Germany': 53.2, 'Luxembourg': 53.2, 'Italy': 48}

Let’s apply this technique to each nested dictionary within prizes. If a dictionary does
not have a laureates key, we’ll use the setdefault method to add the key with a
value of an empty list. As a reminder, we can use the apply method to iterate individ-
ually over each Series element. This method, introduced in chapter 3, accepts a

297Reading from and writing to JSON files
function as an argument and passes each Series row to the function in sequence.
The next example defines an add_laureates_key function to update a single dic-
tionary and then passes the function to the apply method as an argument:

In [15] def add_laureates_key(entry):
 entry.setdefault("laureates", [])

 nobel["prizes"].apply(add_laureates_key)

Out [15] 0 [{'id': '976', 'firstname': 'John', 'surname':...
 1 [{'id': '982', 'firstname': 'Abhijit', 'surnam...
 2 [{'id': '980', 'firstname': 'Peter', 'surname'...
 3 [{'id': '981', 'firstname': 'Abiy', 'surname':...
 4 [{'id': '973', 'firstname': 'James', 'surname'...
 ...
 641 [{'id': '160', 'firstname': 'Jacobus H.', 'sur...
 642 [{'id': '569', 'firstname': 'Sully', 'surname'...
 643 [{'id': '462', 'firstname': 'Henry', 'surname'...
 644 [{'id': '1', 'firstname': 'Wilhelm Conrad', 's...
 645 [{'id': '293', 'firstname': 'Emil', 'surname':...
 Name: prizes, Length: 646, dtype: object

The setdefault method mutates the dictionaries within prizes, so there is no need
to overwrite the original Series.

 Now that all nested dictionaries have a laureates key, we can reinvoke the
json_normalize function. Once again, we’ll pass a list to the meta parameter with
the two top-level dictionary keys we’d like to keep. We’ll also use record_path to
specify the top-level attribute with a nested list of records:

In [16] winners = pd.json_normalize(
 data = nobel["prizes"],
 record_path = "laureates",
 meta = ["year", "category"]
)

 winners

Out [16]

 id firstname surname motivation share year category

0 976 John Goodenough "for the de... 3 2019 chemistry
1 977 M. Stanley Whittingham "for the de... 3 2019 chemistry
2 978 Akira Yoshino "for the de... 3 2019 chemistry
3 982 Abhijit Banerjee "for their ... 3 2019 economics
4 983 Esther Duflo "for their ... 3 2019 economics
 … … … … … … … …
945 569 Sully Prudhomme "in special... 1 1901 literature
946 462 Henry Dunant "for his hu... 2 1901 peace
947 463 Frédéric Passy "for his li... 2 1901 peace
948 1 Wilhelm Con… Röntgen "in recogni... 1 1901 physics
949 293 Emil von Behring "for his wo... 1 1901 medicine

950 rows × 7 columns

298 CHAPTER 12 Imports and exports
Success! We’ve normalized the JSON data, converted it to tabular format, and stored it
in a two-dimensional DataFrame.

12.1.2 Exporting a DataFrame to a JSON file

Now let’s attempt the process in reverse: converting a DataFrame to a JSON represen-
tation and writing it to a JSON file. The to_json method creates a JSON string from
a pandas data structure; its orient parameter customizes the format in which pandas
returns the data. The next example uses an argument of "records" to return a JSON
array of key-value objects. Pandas stores the column names as dictionary keys that
point to the row’s respective values. Here’s an example with the first two rows of win-
ners, the DataFrame we created in section 12.1.1:

In [17] winners.head(2)

Out [17]

 id firstname surname motivation share year category

0 976 John Goodenough "for the develop... 3 2019 chemistry
1 977 M. Stanley Whittingham "for the develop... 3 2019 chemistry

In [18] winners.head(2).to_json(orient = "records")

Out [18]

'[{"id":"976","firstname":"John","surname":"Goodenough","motivation":"\\
"for the development of lithium-ion
batteries\\"","share":"3","year":"2019","category":"chemistry"},{"id":"9
77","firstname":"M.
Stanley","surname":"Whittingham","motivation":"\\"for the development of
lithium-ion
batteries\\"","share":"3","year":"2019","category":"chemistry"}]'

By comparison, we can pass an argument of "split" to return a dictionary with sepa-
rate columns, index, and data keys. This option prevents the duplication of column
names for each row entry:

In [19] winners.head(2).to_json(orient = "split")

Out [19]

'{"columns":["id","firstname","surname","motivation","share","year","category
"],"index":[0,1],"data":[["976","John","Goodenough","\\"for the
development of lithium-ion
batteries\\"","3","2019","chemistry"],["977","M.
Stanley","Whittingham","\\"for the development of lithium-ion
batteries\\"","3","2019","chemistry"]]}'

Additional arguments available for the orient parameter include "index", "col-
umns", "values", and "table".

 When the JSON format fits your expectations, pass the JSON file name as the first
argument to the to_json method. Pandas will write the string to a JSON file in the
same directory as the Jupyter Notebook:

299Reading from and writing to CSV files
In [20] winners.to_json("winners.json", orient = "records")

WARNING Be mindful when executing the same cell twice. If a win-
ners.json file exists in the directory, pandas will overwrite it when we exe-
cute the previous cell. The library will not warn us that it is replacing the file.
For this reason, I strongly recommend giving output files a different name
from input files.

12.2 Reading from and writing to CSV files
Our next data set is a collection of baby names in New York City. Each row includes the
name, birth year, gender, ethnicity, count, and popularity rank. The CSV file is hosted
on New York City’s government website and is available at http://mng.bz/MgzQ.

 We can access the website in our web browser and download the CSV file to our
computer for local storage. As an alternative, we can pass the URL as the first argu-
ment to the read_csv function. Pandas will automatically fetch the data set and
import it into a DataFrame. Hardcoded URLs are helpful when we have real-time
data that changes frequently because they save us the manual work of downloading
the data set each time we rerun our analysis:

In [21] url = "https://data.cityofnewyork.us/api/views/25th-nujf/rows.csv"
 baby_names = pd.read_csv(url)
 baby_names.head()

Out [21]

 Year of Birth Gender Ethnicity Child's First Name Count Rank

0 2011 FEMALE HISPANIC GERALDINE 13 75
1 2011 FEMALE HISPANIC GIA 21 67
2 2011 FEMALE HISPANIC GIANNA 49 42
3 2011 FEMALE HISPANIC GISELLE 38 51
4 2011 FEMALE HISPANIC GRACE 36 53

Note that pandas will raise an HTTPError exception if the link is invalid.
 Let’s try writing the baby_names DataFrame to a plain CSV file with the to_csv

method. Without an argument, the method outputs the CSV string directly in our
Jupyter Notebook. Following CSV conventions, pandas separates rows with line breaks
and row values with commas. As a reminder, a \n character marks a line break in
Python. Here’s a small preview of the method’s output for the first ten rows of
baby_names:

In [22] baby_names.head(10).to_csv()

Out [22]

",Year of Birth,Gender,Ethnicity,Child's First
Name,Count,Rank\n0,2011,FEMALE,HISPANIC,GERALDINE,13,75\n1,2011,FEMALE,H
ISPANIC,GIA,21,67\n2,2011,FEMALE,HISPANIC,GIANNA,49,42\n3,2011,FEMALE,HI
SPANIC,GISELLE,38,51\n4,2011,FEMALE,HISPANIC,GRACE,36,53\n5,2011,FEMALE,
HISPANIC,GUADALUPE,26,62\n6,2011,FEMALE,HISPANIC,HAILEY,126,8\n7,2011,FE
MALE,HISPANIC,HALEY,14,74\n8,2011,FEMALE,HISPANIC,HANNAH,17,71\n9,2011,F
EMALE,HISPANIC,HAYLEE,17,71\n"

http://mng.bz/MgzQ

300 CHAPTER 12 Imports and exports
By default, pandas includes the DataFrame index in the CSV string. Notice the comma
at the beginning of the string and the numeric values (0, 1, 2, and so on) after each \n
symbol. Figure 12.3 highlights the commas in the output from the to_csv method.

Figure 12.3 The CSV output with arrows highlighting the index labels

We can exclude the index by passing the index parameter an argument of False:

In [23] baby_names.head(10).to_csv(index = False)

Out [23]

"Year of Birth,Gender,Ethnicity,Child's First
Name,Count,Rank\n2011,FEMALE,HISPANIC,GERALDINE,13,75\n2011,FEMALE,HISPA
NIC,GIA,21,67\n2011,FEMALE,HISPANIC,GIANNA,49,42\n2011,FEMALE,HISPANIC,G
ISELLE,38,51\n2011,FEMALE,HISPANIC,GRACE,36,53\n2011,FEMALE,HISPANIC,GUA
DALUPE,26,62\n2011,FEMALE,HISPANIC,HAILEY,126,8\n2011,FEMALE,HISPANIC,HA
LEY,14,74\n2011,FEMALE,HISPANIC,HANNAH,17,71\n2011,FEMALE,HISPANIC,HAYLE
E,17,71\n"

To write the string to a CSV file, we can pass the desired filename as the first argument
to the to_csv method. Make sure to include the .csv extension in the string. If we do
not provide a specific path, pandas will write the file to the same directory as the Jupy-
ter Notebook:

In [24] baby_names.to_csv("NYC_Baby_Names.csv", index = False)

The method produces no output below the Notebook cell. If we flip back to the Jupy-
ter Notebook navigation interface, however, we see that pandas has created the CSV
file. Figure 12.4 shows the saved NYC_Baby_Names.csv file.

Figure 12.4 The NYC_Baby_Names.csv
file saved to the same directory as the
Jupyter Notebook

301Reading from and writing to Excel workbooks
By default, pandas writes all DataFrame columns to the CSV file. We can choose which
columns to export by passing a list of names to the columns parameter. The next exam-
ple creates a CSV with only the Gender, Child’s First Name, and Count columns:

In [25] baby_names.to_csv(
 "NYC_Baby_Names.csv",
 index = False,
 columns = ["Gender", "Child's First Name", "Count"]
)

Please note that if a NYC_Baby_Names.csv file exists in the directory, pandas will over-
write the existing file.

12.3 Reading from and writing to Excel workbooks
Excel is the most popular spreadsheet application in use today. Pandas makes it easy
to read from and write to Excel workbooks and even specific worksheets. But first,
we’ll need to do a little housekeeping to integrate the two pieces of software.

12.3.1 Installing the xlrd and openpyxl libraries in an Anaconda
environment

Pandas needs the xlrd and openpyxl libraries to interact with Excel. These packages
are the glue that connects Python to Excel.

 Here’s a refresher on installing a package in an Anaconda environment. For a
more in-depth overview, see appendix A. If you’ve already installed these libraries in
your Anaconda environment, feel free to skip to section 12.3.2.

1 Launch the Terminal (macOS) or Anaconda Prompt (Windows) application.
2 Use the conda info --envs command to see your available Anaconda

environments:

$ conda info --envs

conda environments:
#
base * /opt/anaconda3
pandas_in_action /opt/anaconda3/envs/pandas_in_action

3 Activate the Anaconda environment in which you’d like to install the libraries.
Appendix A shows how to create a pandas_in_action environment for this
book. If you chose a different environment name, replace pandas_in_action
with it in the following command:

$ conda activate pandas_in_action

4 Install the xlrd and openpyxl libraries with the conda install command:

(pandas_in_action) $ conda install xlrd openpyxl

5 When Anaconda lists the required package dependencies, enter "Y" and press
Enter to start the installation.

302 CHAPTER 12 Imports and exports
6 When the installation completes, execute jupyter notebook to start the Jupy-
ter server again, and navigate back to the Jupyter Notebook for the chapter.

Don’t forget to execute the cell with the import pandas as pd command at
the top.

12.3.2 Importing Excel workbooks

The read_excel function at the top level of pandas imports an Excel workbook into
a DataFrame. Its first parameter, io, accepts a string with the workbook’s path. Make
sure to include the .xlsx extension in the filename. By default, pandas will import only
the first worksheet in the workbook.

 The Single Worksheet.xlsx Excel workbook is a good place to start because it con-
tains a single Data worksheet:

In [26] pd.read_excel("Single Worksheet.xlsx")

Out [26]

 First Name Last Name City Gender

0 Brandon James Miami M
1 Sean Hawkins Denver M
2 Judy Day Los Angeles F
3 Ashley Ruiz San Francisco F
4 Stephanie Gomez Portland F

The read_excel function supports many of the same parameters as read_csv,
including index_col to set the index columns, usecols to select the columns, and
squeeze to coerce a one-column DataFrame into a Series object. The next exam-
ple sets the City column as the index and keeps only three of the data set’s four col-
umns. Note that if we pass a column to the index_col parameter, we must also
include the column in the usecols list:

In [27] pd.read_excel(
 io = "Single Worksheet.xlsx",
 usecols = ["City", "First Name", "Last Name"],
 index_col = "City"
)

Out [27]

 First Name Last Name
City

Miami Brandon James
Denver Sean Hawkins
Los Angeles Judy Day
San Francisco Ashley Ruiz
Portland Stephanie Gomez

The complexity increases slightly when a workbook contains multiple worksheets. The
Multiple Worksheets.xlsx workbook holds three worksheets: Data 1, Data 2, and Data
3. By default, pandas imports only the first worksheet in the workbook:

303Reading from and writing to Excel workbooks
In [28] pd.read_excel("Multiple Worksheets.xlsx")

Out [28]

 First Name Last Name City Gender

0 Brandon James Miami M
1 Sean Hawkins Denver M
2 Judy Day Los Angeles F
3 Ashley Ruiz San Francisco F
4 Stephanie Gomez Portland F

During import, pandas assigns each worksheet an index position starting at 0. We can
import a specific worksheet by passing the worksheet’s index position or its name to
the sheet_name parameter. The parameter’s default argument is 0 (the first work-
sheet). Therefore, the following two statements return the same DataFrame:

In [29] # The two lines below are equivalent
 pd.read_excel("Multiple Worksheets.xlsx", sheet_name = 0)
 pd.read_excel("Multiple Worksheets.xlsx", sheet_name = "Data 1")

Out [29]

 First Name Last Name City Gender

0 Brandon James Miami M
1 Sean Hawkins Denver M
2 Judy Day Los Angeles F
3 Ashley Ruiz San Francisco F
4 Stephanie Gomez Portland F

To import all worksheets, we can pass an argument of None to the sheet_name
parameter. Pandas will store each worksheet in a separate DataFrame. The read_ex-
cel function returns a dictionary with the worksheets’ names as keys and the respec-
tive DataFrames as values:

In [30] workbook = pd.read_excel(
 "Multiple Worksheets.xlsx", sheet_name = None
)

 workbook

Out [30] {'Data 1': First Name Last Name City Gender
 0 Brandon James Miami M
 1 Sean Hawkins Denver M
 2 Judy Day Los Angeles F
 3 Ashley Ruiz San Francisco F
 4 Stephanie Gomez Portland F,
 'Data 2': First Name Last Name City Gender
 0 Parker Power Raleigh F
 1 Preston Prescott Philadelphia F
 2 Ronaldo Donaldo Bangor M
 3 Megan Stiller San Francisco M
 4 Bustin Jieber Austin F,
 'Data 3': First Name Last Name City Gender
 0 Robert Miller Seattle M
 1 Tara Garcia Phoenix F
 2 Raphael Rodriguez Orlando M}

304 CHAPTER 12 Imports and exports
In [31] type(workbook)

Out [31] dict

To access a DataFrame/worksheet, we access a key in the dictionary. Here, we access
the DataFrame for the Data 2 worksheet:

In [32] workbook["Data 2"]

Out [32]

 First Name Last Name City Gender

0 Parker Power Raleigh F
1 Preston Prescott Philadelphia F
2 Ronaldo Donaldo Bangor M
3 Megan Stiller San Francisco M
4 Bustin Jieber Austin F

To specify a subset of worksheets to import, we can pass the sheet_name parameter a
list of index positions or worksheet names. Pandas still returns a dictionary. The dic-
tionary’s keys will match the strings in the sheet_name list. The next example
imports only the Data 1 and Data 3 worksheets:

In [33] pd.read_excel(
 "Multiple Worksheets.xlsx",
 sheet_name = ["Data 1", "Data 3"]
)

Out [33] {'Data 1': First Name Last Name City Gender
 0 Brandon James Miami M
 1 Sean Hawkins Denver M
 2 Judy Day Los Angeles F
 3 Ashley Ruiz San Francisco F
 4 Stephanie Gomez Portland F,
 'Data 3': First Name Last Name City Gender
 0 Robert Miller Seattle M
 1 Tara Garcia Phoenix F
 2 Raphael Rodriguez Orlando M}

The next example targets index positions 1 and 2 or, equivalently, the second and
third worksheets:

In [34] pd.read_excel("Multiple Worksheets.xlsx", sheet_name = [1, 2])

Out [34] {1: First Name Last Name City Gender
 0 Parker Power Raleigh F
 1 Preston Prescott Philadelphia F
 2 Ronaldo Donaldo Bangor M
 3 Megan Stiller San Francisco M
 4 Bustin Jieber Austin F,
 2: First Name Last Name City Gender
 0 Robert Miller Seattle M
 1 Tara Garcia Phoenix F
 2 Raphael Rodriguez Orlando M}

305Reading from and writing to Excel workbooks
After we’ve imported the DataFrame, we’re free to invoke whatever methods we like
on it. The original source of the data has no impact on our available operations.

12.3.3 Exporting Excel workbooks

Let’s return to the baby_names DataFrame that we downloaded from the city of New
York. Here’s a reminder of what it looks like:

In [35] baby_names.head()

Out [35]

 Year of Birth Gender Ethnicity Child's First Name Count Rank

0 2011 FEMALE HISPANIC GERALDINE 13 75
1 2011 FEMALE HISPANIC GIA 21 67
2 2011 FEMALE HISPANIC GIANNA 49 42
3 2011 FEMALE HISPANIC GISELLE 38 51
4 2011 FEMALE HISPANIC GRACE 36 53

Let’s say we want to split the data set into two DataFrames, one for each gender. Then
we’d like to write each DataFrame to a separate worksheet in a new Excel workbook.
We can begin by filtering the baby_names DataFrame, using the values in the Gender
column. Chapter 5 introduced the following syntax:

In [36] girls = baby_names[baby_names["Gender"] == "FEMALE"]
 boys = baby_names[baby_names["Gender"] == "MALE"]

Writing to an Excel workbook requires a few more steps than writing to a CSV. First
up, we need to create an ExcelWriter object. This object serves as the foundation of
the workbook. We’ll attach individual worksheets to it in a moment.

 The ExcelWriter constructor is available as a top-level attribute of the pandas
library. Its first parameter, path, accepts the new workbook’s filename as a string. If
we do not provide a path to a directory, pandas will create the Excel file in the same
directory as the Jupyter Notebook. Make sure to save the ExcelWriter object to a
variable. The following example uses excel_file:

In [37] excel_file = pd.ExcelWriter("Baby_Names.xlsx")
 excel_file

Out [37] <pandas.io.excel._openpyxl._OpenpyxlWriter at 0x118a7bf90>

Next, we need to connect our girls and boys DataFrames to individual worksheets in
the workbook. Let’s start with the former.

 A DataFrame includes a to_excel method for writing to an Excel workbook. The
method’s first parameter, excel_writer, accepts an ExcelWriter object, like the
one we created in the preceding example. The method’s sheet_name parameter
accepts the worksheet name as a string. Finally, we can pass the index parameter a
value of False to exclude the DataFrame index:

In [38] girls.to_excel(
 excel_writer = excel_file, sheet_name = "Girls", index = False
)

306 CHAPTER 12 Imports and exports
Note that we have not created the Excel workbook yet. Rather, we’ve wired up the Excel-
Writer object to include the girls DataFrame when we do create the workbook.

 Next, let’s connect our boys DataFrame to the Excel workbook. We’ll invoke the
to_excel method on boys, passing the excel_writer parameter the same Excel-
Writer object. Now pandas knows that it should write both data sets to the same work-
book. Let’s also alter the string argument to the sheet_name parameter. To export
only a subset of columns, let’s pass a custom list to the columns parameter. The next
example instructs pandas to include only the Child’s First Name, Count, and Rank col-
umns when writing the boys DataFrame to the “Boys” worksheet in the workbook:

In [39] boys.to_excel(
 excel_file,
 sheet_name = "Boys",
 index = False,
 columns = ["Child's First Name", "Count", "Rank"]
)

Now that we’ve configured the Excel workbook’s plumbing, we’re clear to write it to
disk. Invoke the save method on the excel_file ExcelWriter object to complete
the process:

In [40] excel_file.save()

Check out the Jupyter Note-
book interface to see the
result. Figure 12.5 shows the
new Baby_Names.xlsx file in
the same folder.
 And there you have it. Now
you know how to export

JSON, CSV, and XLSX files from pandas. The library offers additional functions for
exporting its data structures to other file formats.

12.4 Coding challenge
Let’s practice the concepts introduced in this chapter. The tv_shows.json file is an
aggregate collection of TV show episodes pulled from the Episodate.com API (see
https://www.episodate.com/api). The JSON includes data for three TV shows: The X-
Files, Lost, and Buffy the Vampire Slayer.

In [41] tv_shows_json = pd.read_json("tv_shows.json")
 tv_shows_json

Out [41]

 shows

0 {'show': 'The X-Files', 'runtime': 60, 'network': 'FOX',...
1 {'show': 'Lost', 'runtime': 60, 'network': 'ABC', 'episo...
2 {'show': 'Buffy the Vampire Slayer', 'runtime': 60, 'net...

Figure 12.5 The XLSX Excel file saved to the same directory
as the Jupyter Notebook

https://www.episodate.com/api

307Coding challenge
The JSON consists of a top-level "shows" key that connects to a list of three dictionar-
ies, one for each of the three shows:

{
 "shows": [{}, {}, {}]
}

Each nested show dictionary includes "show", "runtime", "network", and "epi-
sodes" keys. Here’s a truncated preview of the first row’s dictionary:

In [42] tv_shows_json.loc[0, "shows"]

Out [42] {'show': 'The X-Files',
 'runtime': 60,
 'network': 'FOX',
 'episodes': [{'season': 1,
 'episode': 1,
 'name': 'Pilot',
 'air_date': '1993-09-11 01:00:00'},
 {'season': 1,
 'episode': 2,
 'name': 'Deep Throat',
 'air_date': '1993-09-18 01:00:00'},

The "episodes" key maps to a list of dictionaries. Each dictionary holds data for one
show episode. In the previous example, we see the data for the first two episodes of
season 1 of The X-Files.

12.4.1 Problems

Your challenges are

1 Normalize the nested episode data for each dictionary in the shows column.
The goal is a DataFrame with a separate row for each episode. Each row
should include the episode’s relevant metadata (season, episode, name, and
air_date) as well as the show’s top-level information (show, runtime, and
network).

2 Filter the normalized data set into three separate DataFrames, one for each of
the shows ("The X-Files", "Lost", and "Buffy the Vampire Slayer").

3 Write the three DataFrames to an episodes.xlsx Excel workbook, and save each
TV show’s episode data to a separate worksheet. (The worksheet names are up
to you.)

12.4.2 Solutions

Let’s tackle the problems:

1 We can use the json_normalize function to extract each TV show’s nested
batch of episodes. The episodes are available under the "episodes" key, which
we can pass to the method’s record_path parameter. To preserve the top-level
show data, we can pass the meta parameter a list of the top-level keys to keep:

308 CHAPTER 12 Imports and exports
In [43] tv_shows = pd.json_normalize(
 data = tv_shows_json["shows"],
 record_path = "episodes",
 meta = ["show", "runtime", "network"]
)

 tv_shows

Out [43]

 season episode name air_date show runtime network

0 1 1 Pilot 1993-09-1... The X-Files 60 FOX
1 1 2 Deep Throat 1993-09-1... The X-Files 60 FOX
2 1 3 Squeeze 1993-09-2... The X-Files 60 FOX
3 1 4 Conduit 1993-10-0... The X-Files 60 FOX
4 1 5 The Jerse... 1993-10-0... The X-Files 60 FOX
 … … … … … … … …
477 7 18 Dirty Girls 2003-04-1... Buffy the... 60 UPN
478 7 19 Empty Places 2003-04-3... Buffy the... 60 UPN
479 7 20 Touched 2003-05-0... Buffy the... 60 UPN
480 7 21 End of Days 2003-05-1... Buffy the... 60 UPN
481 7 22 Chosen 2003-05-2... Buffy the... 60 UPN

482 rows × 7 columns

2 Our next challenge is to split the data set into three DataFrames, one for each
TV show. We can filter the rows in tv_shows based on the values in the show
column:

In [44] xfiles = tv_shows[tv_shows["show"] == "The X-Files"]
 lost = tv_shows[tv_shows["show"] == "Lost"]
 buffy = tv_shows[tv_shows["show"] == "Buffy the Vampire Slayer"]

3 Finally, let’s write the three DataFrames to an Excel workbook. We’ll begin by
instantiating an ExcelWriter object and saving it to a variable. We can pass in
the workbook name as the first argument. I’ve chosen to call it episodes.xlsx:

In [45] episodes = pd.ExcelWriter("episodes.xlsx")
 episodes

Out [45] <pandas.io.excel._openpyxl._OpenpyxlWriter at 0x11e5cd3d0>

Next, we must invoke the to_excel method on the three DataFrames to con-
nect them to individual worksheets in the workbook. We’ll pass the same epi-
sodes ExcelWriter object to the excel_writer parameter in each
invocation. We’ll make sure to provide a unique name for each worksheet via
the sheet_name parameter. Finally, we’ll pass the index parameter a value of
False to exclude the DataFrame index:

In [46] xfiles.to_excel(
 excel_writer = episodes, sheet_name = "X-Files", index = False
)

309Summary
In [47] lost.to_excel(
 excel_writer = episodes, sheet_name = "Lost", index = False
)

In [48] buffy.to_excel(
 excel_writer = episodes,
 sheet_name = "Buffy the Vampire Slayer",
 index = False
)

With the worksheets wired up, we can invoke the save method on the epi-
sodes ExcelWriter object to create the episodes.xlsx workbook:

In [49] episodes.save()

Congratulations on completing the coding challenge!

Summary
 The read_json function parses a JSON file into a DataFrame.
 The json_normalize function converts nested JSON data to a tabular Data-

Frame.
 We can pass URLs to import functions such as read_csv, read_json, and

read_excel. Pandas will download the data set from the provided link.
 The read_excel function imports an Excel workbook. The method’s

sheet_name parameter sets the worksheets to import. When we import multi-
ple worksheets, pandas stores the resulting DataFrames in a dictionary.

 To write one or more DataFrames to an Excel workbook, instantiate an
ExcelWriter object, attach the DataFrames to it via the to_excel method,
and then invoke the save method on the ExcelWriter object.

Configuring pandas
As we’ve worked through the book’s data sets, we’ve seen how pandas improves our
user experience by making sensible decisions on data presentation. When we out-
put a 1,000-row DataFrame, for example, the library assumes that we’d prefer to
see 30 rows from the beginning and end rather than the whole data set, which can
clutter the screen. Sometimes, we may want to break from pandas’ assumptions and
alter its settings to fit our custom display needs. Luckily, the library exposes many of
its internal settings for us to alter. In this chapter, we’ll learn how to configure
options such as row and column limits, floating-point precision, and value round-
ing. Let’s get our hands dirty and see how we can switch things up.

This chapter covers
 Configuring pandas display settings for both the

Notebook and single cells

 Limiting the number of printed DataFrame rows and
columns

 Altering the precision of decimal-point numbers

 Truncating a cell’s text content

 Rounding numeric values when they fall below a floor
310

311Getting and setting pandas options
13.1 Getting and setting pandas options
We’ll begin by importing the pandas library and assigning it an alias of pd:

In [1] import pandas as pd

This chapter’s data set, happiness.csv, is a ranking of the world’s nations by happiness.
The polling firm Gallup gathers the data with support from the United Nations. Each
row includes a nation’s aggregate happiness score alongside individual scores for
gross domestic product (GDP) per capita, social support, life expectancy, and gener-
osity. The data set holds 6 columns and 156 rows:

In [2] happiness = pd.read_csv("happiness.csv")
 happiness.head()

Out [2]

 Country Score GDP per cap… Social sup… Life expect… Generosity

0 Finland 7.769 1.340 1.587 0.986 0.153
1 Denmark 7.600 1.383 1.573 0.996 0.252
2 Norway 7.554 1.488 1.582 1.028 0.271
3 Iceland 7.494 1.380 1.624 1.026 0.354
4 Netherlands 7.488 1.396 1.522 0.999 0.322

Pandas stores its settings in a single options object at the top level of the library.
Each option belongs to a parent category. Let’s start with the display category,
which holds settings for the printed representation of pandas’ data structures.

 The top-level describe_option function returns the documentation for a given
setting. We can pass it a string with the setting’s name. Let’s look into the max_rows
option, which is nested within the display parent category. The max_rows setting
configures the maximum number of rows that pandas prints before it truncates a
DataFrame:

In [3] pd.describe_option("display.max_rows")

Out [3]

 display.max_rows : int
 If max_rows is exceeded, switch to truncate view. Depending on
 `large_repr`, objects are either centrally truncated or printed
 as a summary view. 'None' value means unlimited.

 In case python/IPython is running in a terminal and
 `large_repr` equals 'truncate' this can be set to 0 and pandas
 will auto-detect the height of the terminal and print a
 truncated object which fits the screen height. The IPython
 notebook, IPython qtconsole, or IDLE do not run in a terminal
 and hence it is not possible to do correct auto-detection.
 [default: 60] [currently: 60]

Notice that the end of the documentation includes the setting’s default value and its
current value.

312 CHAPTER 13 Configuring pandas
 Pandas will print all library options that match the string argument. The library
uses regular expressions to compare describe_option’s argument with its available
settings. As a reminder, a regular expression is a search pattern for text; see appendix E
for a detailed overview. The next example passes an argument of "max_col". Pandas
prints documentation for the two settings that match the term:

In [4] pd.describe_option("max_col")

Out [4]

display.max_columns : int
 If max_cols is exceeded, switch to truncate view. Depending on
 `large_repr`, objects are either centrally truncated or printed as
 a summary view. 'None' value means unlimited.

 In case python/IPython is running in a terminal and `large_repr`
 equals 'truncate' this can be set to 0 and pandas will auto-detect
 the width of the terminal and print a truncated object which fits
 the screen width. The IPython notebook, IPython qtconsole, or IDLE
 do not run in a terminal and hence it is not possible to do
 correct auto-detection.
 [default: 20] [currently: 5]
display.max_colwidth : int or None
 The maximum width in characters of a column in the repr of
 a pandas data structure. When the column overflows, a "..."
 placeholder is embedded in the output. A 'None' value means unlimited.
 [default: 50] [currently: 9]

Although regular expressions are appealing, I recommend writing out the full name of
the setting, including its parent category. Explicit code tends to lead to fewer errors.

 There are two ways to get a setting’s current value. The first way is the get_option
function at the top level of pandas; like describe_option, it accepts a string argu-
ment with the setting’s name. The second approach is to access the parent category
and the specific setting as attributes on the top-level pd.options object.

 The following example shows the syntax for both strategies. Both lines of code
return 60 for the max_rows setting, which means that pandas will truncate any Data-
Frame output greater than 60 rows in length:

In [5] # The two lines below are equivalent
 pd.get_option("display.max_rows")
 pd.options.display.max_rows

Out [5] 60

Similarly, there are two ways to set a new value for a configuration setting. The set_
option function at the top level of pandas accepts the setting as its first argument and
its new value as the second argument. Alternatively, we can access the option via attri-
butes on the pd.options object and assign the new value with an equal sign:

In [6] # The two lines below are equivalent
 pd.set_option("display.max_rows", 6)
 pd.options.display.max_rows = 6

313Getting and setting pandas options
We’ve instructed pandas to truncate the DataFrame output if it is longer than six
rows:

In [7] pd.options.display.max_rows

Out [7] 6

Let’s see the change in action. The next example asks pandas to print the first six rows
of happiness. The threshold of six maximum rows is not crossed, so pandas outputs
the DataFrame without truncation:

In [8] happiness.head(6)

Out [8]

 Country Score GDP per cap… Social sup… Life expect… Generosity

0 Finland 7.769 1.340 1.587 0.986 0.153
1 Denmark 7.600 1.383 1.573 0.996 0.252
2 Norway 7.554 1.488 1.582 1.028 0.271
3 Iceland 7.494 1.380 1.624 1.026 0.354
4 Netherlands 7.488 1.396 1.522 0.999 0.322
5 Switzerland 7.480 1.452 1.526 1.052 0.263

Now let’s cross the threshold and ask pandas to print the first seven rows of happiness.
The library always aims to print an equal number of rows before and after the trunca-
tion. In the next example, it prints three rows from the beginning of the output and
three rows from the end of the output, truncating the middle row (index 3):

In [9] happiness.head(7)

Out [9]

 Country Score GDP per cap… Social sup… Life expect… Generosity

0 Finland 7.769 1.340 1.587 0.986 0.153
1 Denmark 7.600 1.383 1.573 0.996 0.252
2 Norway 7.554 1.488 1.582 1.028 0.271
… … … … … … …
4 Netherlands 7.488 1.396 1.522 0.999 0.322
5 Switzerland 7.480 1.452 1.526 1.052 0.263
6 Sweden 7.343 1.387 1.487 1.009 0.267

7 rows × 6 columns

The max_rows setting declares the number of printed rows. The complementary
display.max_columns option sets the maximum number of printed columns. The
default value is 20:

In [10] # The two lines below are equivalent
 pd.get_option("display.max_columns")
 pd.options.display.max_columns

Out [10] 20

314 CHAPTER 13 Configuring pandas
Again, to assign a new value, we can use the set_option function or access the
nested max_columns attribute directly:

In [11] # The two lines below are equivalent
 pd.set_option("display.max_columns", 2)
 pd.options.display.max_columns = 2

If we set an even number of max columns, pandas will exclude the truncation column
from its max column count. The happiness DataFrame has six columns, but the fol-
lowing output displays only two of them. Pandas includes the first and last columns,
Country and Generosity, and places a truncation column between the two:

In [12] happiness.head(7)

Out [12]

 Country … Generosity

0 Finland 0.153
1 Denmark … 0.252
2 Norway … 0.271
… … … …
4 Netherlands … 0.322
5 Switzerland … 0.263
6 Sweden … 0.267

7 rows × 6 columns

If we set an odd number of max columns, pandas will include the truncation column
in its column count. An odd number ensures that pandas can pack an equal number
of columns on both sides of the truncation. The next example sets the max_columns
value to 5. The happiness output displays the two leftmost columns (Country and
Score), the truncation column, and the two rightmost columns (Life expectancy and
Generosity). Pandas prints four of the original six columns:

In [13] # The two lines below are equivalent
 pd.set_option("display.max_columns", 5)
 pd.options.display.max_columns = 5

In [14] happiness.head(7)

Out [14]

 Country Score … Life expectancy Generosity

0 Finland 7.769 … 0.986 0.153
1 Denmark 7.600 … 0.996 0.252
2 Norway 7.554 … 1.028 0.271
… … … … … …
4 Netherlands 7.488 … 0.999 0.322
5 Switzerland 7.480 … 1.052 0.263
6 Sweden 7.343 … 1.009 0.267

5 rows × 6 columns

315Precision
To return a setting to its original value, pass its name to the reset_option function
at the top level of pandas. The next example resets the max_rows setting:

In [15] pd.reset_option("display.max_rows")

We can confirm the change by invoking the get_option function again:

In [16] pd.get_option("display.max_rows")

Out [16] 60

Pandas has reset the max_rows setting to its default value of 60.

13.2 Precision
Now that we’re comfortable with pandas’ API for changing settings, let’s walk through
a few popular configuration options.

 The display.precision option sets the number of digits after a floating-point
number. The default value is 6:

In [17] pd.describe_option("display.precision")

Out [17]

 display.precision : int
 Floating point output precision (number of significant
 digits). This is only a suggestion
 [default: 6] [currently: 6]

The next example sets the precision to 2. The setting affects values in all four of the
floating-point columns in happiness:

In [18] # The two lines below are equivalent
 pd.set_option("display.precision", 2)
 pd.options.display.precision = 2

In [19] happiness.head()

Out [19]

 Country Score … Life expectancy Generosity

0 Finland 7.77 … 1.34 0.15
1 Denmark 7.60 … 1.38 0.25
2 Norway 7.55 … 1.49 0.27
3 Iceland 7.49 … 1.38 0.35
4 Netherlands 7.49 … 1.40 0.32

5 rows × 6 columns

The precision setting alters only the presentation of floating-point numbers. Pan-
das preserves the original values within the DataFrame, which we can prove by using
the loc accessor to extract a sample value from a floating-point column like Score:

In [20] happiness.loc[0, "Score"]

Out [20] 7.769

316 CHAPTER 13 Configuring pandas
The Score column’s original value, 7.769, is still present. Pandas changes the presen-
tation of the value to 7.77 when it prints the DataFrame.

13.3 Maximum column width
The display.max_colwidth setting sets the maximum number of characters pan-
das prints before truncating a cell’s text:

In [21] pd.describe_option("display.max_colwidth")

Out [21]

 display.max_colwidth : int or None
 The maximum width in characters of a column in the repr of
 a pandas data structure. When the column overflows, a "..."
 placeholder is embedded in the output. A 'None' value means
 unlimited.
 [default: 50] [currently: 50]

The next example asks pandas to truncate text if its length is greater than nine
characters:

In [22] # The two lines below are equivalent
 pd.set_option("display.max_colwidth", 9)
 pd.options.display.max_colwidth = 9

Let’s see what happens when we output happiness:

In [23] happiness.tail()

Out [23]

 Country Score … Life expectancy Generosity

151 Rwanda 3.33 … 0.61 0.22
152 Tanzania 3.23 … 0.50 0.28
153 Afgha… 3.20 … 0.36 0.16
154 Central Afr… 3.08 … 0.10 0.23
155 South… 2.85 … 0.29 0.20

5 rows × 6 columns

Pandas shortens the last three Country values (Afghanistan, Central African Republic,
and South Sudan). The first two values in the output (Rwanda at six characters and
Tanzania at eight characters) remain unaffected.

13.4 Chop threshold
In some analyses, we may consider values to be insignificant if they are reasonably
close to 0. Your business domain, for example, may consider the value 0.10 to be “as
good as 0” or “effectively 0”. The display.chop_threshold option sets the floor
that a floating-point value must cross to be printed. Pandas will display any value
below the threshold as 0:

317Option context
In [24] pd.describe_option("display.chop_threshold")

Out [24]

 display.chop_threshold : float or None
 if set to a float value, all float values smaller then the
 given threshold will be displayed as exactly 0 by repr and
 friends.
 [default: None] [currently: None]

This example sets 0.25 as the chop threshold:

In [25] pd.set_option("display.chop_threshold", 0.25)

In the next output, notice that pandas prints the values in the Life expectancy and Gen-
erosity columns for index 154 (0.105 and 0.235, respectively) as 0.00 in the output:

In [26] happiness.tail()

Out [26]

 Country Score … Life expectancy Generosity

151 Rwanda 3.33 … 0.61 0.00
152 Tanzania 3.23 … 0.50 0.28
153 Afghanistan 3.20 … 0.36 0.00
154 Central Afr... 3.08 … 0.00 0.00
155 South Sudan 2.85 … 0.29 0.00

5 rows × 6 columns

Much like the precision setting, chop_threshold does not change the underlying
values in the DataFrame—only their printed representation.

13.5 Option context
The settings we’ve altered so far have been global. When we change them, we alter the
output of all Jupyter Notebook cells executed afterward. A global setting persists until
we assign a new value to it. If we set display.max_columns to 6, for example, Jupyter
will output DataFrames with a maximum of six columns for all future cell executions.

 Sometimes, we want to customize presentation options for a single cell. We can
accomplish this task with pandas’ top-level option_context function. We pair the
function with Python’s built-in with keyword to create a context block. Think of a con-
text block as being a temporary execution environment. The option_context func-
tion sets temporary values for pandas options while the code inside the block
executes; global pandas settings are not affected.

 We pass settings to the option_context function as sequential arguments. The
next example prints the happiness DataFrame with

 display.max_columns set to 5
 display.max_rows set to 10
 display.precision set to 3

318 CHAPTER 13 Configuring pandas
Jupyter does not recognize the with block’s contents as the final statement of a Note-
book cell. Thus, we need to use a Notebook function called display to output the
DataFrame manually:

In [27] with pd.option_context(
 "display.max_columns", 5,
 "display.max_rows", 10,
 "display.precision", 3
):
 display(happiness)

Out [27]

 Country Score … Life expectancy Generosity

0 Finland 7.769 … 0.986 0.153
1 Denmark 7.600 … 0.996 0.252
2 Norway 7.554 … 1.028 0.271
3 Iceland 7.494 … 1.026 0.354
4 Netherlands 7.488 … 0.999 0.322
… … … … … …
151 Rwanda 3.334 … 0.614 0.217
152 Tanzania 3.231 … 0.499 0.276
153 Afghanistan 3.203 … 0.361 0.158
154 Central Afr... 3.083 … 0.105 0.235
155 South Sudan 2.853 … 0.295 0.202

156 rows × 6 columns

Because we used the with keyword, we did not alter global Notebook settings for
these three options; they retain their original values.

 The option_context function is helpful for assigning different options to differ-
ent cell executions. If you’d like a uniform presentation for all output, I recommend
setting the options once in a cell at the top of your Jupyter Notebook.

Summary
 The describe_option function returns documentation for a pandas setting.
 The set_option function sets a new value for a setting.
 We can also change a setting by accessing and overwriting attributes on the

pd.options object.
 The reset_option function changes a pandas setting back to its default value.
 The display.max_rows and display.max_columns options set the maxi-

mum rows/columns that pandas shows in the output.
 The display.precision setting alters the number of digits after a decimal

point.
 The display.max_colwidth option sets the numeric threshold at which pan-

das truncates printed characters.
 The display.chop_threshold option sets a numeric floor. If values do not

cross the threshold, pandas will print them as zeroes.
 Pair the option_context function and the with keyword to create a tempo-

rary execution context for a block completely.

Visualization
Text-based DataFrame summaries are helpful, but many times, a story can best be
told by a visualization. A line chart can quickly communicate a trend over time; a
bar graph can distinctly identify unique categories and their counts; a pie chart can
represent proportions in an easily digestible manner, and so on. Fortunately, pan-
das seamlessly integrates with many popular Python data visualization libraries,
including Matplotlib, seaborn, and ggplot. In this chapter, we’ll learn how to use
Matplotlib to render dynamic charts from our Series and DataFrames. I hope
that these visualizations help you add that little spark to your data presentations.

This chapter covers
 Installing the Matplotlib library for data

visualization

 Rendering graphs and charts with pandas and
Matplotlib

 Applying color templates to visualizations
319

320 CHAPTER 14 Visualization
14.1 Installing matplotlib
By default, pandas relies on the open source Matplotlib package to render charts and
graphs. Let’s install it in our Anaconda environment.

 Begin by launching the Terminal (macOS) or Anaconda Prompt (Windows) appli-
cation for your operating system. The default Anaconda environment, base, should
be listed in parentheses to the left. base is the currently active environment.

 When we installed Anaconda (see appendix A), we created an environment called
pandas_in_action. Let’s execute the conda activate command to activate it. If
you chose a different environment name, replace pandas_in_action with that
name, as follows:

(base) ~$ conda activate pandas_in_action

The parentheses should change to reflect the active environment. Execute the com-
mand conda install matplotlib to install the Matplotlib library within the
pandas_in_action environment:

(pandas_in_action) ~$ conda install matplotlib

When the prompt asks you to confirm, enter 'Y' for yes and press Enter. When instal-
lation completes, execute jupyter notebook and create a new Notebook.

14.2 Line charts
As always, let’s begin by importing the pandas library. We’ll also import the pyplot
package from within the Matplotlib library. In this context, a package means a nested
folder within the top library. We can access the pyplot package using dot syntax, the
same way we access any library attribute. A common community alias for pyplot is plt.

 By default, Jupyter Notebook renders each Matplotlib visualization in a separate
browser window, like a pop-up window on a website. The windows can be a bit jarring,
especially when there are multiple charts on the screen. We can add an extra line—
%matplotlib inline—to force Jupyter to render visualizations directly below the
code in a cell. %matplotlib inline is an example of a magic function, a syntactical
shortcut for setting a configuration option in the Notebook:

In [1] import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

Now on to the data! This chapter’s data set, space_missions.csv, includes more than
100 space flights throughout 2019 and 2020. Each record consists of a mission’s date,
sponsoring company, location, cost, and status ("Success" or "Failure"):

In [2] pd.read_csv("space_missions.csv").head()

Out [2]

321Line charts
 Date Company Name Location Cost Status

0 2/5/19 Arianespace France 200.00 Success
1 2/22/19 SpaceX USA 50.00 Success
2 3/2/19 SpaceX USA 50.00 Success
3 3/9/19 CASC China 29.15 Success
4 3/22/19 Arianespace France 37.00 Success

Let’s adjust two settings before we assign the imported DataFrame to a space vari-
able. First, we’ll use the parse_dates parameter to import the values in the Date col-
umn as datetimes. Next, we’ll set the Date column as the index of the DataFrame:

In [3] space = pd.read_csv(
 "space_missions.csv",
 parse_dates = ["Date"],
 index_col = "Date"
)

 space.head()

Out [3]

 Company Name Location Cost Status
Date

2019-02-05 Arianespace France 200.00 Success
2019-02-22 SpaceX USA 50.00 Success
2019-03-02 SpaceX USA 50.00 Success
2019-03-09 CASC China 29.15 Success
2019-03-22 Arianespace France 37.00 Success

Suppose that we want to plot the flight costs over the two years in this data set. A time-
series graph is an optimal chart for observing a trend over time. We can plot time on
the x-axis and values on the y-axis. First, let’s extract the Cost column from the space
DataFrame. The result is a Series with numeric values and a datetime index:

In [4] space["Cost"].head()

Out [4] Date
 2019-02-05 200.00
 2019-02-22 50.00
 2019-03-02 50.00
 2019-03-09 29.15
 2019-03-22 37.00
 Name: Cost, dtype: float64

To render a visualization, invoke the plot method on a pandas data structure. By
default, Matplotlib draws a line graph. Jupyter also prints the location of the graph
object in the computer’s memory. The location will be different with each cell execu-
tion, so feel free to ignore it:

In [5] space["Cost"].plot()

Out [5] <matplotlib.axes._subplots.AxesSubplot at 0x11e1c4650>

322 CHAPTER 14 Visualization
Pretty fancy! We have rendered a line chart with Matplotlib using values from pandas.
By default, the library plots the index labels (in this case, the datetimes) on the x-axis
and the Series’ values on the y-axis. Matplotlib also calculates reasonable intervals
for the range of values on both axes.

 We can also invoke the plot method on the space DataFrame itself. In this sce-
nario, pandas produces the same output, but only because the data set has only one
numeric column:

In [6] space.plot()

Out [6] <matplotlib.axes._subplots.AxesSubplot at 0x11ea18790>

323Line charts
 If a DataFrame holds multiple numeric columns, Matpotlib will draw a separate
line for each one. Be careful: if there is a large gap in the magnitude of values
between columns (if one numeric column has values in the millions and another has
values in the hundreds, for example), the larger values can easily dwarf the smaller
ones. Consider this DataFrame:

In [7] data = [
 [2000, 3000000],
 [5000, 5000000]
]

 df = pd.DataFrame(data = data, columns = ["Small", "Large"])
 df

Out [7]

 Small Large

0 2000 3000000
1 5000 5000000

When we plot the df DataFrame, Matplotlib adjusts the graph scale to accommodate
the Large column’s values. The trend in the Small column’s values becomes impossi-
ble to see:

In [8] df.plot()

Out [8] <matplotlib.axes._subplots.AxesSubplot at 0x7fc48279b6d0>

Let’s come back to space. The plot method accepts a y parameter to identify the
DataFrame column whose values Matplotlib should plot. The next example passes
the Cost column and is another way to render the same time-series graph:

324 CHAPTER 14 Visualization
In [9] space.plot(y = "Cost")

Out [9] <matplotlib.axes._subplots.AxesSubplot at 0x11eb0b990>

We can use the colormap parameter to alter the aesthetics of the visualization. Think
of this process as setting the color theme of the graph. The parameter accepts a string
with a predefined color palette from the Matplotlib library. The following example
uses a "gray" theme that renders the line chart in black and white:

In [10] space.plot(y = "Cost", colormap = "gray")

Out [10] <matplotlib.axes._subplots.AxesSubplot at 0x11ebef350>

325Bar graphs
To see a list of valid inputs for the colormaps parameter, invoke the colormaps
method on the pyplot library (aliased to plt in our Notebook). Note that we can
apply some of these themes only if certain criteria are met, such as a minimum num-
ber of graph lines:

In [11] print(plt.colormaps())

Out [11] ['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r',
 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r',
 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r',
 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r',
 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r',
 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn',
 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r',
 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r',
 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r',
 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3',
 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn',
 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd',
 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary',
 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r',
 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm',
 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r',
 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray',
 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar',
 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern',
 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot',
 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot',
 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r',
 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean',
 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism',
 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r',
 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r',
 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r',
 'terrain', 'terrain_r', 'twilight', 'twilight_r',
 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r',
 'winter', 'winter_r']

Matplotlib has more than 150 available color maps to choose among. The library also
offers ways to customize the graphs manually.

14.3 Bar graphs
The plot method’s kind parameter alters the type of chart that Matplotlib renders. A
bar graph is an excellent choice to display the counts of unique values in a data set, so
let’s use it to visualize how many space flights each company sponsored.

 First, we’ll target the Company Name column and invoke the value_counts
method to return a Series of mission counts by company:

In [12] space["Company Name"].value_counts()

Out [12] CASC 35
 SpaceX 25
 Roscosmos 12

326 CHAPTER 14 Visualization
 Arianespace 10
 Rocket Lab 9
 VKS RF 6
 ULA 6
 Northrop 5
 ISRO 5
 MHI 3
 Virgin Orbit 1
 JAXA 1
 ILS 1
 ExPace 1
 Name: Company Name, dtype: int64

Next, let’s invoke the plot method on the Series, passing an argument of "bar" to
the kind parameter. Matplotlib once again plots the index labels on the x-axis and the
values on the y-axis. It looks as though CASC has the most entries in the data set, fol-
lowed by SpaceX:

In [13] space["Company Name"].value_counts().plot(kind = "bar")

Out [13] <matplotlib.axes._subplots.AxesSubplot at 0x11ecd6310>

The graph is a good start, but we have to twist our heads to read the labels. Ouch.
Let’s change the kind argument to "barh" to render a horizontal bar graph instead:

In [14] space["Company Name"].value_counts().plot(kind = "barh")

Out [14] <matplotlib.axes._subplots.AxesSubplot at 0x11edf0190>

327Pie charts
That’s a lot better! Now we can easily identify which companies had the greatest num-
ber of space flights in the data set.

14.4 Pie charts
A pie chart is a visualization in which colored slices add up to form a whole circular pie
(much like slices of a pizza). Each piece visually represents the proportion it contrib-
utes to the total amount.

 Let’s use a pie chart to compare the ratio of successful missions to failed missions.
The Status column has only two unique values: "Success" and "Failure". First,
we’ll use the value_counts method to count the number of occurrences of each:

In [15] space["Status"].value_counts()

Out [15] Success 114
 Failure 6
 Name: Status, dtype: int64

Let’s invoke the plot method again. This time around, we’ll pass the kind parameter
an argument of "pie":

In [16] space["Status"].value_counts().plot(kind = "pie")

Out [16] <matplotlib.axes._subplots.AxesSubplot at 0x11ef9ea90>

328 CHAPTER 14 Visualization
Good news! It looks as though the majority of space flights were successful.
 To add a legend to a visualization like this one, we can pass the legend parameter

an argument of True:

In [17] space["Status"].value_counts().plot(kind = "pie", legend = True)

Out [17] <matplotlib.axes._subplots.AxesSubplot at 0x11eac1a10>

Matplotlib supports a wide variety
of additional charts and graphs,
including histograms, scatterplots,
and boxplots. We can include addi-
tional parameters to customize the
aesthetics, labels, legends, and
interactivity of these visualizations.
We’ve only scratched the surface
of what this powerful library can
render.

Summary
 Pandas seamlessly integrates with the Matplotlib library for data visualization. It

also plays well with additional plotting libraries within Python’s data science
ecosystem.

 The plot method on a Series or DataFrame renders a visualization with data
from the pandas data structure.

 The default Matplotlib chart is a line graph.
 The kind parameter to the plot method alters the type of the rendered visual-

ization. Options include line graphs, bar graphs, and pie charts.
 The colormap parameter changes the color scheme of the rendered graphic.

Matplotlib has dozens of predefined templates, and users can also create their
own by adjusting method parameters.

appendix A
Installation and setup

Welcome to the supplementary material! This appendix walks you through install-
ing the Python programming language and the pandas library for the macOS and
Windows operating systems. A library (also called a package) is a toolbox of features
that expands a core programming language’s functionalities—an expansion pack
or add-on that offers solutions to common challenges that developers face when
working with the language. The Python ecosystem includes thousands of packages
for domains such as statistics, HTTP requests, and database management.

 A dependency is a piece of software that we need to install to run another piece of
software. Pandas is not a stand-alone package; it has a set of dependencies includ-
ing the libraries NumPy and pytz. These libraries may require their own dependen-
cies. We don’t have to understand what all these other packages do, but we need to
install them for pandas to function.

A.1 The Anaconda distribution
Open source libraries are often developed by independent teams of contributors on
different timelines. Unfortunately, the isolated development cycles can introduce
compatibility issues between library versions. Installing the latest version of a library
without upgrading its dependencies may render it dysfunctional, for example.

 To simplify the installation and management of pandas and its dependencies,
we’ll rely on a Python distribution called Anaconda. A distribution is a collection of
software that bundles multiple applications and their dependencies in one straight-
forward installer. With a user base of more than 20 million, Anaconda is the most
popular distribution for getting up and running with data science in Python.

 Anaconda installs Python and a powerful environment management system
called conda. An environment is an independent sandbox for code execution—a
playground of sorts where we can install Python and a selection of packages. To
experiment with a different version of Python, a different version of pandas, a dif-
ferent combination of packages, or anything in between, we create a new conda
329

330 APPENDIX A Installation and setup
environment. Figure A.1 depicts three hypothetical conda environments, each with a
different version of Python.

 The advantage of environments is isolation. Changes in one environment do not
affect any other environment, as conda stores them in different folders. Thus, we can
easily work on multiple projects, each of which requires a different configuration.
When you’re installing packages to an environment, conda also installs the appropri-
ate dependencies and ensures compatibility between different library versions. In
short, conda is an effective way to enable multiple installations and configurations of
Python tools on your computer.

 That’s a big-picture introduction! Now let’s get down to business and install Ana-
conda. Head to www.anaconda.com/products/individual, and find the section of the
page with installer downloads for your operating system. You’ll likely see multiple ver-
sions of the Anaconda installer:

 If you’re given a choice between a Graphical Installer and a Command Line
Installer, choose the Graphical Installer.

 If you’re given a choice of Python versions, target the most up-to-date one. As
with most software, a larger version number denotes a more recent release.
Python 3 is newer than Python 2, and Python 3.9 is newer than Python 3.8.
When you’re learning a new technology, it’s best to get started with the latest
release. Don’t worry; conda permits you to create environments with earlier
versions of Python if you need them.

 If you’re a Windows user, you may be given a choice between a 64-bit and a 32-
bit installer. We’ll discuss which one to select in section A.3.

At this point, the setup process diverges for the macOS and Windows operating sys-
tems. Find the appropriate subsection in this appendix, and continue from there.

A.2 The macOS setup process
Let’s walk through installing Anaconda on a macOS computer.

A.2.1 Installing Anaconda in macOS

Your Anaconda download will consist of a single .pkg installer file. The filename will
likely include the Anaconda version number and the operating system (such as

Figure A.1 Three Anaconda environments with different Python versions and different packages

http://www.anaconda.com/products/individual

331The macOS setup process
Anaconda3-2021.05-MacOSX-x86_64). Locate the installer in your file system, and
double-click it to start the installation.

 Click the Continue button on the first screen. On the README screen, the installer
provides a quick overview of Anaconda that is worth perusing (see figure A.2).

Figure A.2 Anaconda installation screen on a macOS computer

The installation creates a starter conda environment called base with a collection of
more than 250 preselected data analysis packages. You will be able to create additional
environments later. The installer also informs you that it will activate this base environ-
ment whenever you start your shell; we’ll discuss how this process works in section A.2.2.
For now, trust that this part of the installation process is required, and proceed onward.

 Continue through any remaining screens. Accept the license agreement and the
space requirements. You’ll be given the option to customize your installation direc-
tory; whether you do is entirely up to you. Note that the distribution is self-contained;
Anaconda installs itself within one directory on your computer. Thus, if you’d ever
like to uninstall Anaconda, you can delete that directory.

 Installation may take up to a few minutes. When it completes, click Next until you
exit the installer.

A.2.2 Launching Terminal

Anaconda ships with a graphical program called Navigator that makes it easy to create
and manage conda environments. Before we launch it, though, we’ll use the more tra-
ditional Terminal application to issue commands to the conda environment manager.

332 APPENDIX A Installation and setup
 Terminal is an application for issuing commands to the macOS operating system.
Before modern graphical user interfaces (GUIs) existed, users relied exclusively on
text-based applications to interact with the computer. In Terminal, you enter text and
then press the Enter key to execute it. I’d like us to master Terminal before Anaconda
Navigator because it’s important to understand the complexity that a piece of software
abstracts from us before we rely on its shortcuts.

 Open a Finder window, and navigate to the Applications directory, where you’ll
find the Terminal application within the Utilities folder. Launch the application. I also
recommend dragging the Terminal app’s icon to the Dock for easy access.

 Terminal should list the active conda environment inside a pair of parentheses
before its flashing prompt. As a reminder, Anaconda created a base starter environ-
ment during installation. Figure A.3 shows a sample Terminal window with the base
environment activated.

Figure A.3 Terminal on a macOS machine. The active conda environment is base.

Anaconda will activate the conda environment manager and this base environment
whenever we start Terminal.

A.2.3 Common Terminal commands

We need to memorize only a few commands to work effectively with Terminal. In Ter-
minal, we can navigate through our computer’s directories the same way that we do in
the Finder. The pwd (print working directory) command outputs the folder we are in:

(base) ~$ pwd
/Users/boris

The ls (list) command lists the files and folders inside the current directory:

(base) ~$ ls
Applications Documents Google Drive Movies Pictures anaconda3
Desktop Downloads Library Music Public

Some commands accept flags. A flag is a configuration option we add after a com-
mand to modify how it executes. Its syntax consists of a sequence of dashes and text
characters. Here’s one example. The ls command by itself shows only public files and

333The Windows setup process
folders. We can add the --all flag to the command to display the hidden files as well.
Some flags support multiple syntax options. ls -a , for example, is a shortcut for ls
--all. Try both commands for yourself.

 The cd (change directory) command navigates into a specified directory. Enter
the directory name immediately after the command, making sure to include a space.
In the next example, we navigate into the Desktop directory:

(base) ~$ cd Desktop

We can output our current location with the pwd command:

(base) ~/Desktop$ pwd
/Users/boris/Desktop

A pair of dots after cd navigates upward in the folder hierarchy:

(base) ~/Desktop$ cd ..

(base) ~$ pwd
/Users/boris

Terminal has a powerful autocomplete feature. Inside your user directory, enter cd
Des and press the Tab key to autocomplete it to cd Desktop. Terminal looks at the
list of available files and folders, and determines that only Desktop matches the Des
pattern we typed. If there are multiple matches, Terminal will complete a portion of
the name. If a directory contains two folders, Anaconda and Analytics, and you
enter the letter A, Terminal will autocomplete Ana, the common letters in the two
options. You’ll have to type an additional letter and press the Tab key again for Termi-
nal to autocomplete the remainder of the name.

 At this point, we’ve acquired all the knowledge we need to start working with the
conda environment manager. Skip to section A.4, where we’ll meet up with our Win-
dows friends and set up our first conda environment!

A.3 The Windows setup process
Let’s walk through installing Anaconda on a Windows computer.

A.3.1 Installing Anaconda in Windows

The Anaconda installer for Windows is available in both 32-bit and 64-bit versions.
These options describe the type of processor installed with your computer. If you are
unsure which option to download, open the Start menu, and choose the System Infor-
mation app. On the app’s main screen, you will see a table consisting of Item and
Value columns. Look for the System Type item; its value will include x64 if your com-
puter runs a 64-bit version of Windows or x86 if your computer runs a 32-bit version
of Windows. Figure A.4 shows the System Information app on a Windows computer
with the System Type row highlighted.

334 APPENDIX A Installation and setup
Figure A.4 The System Information app on a 64-bit Windows computer

Your Anaconda download will consist of a single .exe installer file. The filename will
include the Anaconda version number and the operating system (such as Anaconda3-
2021.05-Windows-x86_64). Locate the file on your file system and double-click it to
launch the installer.

 Proceed through the first few installation screens. You will be prompted to accept
the license agreement, choose whether to install Anaconda for one or all users, and
select the installation directory. Selecting the default options is fine.

 When you reach the Advanced Installation Options screen, it might be a good idea
to deselect the Register Anaconda As My Default Python check box if you already have
Python installed on your computer. Deselecting the item prevents the installation
from setting Anaconda as the default Python version on your computer. If you’re
installing Python for the first time, keeping the option selected should be fine.

 The installation creates a starter conda environment called base with a collection
of more than 250 preselected data analysis packages. You will be able to create addi-
tional environments later.

 Installation can take up to a
few minutes. Figure A.5 shows a
sample of the installation pro-
cess. When installation is com-
plete, exit the installer.

Figure A.5 In-progress Anaconda
installation on a Windows computer

335The Windows setup process
If you ever want to uninstall Anaconda, launch the Start menu, and choose Add or
Remove Programs. Locate the Anaconda program, click the Uninstall button, and fol-
low the steps in the prompt to remove the distribution from your computer. Note that
this process will remove all conda environments as well as their installed packages and
Python versions.

A.3.2 Launching Anaconda Prompt

Anaconda ships with a graphical program called Navigator that makes it easy to create
and manage conda environments. Before we launch it, though, we’ll use a more tradi-
tional command-line application to issue commands to the conda environment man-
ager. It’s important to understand the problems that Navigator solves for us before we
rely on its shortcuts.

 Anaconda Prompt is an application for issuing text commands to the Windows oper-
ating system. We enter a command and then press the Enter key to execute it. Before
modern GUIs existed, users relied exclusively on command-based applications like
this one to interact with the computer. Open the Start menu, find Anaconda Prompt,
and launch the application.

 Anaconda Prompt should always list the active conda environment in a pair of
parentheses before its flashing prompt. Right now, you should see base, the starter
environment that Anaconda created during installation. Figure A.6 displays Anaconda
Prompt with an active base environment.

Figure A.6 Anaconda Prompt on a Windows machine. The active conda environment is base.

Anaconda Prompt will activate the base environment when it launches. In section
A.3.4, we’ll walk through how to create and activate new environments with conda.

A.3.3 Common Anaconda Prompt commands

We need to memorize only a few commands to work effectively with Anaconda
Prompt. We can navigate through our computer’s directories the same way that we do
in Windows Explorer. The dir (directory) command lists all files and folders in the
current directory:

(base) C:\Users\Boris>dir
 Volume in drive C is OS
 Volume Serial Number is 6AAC-5705

 Directory of C:\Users\Boris

336 APPENDIX A Installation and setup
08/15/2019 03:16 PM <DIR> .
08/15/2019 03:16 PM <DIR> ..
09/20/2017 02:45 PM <DIR> Contacts
08/18/2019 11:21 AM <DIR> Desktop
08/13/2019 03:50 PM <DIR> Documents
08/15/2019 02:51 PM <DIR> Downloads
09/20/2017 02:45 PM <DIR> Favorites
05/07/2015 09:56 PM <DIR> Intel
06/25/2018 03:35 PM <DIR> Links
09/20/2017 02:45 PM <DIR> Music
09/20/2017 02:45 PM <DIR> Pictures
09/20/2017 02:45 PM <DIR> Saved Games
09/20/2017 02:45 PM <DIR> Searches
09/20/2017 02:45 PM <DIR> Videos
 1 File(s) 91 bytes
 26 Dir(s) 577,728,139,264 bytes free

The cd (change directory) command navigates into a specified directory. Enter the
directory name immediately after the command, making sure to include a space. In
the next example, we navigate into the Desktop directory:

(base) C:\Users\Boris>cd Desktop

(base) C:\Users\Boris\Desktop>

A pair of dots after cd navigates upward in the folder hierarchy:

(base) C:\Users\Boris\Desktop>cd ..

(base) C:\Users\Boris>

Anaconda Prompt has a powerful autocomplete feature. Inside your user directory,
enter cd Des and press the Tab key to autocomplete it to cd Desktop. Anaconda
Prompt looks at the list of available files and folders, and determines that only Desktop
matches the Des pattern we typed. If there are multiple matches, Anaconda Prompt will
complete a portion of the name. If a directory contains two folders, Anaconda and
Analytics, and you enter the letter A, Anaconda Prompt will autocomplete Ana, the
common letters in the two options. You’ll have to type an additional letter and press the
Tab key again for Prompt to autocomplete the remainder of the name.

 At this point, we have all the knowledge we need to start working with the conda
environment manager. Let’s create our first conda environment!

A.4 Creating a new Anaconda environment
Congratulations—you’ve successfully installed the Anaconda distribution on your
macOS or Windows machine. Now let’s create a sample conda environment that we’ll
use as we work through the book. Please note that the code samples in this section are
from a macOS computer. Although outputs may vary slightly between the two operat-
ing systems, the Anaconda commands remain the same.

 Open Terminal (macOS) or Anaconda Prompt (Windows). Anaconda’s default
base environment should be active. Look for the presence of parentheses with the
word base to the left of the prompt.

337Creating a new Anaconda environment
 First, let’s confirm that we successfully installed the conda environment manager
by issuing a sample command. Here’s an easy one: ask conda for its version number.
Note that your version may differ from the one in the following output, but as long as
the command returns any number at all, conda is successfully installed:

(base) ~$ conda –-version
conda 4.10.1

The conda info command returns a list of technical details about conda. The out-
put includes the currently active environment and its location on your hard drive.
Here is an abbreviated version of the output:

(base) ~$ conda info

 active environment : base
 active env location : /opt/anaconda3
 shell level : 1
 user config file : /Users/boris/.condarc
 populated config files : /Users/boris/.condarc
 conda version : 4.10.1
 conda-build version : 3.18.9
 python version : 3.7.4.final.0

We can use flags to customize and configure conda commands. A flag is a configura-
tion option we add after a command to modify how it executes. Its syntax consists of a
sequence of dashes and text characters. The --envs flag to the info command lists
all environments and their locations on the computer. An asterisk (*) marks the active
environment:

(base) ~$ conda info --envs
conda environments:
#
base * /Users/boris/anaconda3

Every conda command supports the --help flag, which outputs documentation for
the command. Let’s add the flag to the conda info command:

(base) ~$ conda info --help
usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
 [--unsafe-channels]

Display information about current conda install.

Options:

optional arguments:
 -h, --help Show this help message and exit.
 -a, --all Show all information.
 --base Display base environment path.
 -e, --envs List all known conda environments.
 -s, --system List environment variables.
 --unsafe-channels Display list of channels with tokens exposed.

338 APPENDIX A Installation and setup
Output, Prompt, and Flow Control Options:
 --json Report all output as json. Suitable for using conda
 programmatically.
 -v, --verbose Use once for info, twice for debug, three times for
 trace.
 -q, --quiet Do not display progress bar.

Let’s create a new playground to play in. The conda create command generates a
new conda environment. We have to use the ––name flag to provide a name for the
environment. I’ve chosen a fitting title of pandas_in_action; you’re welcome to
choose whatever environment name you like. When conda prompts for confirmation,
enter y (for yes) and press Enter to confirm:

(base) ~$ conda create --name pandas_in_action
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

 environment location: /opt/anaconda3/envs/pandas_in_action

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate pandas_in_action
#
To deactivate an active environment, use
#
$ conda deactivate

By default, conda installs the latest version of Python in the new environment. To cus-
tomize the language version, add the keyword python at the end of the command,
enter an equal sign, and declare the desired version. The next example shows how to
create an environment called sample with Python 3.7:

(base) ~$ conda create --name sample python=3.7

Use the conda env remove command to delete an environment. Provide the
--name flag with the environment you’d like to remove. The next code sample
deletes the sample environment we created:

(base) ~$ conda env remove --name sample

Now that the pandas_in_action environment exists, we can activate it. The conda
activate command sets the active environment in Terminal or Anaconda Prompt. The
text in parentheses before the prompt will change to reflect the new active environment:

339Creating a new Anaconda environment
(base) ~$ conda activate pandas_in_action

(pandas_in_action) ~$

All conda commands execute in the context of the active environment. If we ask
conda to install a Python package, for example, conda will now install it within pan-
das_in_action. We want to install the following packages:

 The core pandas library
 The jupyter development environment where we’ll be writing our code
 The bottleneck and numexpr libraries for speed accelerations

The conda install command downloads and install packages in the active conda
environment. Add the four packages immediately after the command, separated by
spaces:

(pandas_in_action) ~$ conda install pandas jupyter bottleneck numexpr

As mentioned earlier, these four libraries have dependencies. The conda environ-
ment manager will output a list of all packages that it needs to install. Following is a
shortened version of the output. It’s OK if you see a different list of libraries or version
numbers; conda takes care of compatibility.

Collecting package metadata (repodata.json): done
Solving environment: done

Package Plan

 environment location: /opt/anaconda3/envs/pandas_in_action

 added / updated specs:
 - bottleneck
 - jupyter
 - numexpr
 - pandas

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 appnope-0.1.2 |py38hecd8cb5_1001 10 KB
 argon2-cffi-20.1.0 | py38haf1e3a3_1 44 KB
 async_generator-1.10 | py_0 24 KB
 certifi-2020.12.5 | py38hecd8cb5_0 141 KB
 cffi-1.14.4 | py38h2125817_0 217 KB
 ipython-7.19.0 | py38h01d92e1_0 982 KB
 jedi-0.18.0 | py38hecd8cb5_0 906 KB
 #... more libraries

Type y for yes and press Enter to install all packages and their dependencies.

340 APPENDIX A Installation and setup
 If you ever forget the packages installed in an environment, use the conda list
command to see a complete list. The output includes each library’s version:

(pandas_in_action) ~$ conda list

packages in environment at /Users/boris/anaconda3/envs/pandas_in_action:
#
Name Version Build Channel
jupyter 1.0.0 py39hecd8cb5_7
pandas 1.2.4 py39h23ab428_0

If you ever want to remove a package from an environment, use the conda unin-
stall command. Here’s what that command would look like with pandas:

(pandas_in_action) ~$ conda uninstall pandas

We’re ready to explore our development environment. We can launch the Jupyter
Notebook application with the command jupyter notebook:

(pandas_in_action) ~$ jupyter notebook

Jupyter Notebook starts a local server on your computer to run the core Jupyter appli-
cation. We need a server running continually so that it can observe the Python code
we write and execute it immediately.

 The Jupyter Notebook application should open in your system’s default web
browser. You can also access the application by navigating to localhost:8888/ in the
address bar; localhost refers to your computer, and 8888 is the port on which the app
is running. Much as a dock includes multiple ports to welcome multiple ships, your
computer (localhost) has multiple ports to allow multiple programs to run on your
computer’s local server. Figure A.7 shows the main interface of the Jupyter Notebook
interface, listing the files and folders in the current directory.

 The Jupyter Notebook interface is similar to the Finder (macOS) or Windows
Explorer (Windows). Folders and files are organized in alphabetical order. You can
click through folders to navigate into the next directory and use the breadcrumbs on

Figure A.7 Jupyter Notebook’s main interface

341Anaconda Navigator
top to navigate upward. Poke around for a few seconds. When you get the hang of nav-
igation, close the browser.

 Note that closing the browser does not shut down the running Jupyter server. We
need to press the keyboard shortcut Ctrl-C twice in Terminal or Anaconda Prompt to
terminate the Jupyter server.

 Note that every time you launch Terminal (macOS) or Anaconda Prompt (Win-
dows), you’ll have to activate the pandas_in_action environment again. Although
Anaconda’s base environment includes pandas, I recommend creating a new envi-
ronment for every Python book or tutorial you work through. Multiple environments
ensure separation between Python dependencies across different projects. One tuto-
rial may use pandas 1.1.3, for example, and another may use pandas 1.2.0. There are
fewer chances for technical errors when you install, upgrade, and work with depen-
dencies in isolation.

 Here’s a reminder of what to do each time you launch Terminal or Anaconda Prompt:

(base) ~$ conda activate pandas_in_action

(pandas_in_action) ~$ jupyter notebook

The first command activates the conda environment, and the second command
launches Jupyter Notebook.

A.5 Anaconda Navigator
Anaconda Navigator is a graphical program for managing conda environments.
Although its feature set is not as comprehensive as that of the conda command-line
tool, Anaconda Navigator offers a visual, beginner-friendly way to create and manage
environments with conda. You can find Anaconda Navigator inside the Applications
folder in the Finder (macOS) or on the Start menu (Windows). Figure A.8 shows the
home screen of the Anaconda Navigator app.

Figure A.8
Anaconda
Navigator
home screen

342 APPENDIX A Installation and setup
Click the Environments tab on the left menu to display a list of all environments.
Select a conda environment to see its installed packages, including their descriptions
and version numbers.

 On the bottom pane, click the Create button to launch a new environment-creation
prompt. Give the environment a name, and select a version of Python to install. The
resulting dialog box displays the location where conda will create the environment
(figure A.9).

To install a package, select an environment in the left list.
Above the list of packages, click the drop-down menu and
choose All to see all packages (figure A.10).

 In the search box on the right, search for a sample library,
such as pandas. Locate it in the search results, and select the
corresponding check box (figure A.11).

 Finally, click the green Apply button in the bottom-right cor-
ner to install the library.

Figure A.11 Searching for and selecting the pandas package in Anaconda Navigator

Figure A.9 Creating a new
Anaconda environment

Figure A.10
Anaconda package
search

343The basics of Jupyter Notebook
Let’s delete the pandas_playbox
environment we created. We don’t
need it because we already created
a pandas_in_action environ-
ment in Terminal or Anaconda
Prompt. Make sure to select
pandas_playbox in the left-side
environment list. Then click the
Remove button on the bottom
panel and again in the confirma-
tion dialog box (figure A.12).

 To launch Jupyter Notebook
from Anaconda Navigator, click
the Home tab of the left naviga-
tion menu. On this screen, you’ll see tiles for the applications installed in the current
environment. The top of the screen has a drop-down menu from which you can
choose the active conda environment. Make sure to select the pandas_in_action
environment we created for this book. Then you can launch Jupyter Notebook by
clicking its application tile. This action is equivalent to executing jupyter notebook
from Terminal or Anaconda Prompt.

A.6 The basics of Jupyter Notebook
Jupyter Notebook is an interactive development environment for Python, consisting of
one or more cells, each of which holds Python code or Markdown. Markdown is a text
formatting standard that we can use to add headers, text paragraphs, bulleted lists,
embedded images, and more to the Notebook. We use Python to write our logic and
Markdown to organize our thoughts. As you proceed through the book, feel free to
use Markdown to take notes on the material. The complete documentation for Mark-
down is available at https://daringfireball.net/projects/markdown/syntax.

 On the Jupyter launch screen, click the New button on the right menu, and
choose Python 3 to create a new Notebook (figure A.13).

Figure A.13 Creating a Jupyter Notebook

Figure A.12 Deleting the environment we created in
Anaconda Navigator

https://daringfireball.net/projects/markdown/syntax

344 APPENDIX A Installation and setup
To give the Notebook a name, click the Untitled text at the top and enter a name in
the dialog box. Jupyter Notebook saves its files with the .ipynb extension, short for IPy-
thon Notebooks, the predecessor of Jupyter Notebooks. You can navigate back to your
Jupyter Notebook tab to see the new .ipynb file in the directory.

 A Notebook operates in two modes: Command and Edit. Clicking a cell or pressing
Enter while the cell is focused triggers Edit mode. Jupyter highlights the cell with a
green border. In Edit mode, Jupyter interprets your keyboard presses literally. We use
this mode to type characters in a selected cell. Figure A.14 displays a sample Jupyter
cell in Edit mode.

Figure A.14 Empty Jupyter Notebook cell in Edit mode

Below the Notebook’s navigation menu, you’ll find a toolbar for common shortcuts. A
drop-down menu at the right end of the toolbar displays the focused cell’s type. Click
the drop-down menu to reveal a list of available cell options, and choose Code or
Markdown to change a cell to that type (figure A.15).

Figure A.15 Changing the type of a Jupyter Notebook cell

One of the best features of Jupyter Notebooks is its trial-and-error approach to devel-
opment. We enter Python code in a Code cell and then execute it. Jupyter outputs the
result below the cell. We check whether the result matches what we expect and con-
tinue the process. This approach encourages active experimentation; we’re always a
keyboard press away from seeing the difference that a line of code makes.

 Let’s execute some basic Python code. Enter the following mathematical expres-
sion inside the Notebook’s first cell and then click the Run button on the toolbar to
execute it:

In [1]: 1 + 1

Out [1]: 2

The box to the left of the code (displaying the number 1 in the preceding example)
marks the cell’s execution order relative to the launch or restart of the Jupyter
Notebook. You can execute the cells in any order, and you can execute the same cell
multiple times.

345The basics of Jupyter Notebook
 As you read through the book, I encourage you to experiment by executing differ-
ent snippets of code in your Jupyter cells. Thus, it is OK if your execution numbers do
not match those in the text.

 If a cell contains multiple lines of code, Jupyter will output the evaluation of the
last expression. Note that Python still runs all the code in the cell; we see only the last
expression.

In [2]: 1 + 1
 3 + 2

Out [2]: 5

The interpreter is the software that parses
your Python source code and executes it.
Jupyter Notebook relies on IPython (Inter-
active Python), an enhanced interpreter
with extra features for developer productiv-
ity. As one example, you can use the Tab key
to reveal available methods and attributes
on any Python object. The next example
shows the available methods on a Python
string. Type any string and a dot; then press
Tab to see the dialog box. Figure A.16
shows an example with a string. If you’re
unfamiliar with Python’s core data structures, see appendix B for a comprehensive
introduction to the language.

 You can enter any amount of Python in a Code cell, but it’s best to keep a cell’s size
reasonably small to improve readability and comprehension. If your logic is complex,
split the operations across several cells.

 You can use either of two keyboard shortcuts to execute a cell in Jupyter Notebook.
Press Shift-Enter to execute a cell and move focus to the next cell, and press Ctrl-Enter
to execute a cell and maintain focus on the original cell. Practice reexecuting the first
two cells to see this difference in action.

 Press the Esc key to activate Command mode, a management mode for the Note-
book. The available operations in this mode are more global; they affect the Note-
book as a whole rather than one specific cell. In this mode, keyboard characters serve
as shortcuts. Here are some helpful keyboard shortcuts to use when the Notebook is
in Command mode:

Keyboard shortcut Description

Up- and down-arrow keys Navigate through Notebook cells.

a Create a new cell above the selected cell.

b Create a new cell below the selected cell.

Figure A.16 Jupyter Notebook’s
autocomplete features

346 APPENDIX A Installation and setup
To clear everything from the Notebook’s memory, choose Kernel from the top-level
menu and then choose Restart. Additional options are available to clear cell outputs
and rerun all cells in the Notebook.

 Let’s say that we’ve had enough fun with our Notebook for the day and decide it’s
time to exit. A Notebook continues running in the background even when we close its
browser tab. To close it, navigate to the Running tab on the top menu of the Jupyter
launch screen, and click the Shutdown button next to the Notebook (figure A.17).

Figure A.17 Shutting down a Jupyter Notebook

After we shut down all Notebooks, we have to terminate the Jupyter Notebook applica-
tion. Close the browser tab with the Jupyter application. In Terminal or Anaconda
Prompt, press Ctrl+C twice to terminate the local Jupyter server.

 At this point, you’re all set to start writing Python and pandas code in Jupyter.
Good luck!

c Copy the contents of a cell.

x Cut the contents of a cell.

v Paste a copied or cut cell into the cell below the selected one.

d+d Delete a cell.

z Reverse a deletion.

y Change the cell type to Code.

m Change the cell type to Markdown.

h Show the help menu, which has a complete list of keyboard shortcuts.

Command-S (macOS) or
Ctrl-S (Windows)

Save the Notebook. Note that Jupyter Notebook also has autosave
functionality.

Keyboard shortcut Description

appendix B
Python crash course

The pandas library is built on top of Python, a popular programming language first
released in 1991 by Dutch developer Guido van Rossum. A library (also called a
package) is a toolbox of features that expands the core functionalities of a program-
ming language. Libraries accelerate developer productivity by providing solutions
to everyday problems such as database connections, code quality, and testing. Most
Python projects use libraries. After all, why solve a problem from scratch if some-
body has already solved it? More than 300,000 libraries are available to download
from the Python Package Index (PyPi), a centralized online repository of Python
packages. Pandas is one of those 300,000 libraries; it implements complex data
structures that excel at storing and manipulating multidimensional data. Before we
explore what pandas adds to Python, it’s important to see what’s available in the
base language.

 Python is an object-oriented programming (OOP) language. The OOP para-
digm views a software program as being a collection of objects that talk to one
another. An object is a digital data structure that stores information and provides
ways for it to be accessed and manipulated. Each object has a responsibility or pur-
pose for existing. We can think of each object as being an actor in a play and the
software program as being a performance.

 A helpful way to think of objects is as digital building blocks. Consider a spread-
sheet software like Excel. As users, we can discern the differences among a work-
book, a worksheet, and a cell. A workbook holds worksheets, a worksheet holds
cells, and cells hold values. We view these three entities as three distinct containers
of business logic, each with a designated responsibility, and we interact with them
in different ways. When building object-oriented computer programs, developers
think in the same manner, identifying and building the “blocks” that need to exist
for a program to run.

 You’ll often hear the expression “Everything is an object” in the Python commu-
nity. The statement means that the language implements all its data types, even
347

348 APPENDIX B Python crash course
simple ones such as numbers and text, as objects. Libraries like pandas add a new col-
lection of objects—an additional set of building blocks—to the language.

 As a data analyst turned software engineer, I’ve witnessed the Python proficiency
requirements for many roles in the industry. I can state from experience that you do
not need to be an advanced programmer to be productive with pandas. Basic under-
standing of Python’s core mechanics, however, will significantly accelerate the speed
at which you can pick up the library. This appendix highlights the key language essen-
tials you need to know to be successful.

B.1 Simple data types
Data comes in a variety of types. A whole number like 5 is of a different type than a
decimal number like 8.46. Both 5 and 8.46 are different from a text value like "Bob".

 Let’s begin with an exploration of the core data types built into Python. Make sure
that you’ve installed the Anaconda distribution and set up a conda environment that
includes the Jupyter Notebook coding environment. If you need help, see the installa-
tion instructions in appendix A. Activate the conda environment you created for this
book, execute the command jupyter notebook, and create a new Notebook.

 A quick note before we start: in Python, the hashtag symbol (#) creates a comment.
A comment is a line of text that Python ignores when it processes the code. Developers
use comments to provide inline documentation for their code. Here’s an example:

Adds two numbers together
1 + 1

We can also add a comment after a piece of code. Python ignores everything after the
hashtag symbol. The rest of the line executes normally:

1 + 1 # Adds two numbers together

Although the previous example evaluates to 2, the next example produces no output.
The comment effectively disables the line, so Python ignores the addition:

1 + 1

I’ve used comments in code cells throughout the book to provide supplemental com-
mentary on the operations at hand. You do not need to copy the comments into your
Jupyter Notebook.

B.1.1 Numbers

An integer is a whole number; it has no fractional or decimal component. An example
is 20:

In [1] 20

Out [1] 20

An integer can be any positive number, negative number, or zero. Negative numbers
are prefixed by a minus sign (-):

349Simple data types
In [2] -13

Out [2] -13

A floating-point number (colloquially called a float) is a number with a fractional or deci-
mal component. We use a dot to declare a decimal point. 7.349 is an example of a
float:

In [3] 7.349

Out [3] 7.349

Integers and floating-point numbers represent different data types in Python or,
equivalently, different objects. Look for the presence of a decimal point to distinguish
between the two. The value 5.0 is a floating-point object, for example, whereas 5 is an
integer object.

B.1.2 Strings

A string is a collection of zero or more text characters. We declare a string by wrapping
a piece of text in a pair of single, double, or triple quotes. There are differences
among the three options, but they are insignificant for beginners. We’ll be sticking
with double quotes throughout the book. Jupyter Notebook’s output for the three syn-
tax options is identical:

In [4] 'Good morning'

Out [4] 'Good morning'

In [5] "Good afternoon"

Out [5] 'Good afternoon'

In [6] """Good night"""

Out [6] 'Good night'

Strings are not limited to alphabetic characters; they can include digits, spaces, and
symbols. Consider the next example, which includes seven alphabetic characters, a
dollar sign, two digits, a space, and an exclamation point:

In [7] "$15 dollars!"

Out [7] '$15 dollars!'

Use the presence of quotes to identify a string visually. Many beginners are confused
by a value like "5", which is a string that holds a single numeric character. "5" is not
an integer.

 An empty string has no characters. We create it with a pair of quotes with nothing
between them:

In [8] ""

Out [8] ''

350 APPENDIX B Python crash course
The length of a string refers to the count of its characters. The string "Monkey
business", for example, has a length of 15 characters; there are six characters in
Monkey, eight characters in business, and one space between the two words.

 Python assigns a number to every string character based on its order in line. The
number is called the index, and it starts counting from 0. In the string "car",

 "c" is at index position 0.
 "a" is at index position 1.
 "r" is at index position 2.

A string’s final index position is always one less than its length. The string "car" has a
length of 3, so its final index position is 2. Zero-based indexes tend to confuse new
developers; it’s a difficult mental shift to make because we have been taught since
grade school to start counting from 1.

 We can extract any character from a string by its index position. After the string,
enter a pair of square brackets with the index value. The next example pulls out the
"h" character in "Python". The "h" character is the fourth character in sequence, so
it has an index of 3:

In [9] "Python"[3]

Out [9] 'h'

To pull from the end of the string, provide a negative value within the square brackets.
A value of -1 extracts the last character, -2 extracts the second-to-last character, and
so on. The next example targets the fourth-to-last character in Python, the "t":

In [10] "Python"[-4]

Out [10] 't'

In the preceding example, "Python"[2] would yield the same "t" output.
 We can use a special syntax to extract multiple characters from a string. The process

is called slicing. Place two numbers inside the square brackets, separated by a colon. The
left-side value sets the starting index. The right-side value sets the final index. The start-
ing index is inclusive; Python includes the character at that index. The ending index is
exclusive; Python excludes the character at that index. Tricky, I know.

 The next example pulls all characters from index position 2 (inclusive) up to
index position 5 (exclusive). The slice includes the characters "t" at index 2, "h" at
index 3, and "o" at index 4:

In [11] "Python"[2:5]

Out [11] 'tho'

If 0 is the starting index, we can remove it from the square brackets and get the same
result. Choose whatever syntax option fits you better:

In [12] # The two lines below are equivalent
 "Python"[0:4]
 "Python"[:4]

Out [12] 'Pyth'

351Simple data types
Here’s another shortcut: to extract characters from an index to the string’s end,
remove the ending index. The following example shows two options for pulling out
the characters from "h" (index 3) to the end of the "Python" string:

In [13] # The two lines below are equivalent
 "Python"[3:6]
 "Python"[3:]

Out [13] 'hon'

We can also remove both numbers. A single colon tells Python “Go from the begin-
ning to the end.” The result is a copy of the string:

In [14] "Python"[:]

Out [14] 'Python'

We can mix and match positive and negative index positions in a string slice. Let’s pull
from index 1 ("y") up to the last character in the string ("n"):

In [15] "Python"[1:-1]

Out [15] 'ytho'

We can also pass an optional third number to set the step interval—the gap to jump
between every two index positions. The next example pulls out the characters from
index positions 0 (inclusive) up to 6 (exclusive) in intervals of 2. This slice includes
the characters "P", "t", and "o", which are at index positions 0, 2, and 4:

In [16] "Python"[0:6:2]

Out [16] 'Pto'

Here’s a cool trick: we can pass in -1 as the third number to proceed backward from
the end of the list to the beginning. The result is a reversed string:

In [17] "Python"[::-1]

Out [17] 'nohtyP'

Slicing comes in handy for extracting snippets of text from larger strings—a topic we
cover extensively in chapter 6.

B.1.3 Booleans

The Boolean data type represents the logical idea of truth. It can be only one of two val-
ues: True or False. The Boolean is named after English mathematician and philoso-
pher George Boole. It usually models an either-or relationship: yes or no, on or off,
valid or invalid, active or inactive, and so on.

In [18] True

Out [18] True

In [19] False

Out [19] False

352 APPENDIX B Python crash course
We often arrive at a Boolean data type through a calculation or comparison, which
we’ll see in section B.2.2.

B.1.4 The None object

The None object represents nothingness or the absence of a value. Like a Boolean, it’s
a tricky type to wrap our heads around because it’s more abstract than a concrete
value such as an integer.

 Suppose that we decide to measure our town’s daily temperature for a week but
forget to take a reading on Friday. The temperatures for six of the seven days would be
integers. How could we log the temperature for the missing day? We might enter
something like “missing” or “unknown” or “null”. The None object models the same
idea in Python. The language needs something to communicate the absence of a
value. It requires an object that stands in and announces that a value is missing, does
not exist, or is not needed. Jupyter Notebook outputs nothing when we execute a cell
with None:

In [20] None

As with a Boolean, we’ll usually arrive at a None value rather than create it manually.
We’ll explore the object in greater detail as we work through the book.

B.2 Operators
An operator is a symbol that performs an operation. One classic example from elemen-
tary school is the addition operator: the plus sign (+). The values that an operator
works on are called operands. In the expression 3 + 5,

 + is the operator.
 3 and 5 are the operands.

In this section, we’ll explore the various mathematical and logical operators built into
Python.

B.2.1 Mathematical operators

Let’s write out the mathematical expression from the introduction. Jupyter will output
the calculation directly below the cell:

In [21] 3 + 5

Out [21] 8

It is conventional to add a space on both sides of an operator to make the code easier
to read. The next two examples illustrate subtraction (-) and multiplication (*):

In [22] 3 - 5

Out [22] -2

In [23] 3 * 5

Out [23] 15

353Operators
** is the exponentiation operator. The next example raises 3 to the power of 5 (3
multiplied by itself 5 times):

In [24] 3 ** 5

Out [24] 243

The / symbol performs division. The next example divides 3 by 5:

In [25] 3 / 5

Out [25] 0.6

In mathematical terminology, the quotient is the result of dividing one number by
another. Division with the / operator always returns a floating-point quotient, even if
the divisor fits evenly into the dividend:

In [26] 18 / 6

Out [26] 3.0

Floor division is an alternative type of division that removes the decimal remainder
from a quotient. It requires two forward slashes (//) and returns an integer quotient.
The next example demonstrates the differences between the two operators:

In [27] 8 / 3

Out [27] 2.6666666666666665

In [28] 8 // 3

Out [28] 2

The modulo operator (%) returns the remainder of a division. 2 is the remainder when
5 is divided by 3:

In [29] 5 % 3

Out [29] 2

We can also use the addition and multiplication operators with strings. The plus sign
joins two strings. The technical word for this process is concatenation.

In [30] "race" + "car"

Out [30] 'racecar'

The multiplication sign repeats a string a given number of times:

In [31] "Mahi" * 2

Out [31] 'MahiMahi'

An object’s type determines the operations and operators that it supports. We can
divide integers, for example, but we cannot divide strings. The primary skill in OOP is
identifying the object you’re working with and the actions it can perform.

354 APPENDIX B Python crash course
 We can concatenate a string to another string, and we can add a number to
another number. But what happens when we try to add a string and a number?

In [32] 3 + "5"

TypeError Traceback (most recent call last)
<ipython-input-9-d4e36ca990f8> in <module>
----> 1 3 + "5"

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Uh-oh. This example is our first exposure to a Python error—one of several dozen
built into the language. The technical name for an error is an exception. Like every-
thing else in Python, an exception is an object. Whenever we make a syntactical or log-
ical mistake, Jupyter Notebook displays an analysis that includes the name of the error
and the line number that triggered it. The technical term raise is often used to indi-
cate that Python encountered an exception. We could say, “I tried to add a number
and a string, and Python raised an exception.”

 Python raises a TypeError exception when we use a wrong data type in an opera-
tion. In the preceding example, Python observed a number and a plus sign, and
assumed that another number would follow. Instead, it received a string, which it can-
not add to an integer. We’ll see how we can convert an integer to a string (and vice
versa) in section B.4.1.

B.2.2 Equality and inequality operators

Python considers two objects to be equal if they hold the same value. We can compare
the equality of two objects by placing them on opposite sides of the equality operator
(==). The operator returns True if the two objects are equal. As a reminder, True is a
Boolean value.

In [33] 10 == 10

Out [33] True

Be careful: the equality operator has two equal signs. Python reserves a single equal
sign for a completely different operation that we’ll cover in section B.3.

 The equality operator returns False if the two objects are unequal. True and
False are the only valid values for Booleans:

In [34] 10 == 20

Out [34] False

Here are some examples of the equality operator with strings:

In [35] "Hello" == "Hello"

Out [35] True

In [36] "Hello" == "Goodbye"

Out [36] False

355Operators
Case sensitivity matters when comparing two strings. In the next example, one string
starts with a capital "H", and the other starts with a lowercase "h", so Python considers
the two strings to be unequal:

In [37] "Hello" == "hello"

Out [37] False

The inequality operator (!=) is the inverse of the equality operator; it returns True if
two objects are unequal. It is True, for example, that 10 is not equal to 20:

In [38] 10 != 20

Out [38] True

Similarly, the string "Hello" is not equal to the string "Goodbye":

In [39] "Hello" != "Goodbye"

Out [39] True

The inequality operator returns False if the two objects are equal:

In [40] 10 != 10

Out [40] False

In [41] "Hello" != "Hello"

Out [41] False

Python supports mathematical comparisons between numbers. The < operator checks
whether the operand on the left side is smaller than the operand on the right side.
The next example checks whether -5 is less than 3:

In [42] -5 < 3

Out [42] True

The > operator checks whether the operand on the left side is greater than the oper-
and on the right side. The next example evaluates whether 5 is greater than 7; the
result is False.

In [43] 5 > 7

Out [43] False

The <= operand checks whether the left-side operand is less than or equal to the
right-side operand. Here, we check whether 11 is less than or equal to 11:

In [44] 11 <= 11

Out [44] True

The complementary >= operand checks whether the left-side operand is greater than
or equal to the right-side operand. The next example checks whether 4 is greater than
or equal to 5:

356 APPENDIX B Python crash course
In [45] 4 >= 5

Out [45] False

Pandas enables us to apply comparisons like these to whole columns of data, a topic
we cover in chapter 5.

B.3 Variables
A variable is a name we assign to an object; we can compare it with the address of a
house, because it is a label, a reference, and an identifier. Variable names should be
clear and descriptive, describing the data that the object is storing and the purpose it
serves in our application. revenues_for_quarter4 is a better variable name than r
or r4, for example.

 We assign a variable to an object with the assignment operator, a single equal
sign (=). The next example assigns four variables (name, age, high_school_gpa,
and is_handsome) to four different data types (string, integer, floating-point, and
Boolean):

In [46] name = "Boris"
 age = 28
 high_school_gpa = 3.7
 is_handsome = True

The execution of a cell with a variable assignment does not yield any output in Jupyter
Notebook, but afterward we are able to use the variable in any cell in the Notebook.
The variable is a substitute for the value it holds:

In [47] name

Out [47] 'Boris'

A variable name must start with a letter or an underscore. After the first letter, it can
hold only letters, numbers, or underscores.

 As their name suggests, variables can hold values that vary over a program’s execu-
tion. Let’s reassign the age variable to a new value of 35. After we execute the cell, the
age variable’s reference to its former value, 28, will be lost:

In [48] age = 35
 age

Out [48] 35

We can use the same variable on both sides of the assignment operator. Python always
evaluates the right side of the equal sign first. In the next example, Python adds the
value of age at the start of the cell’s execution, 35, to 10. The resulting sum, 45, is
saved to the age variable:

In [49] age = age + 10
 age

Out [49] 45

357Functions
Python is a dynamically typed language, which means that variables do not know any-
thing about data types. A variable is a placeholder name for any object in the pro-
gram. Only the object knows its data type. Therefore, we can reassign variables from
an object of one type to another. The next example reassigns the high_school_gpa
variable from its original floating-point value of 3.7 to a string of "A+":

In [50] high_school_gpa = "A+"

Python raises a NameError exception when a variable does not exist in the program:

In [51] last_name

NameError Traceback (most recent call last)
<ipython-input-5-e1aeda7b4fde> in <module>
----> 1 last_name

NameError: name 'last_name' is not defined

You’ll typically encounter a NameError exception when you mistype a variable name.
This exception is nothing to fear; correct the spelling, and execute the cell again.

B.4 Functions
A function is a procedure consisting of one or more steps. Think of a function as being
a cooking recipe in a programming language—a series of instructions that yields a
consistent result. Functions enable reusability in software. Because a function captures
a piece of business logic from start to finish, we can reuse it when we have to perform
the same operation multiple times.

 We declare a function and then execute it. In the declaration, we write the steps
that the function should take. In the execution, we run the function. Sticking to our
cooking analogy, declaring a function is equivalent to writing down a recipe, and exe-
cuting a function is equivalent to cooking the recipe. The technical term for execut-
ing a function is calling it or invoking it.

B.4.1 Arguments and return values

Python ships with more than 65 built-in functions. We can also declare our own cus-
tom functions. Let’s dive into an example. The built-in len function returns the
length of a given object. The concept of length varies from data type to data type; for
a string, it’s a count of its characters.

 We invoke a function by entering its name and a pair of opening and closing
parentheses. Much as a cooking recipe can accept ingredients, a function invocation
can accept inputs called arguments. We pass arguments sequentially inside the paren-
theses, separated by commas.

 The len function expects one argument: the object whose length it should calcu-
late. The next example passes a string argument of "Python is fun" to the function:

In [52] len("Python is fun")

Out [52] 13

358 APPENDIX B Python crash course
A cooking recipe produces a final output of a meal. Similarly, a Python function pro-
duces a final output called a return value. In the preceding example, len was the invoked
function, "Python is fun" was its single argument, and 13 was the return value.

 That’s all there is to it! A function is a procedure that is invoked with zero or more
arguments and produces a return value.

 Here are three more popular built-in functions in Python:

 int, which converts its argument to an integer
 float, which converts its argument to a floating-point number
 str, which converts its argument to a string

The next three examples showcase these functions in action. The first example invokes
the int function with a string argument of "20" and produces a return value of 20.
Can you identify the arguments and return values for the remaining two functions?

In [53] int("20")

Out [53] 20

In [54] float("14.3")

Out [54] 14.3

In [55] str(5)

Out [55] '5'

Here’s another common error: Python raises a ValueError exception when a func-
tion receives an argument with the right data type but an inappropriate value. In the
next example, the int function receives a string (an appropriate type), but the string
is one from which it is impossible to extract an integer:

In [56] int("xyz")

ValueError Traceback (most recent call last)
<ipython-input-6-ed77017b9e49> in <module>
----> 1 int("xyz")

ValueError: invalid literal for int() with base 10: 'xyz'

Another popular built-in function is print, which outputs text to the screen. It
accepts any number of arguments. The function often proves to be helpful when we
want to observe a variable’s value throughout a program’s execution. The next exam-
ple invokes the print function four times with the value variable, whose value
changes several times:

In [57] value = 10
 print(value)

 value = value - 3
 print(value)

359Functions
 value = value * 4
 print(value)

 value = value / 2
 print(value)

Out [57] 10
 7
 28
 14.0

If a function accepts multiple arguments, we must separate every two subsequent ones
with a comma. Developers often add a space after the comma for readability.

 When we pass the print function multiple arguments, it outputs all of them in
sequence. In the next example, notice that Python separates the three printed ele-
ments with a space:

In [58] print("Cherry", "Strawberry", "Key Lime")

Out [58] Cherry Strawberry Key Lime

A parameter is a name given to an expected function argument. Each argument in an
invocation corresponds to a parameter. In previous examples, we passed in arguments
to the print function sequentially without specifying their parameter.

 We have to write parameter names out explicitly for certain arguments. The print
function’s sep (separator) parameter, for example, customizes the string that Python
inserts between every two printed values. We have to explicitly write out the sep
parameter if we’d like to pass it a custom argument. We assign an argument to a func-
tion’s keyword parameter with an equal sign. The next example outputs the same
three strings but instructs the print function to separate them with exclamation
points:

In [59] print("Cherry", "Strawberry", "Key Lime", sep = "!")

Out [59] Cherry!Strawberry!Key Lime

Let’s come back to the example before the last one. Why were the three values printed
with a space in between every two subsequent values?

 A default argument is a fallback value that Python passes to a parameter if the func-
tion invocation does not explicitly provide one. The sep parameter to the print
function has a default argument of " ". If we invoke the print function without an
argument for the sep parameter, Python will automatically pass in a string with one
space. The following two lines of code produce the same output:

In [60] # The two lines below are equivalent
 print("Cherry", "Strawberry", "Key Lime")
 print("Cherry", "Strawberry", "Key Lime", sep=" ")

Out [60] Cherry Strawberry Key Lime
 Cherry Strawberry Key Lime

360 APPENDIX B Python crash course
We call parameters like sep keyword arguments. We have to write their specific parame-
ter name when passing arguments to them. Python requires us to pass keyword argu-
ments after sequential arguments. Here’s another example of a print function
invocation that passes a different string argument to the sep parameter:

In [61] print("Cherry", "Strawberry", "Key Lime", sep="*!*")

Out [61] Cherry*!*Strawberry*!*Key Lime

The print function’s end parameter customizes the string Python adds to the end of
all output. The parameter’s default argument is "\n", a special character that Python
recognizes as a line break. In the next example, we explicitly pass the same "\n" argu-
ment to the end parameter:

In [62] print("Cherry", "Strawberry", "Key Lime", end="\n")
 print("Peach Cobbler")

Out [62] Cherry Strawberry Key Lime
 Peach Cobbler

We can pass multiple keyword arguments to a function invocation. The technical rules
still apply: separate every two arguments with a comma. The next example invokes the
print function twice. The first invocation separates its three arguments with a "!"
and ends the output with a "***". Because the first invocation does not force a line
break, the second invocation’s output continues where the first one concludes:

In [63] print("Cherry", "Strawberry", "Key Lime", sep="!", end="***")
 print("Peach Cobbler")

Out [63] Cherry!Strawberry!Key Lime***Peach Cobbler

Take a second to reflect on the code formatting in the preceding example. Long lines
of code can be difficult to read, especially when we clump multiple parameters
together. The Python community favors several formatting solutions. One option is
placing all arguments on a separate line:

In [64] print(
 "Cherry", "Strawberry", "Key Lime", sep="!", end="***"
)

Out [64] Cherry!Strawberry!Key Lime***

Another option is adding a line break between arguments:

In [65] print(
 "Cherry",
 "Strawberry",
 "Key Lime",
 sep="!",
 end="***",
)

Out [65] Cherry!Strawberry!Key Lime***

361Functions
All three of these code samples are technically valid. There are multiple ways to for-
mat Python code. I use several formatting options throughout the book. My ultimate
goal is readability. You do not have to follow the formatting conventions I use. I will do
my best to communicate which differences are technical and which ones are aesthetic.

B.4.2 Custom functions

We can declare custom functions in our programs. The goal of a function is to capture
a distinct piece of business logic in a single, reusable procedure. A common mantra in
software engineering circles is DRY, an acronym for don’t repeat yourself. This acronym
is a warning that duplication of the same logic or behavior can lead to an unstable
program. The more places you repeat code, the more places you have to edit if
requirements change. A function solves the DRY problem.

 Let’s explore an example. Suppose that we are meteorologists working with
weather data. Our work requires us to convert temperatures in our program from
Fahrenheit to Celsius. There is a simple, consistent formula to the conversion. Writing
a function to convert one temperature from °F to °C is a good idea because we can iso-
late the conversion logic and reuse it as needed.

 We begin a function definition with the def keyword. We follow def with the func-
tion’s name, a pair of opening and closing parentheses, and a colon. Function names
and variable names with multiple words follow a snake_case naming convention.
The convention separates every two words with an underscore, which causes the name
to resemble a snake. Let’s call our function convert_to_fahrenheit:

def convert_to_fahrenheit():

To review, a parameter is a name for an expected function argument. We want the
convert_to_fahrenheit function to accept a single parameter: a Celsius tempera-
ture. Let’s call the parameter celsius_temp:

def convert_to_fahrenheit(celsius_temp):

If we define a parameter when we declare a function, we must pass an argument for
that parameter when invoking it. Thus, we must always provide a value for celsius_
temp whenever we run convert_to_fahrenheit.

 Our next step is defining what the function does. We declare a function’s steps in its
body, an indented section of code below its name. Python uses indentation to establish
relationships between constructs in the program. A function’s body is an example of a
block, a section of code nested within another section of code. According to PEP-8,1 the
Python community’s style guide, we should indent each line in a block with four spaces:

def convert_to_fahrenheit(celsius_temp):
 # This indented line belongs to the function
 # So does this indented line

This line is not indented, so it does not belong to convert_to_fahrenheit

1 See “PEP 8—Style Guide for Python Code,” https://www.python.org/dev/peps/pep-0008.

https://www.python.org/dev/peps/pep-0008

362 APPENDIX B Python crash course
We can use a function’s parameters in its body. In our example, we can use the
celsius_temp parameter anywhere in the body of the convert_to_fahrenheit
function.

 We can declare variables in a function body. These variables are called local vari-
ables because they are bound to the scope of the function execution. Python throws
local variables out of memory as soon as the function is done running.

 Let’s write out the logic for the conversion! The formula to convert a Celsius tem-
perature to Fahrenheit is to multiply it by 9/5 and add 32:

def convert_to_fahrenheit(celsius_temp):
 first_step = celsius_temp * (9 / 5)
 fahrenheit_temperature = first_step + 32

At this juncture, our function correctly calculates the Fahrenheit temperature, but it
does not send the evaluation back to the main program. We need to use the return
keyword to mark the Fahrenheit temperature as the final output of the function. We
are returning it to the outside world:

In [66] def convert_to_fahrenheit(celsius_temp):
 first_step = celsius_temp * (9 / 5)
 fahrenheit_temperature = first_step + 32
 return fahrenheit_temperature

Our function is complete, so let’s test it! We invoke custom functions with a pair of
parentheses, the same syntax we use for Python’s built-in functions. The next example
invokes the convert_to_fahrenheit function with a sample argument of 10.
Python runs through the function body with the celsius_temp parameter set to 10.
The function returns a value of 50.0:

In [67] convert_to_fahrenheit(10)

Out [67] 50.0

We can provide keyword arguments instead of positional ones. The next example
writes the celsius_temp parameter name out explicitly. The following code is equiv-
alent to the preceding code:

In [68] convert_to_fahrenheit(celsius_temp = 10)

Out [68] 50.0

Although they are not required, keyword arguments help add clarity to our program.
The preceding example better communicates what the convert_to_fahrenheit
function’s input represents.

B.5 Modules
A module is a single Python file. The Python standard library is a collection of more than
250 modules built into the language to accelerate productivity. The modules assist
with technical operations such as mathematics, audio analysis, and URL requests. To

363Classes and objects
reduce a program’s memory consumption, Python does not load these modules by
default. We have to import the specific modules we want manually when our program
requires them.

 The syntax to import built-in modules and external packages is identical: enter the
import keyword, followed by the module or package’s name. Let’s import Python’s
datetime module, which helps us work with dates and times:

In [69] import datetime

An alias is an alternative name for an import—a shortcut that we can assign to a mod-
ule so we don’t have to write out its complete name when we reference it. The alias is
technically up to us, but certain nicknames have established themselves as favorites
among Python developers. A popular alias for the datetime module, for example, is
dt. We assign aliases with the as keyword:

In [70] import datetime as dt

Now we can reference the module with dt instead of datetime.

B.6 Classes and objects
All the data types that we’ve explored so far—integers, floats, Booleans, strings, excep-
tions, functions, and even modules—are objects. An object is a digital data structure, a
container for storing, accessing, and manipulating a type of data.

 A class is a blueprint for creating objects. Think of it as being a schematic or tem-
plate from which Python builds the objects.

 We call an object constructed from a class an instance of the class. The act of creat-
ing an object from a class is called instantiation.

 Python’s built-in type function returns the class of the object we pass in as an
argument. The next example invokes the type function twice with two different
strings: "peanut butter" and "jelly". Although their content is unequal, the
strings are made from the same blueprint, the same class, the str class. They are
both strings:

In [71] type("peanut butter")

Out [71] str

In [72] type("jelly")

Out [72] str

These examples are fairly simple. The type function is helpful when we are unsure
what kind of object we’re working with. If we invoke a custom function and are unsure
what type of object it returns, we can pass its return value to type to find out.

 A literal is a shorthand syntax that creates an object from a class. One example
we’ve encountered so far is double quotes, which create strings ("hello"). For
more-complex objects, we need to use a different creation process.

364 APPENDIX B Python crash course
 The datetime module we imported in section B.5 has a date class that models a
date in time. Suppose that we’re trying to represent Leonardo da Vinci’s birthday,
April 15, 1452, as a date object.

 To create an instance from a class, write the class name followed by a pair of paren-
theses. date(), for example, creates a date object from the date class. The syntax is
identical to invoking a function. When instantiating an object, we can sometimes pass
arguments to the constructor, the function that creates the objects. The first three
arguments to the date constructor represent the year, month, and day the date
object will hold. The three arguments are required:

In [73] da_vinci_birthday = dt.date(1452, 4, 15)
 da_vinci_birthday

Out [73] datetime.date(1452, 4, 15)

Now we have a da_vinci_birthday variable that holds a date object representing
April 15, 1452.

B.7 Attributes and methods
An attribute is a piece of internal data belonging to an object, a characteristic or detail
that exposes information about the object. We access an object’s attributes with dot
syntax. Three sample attributes on a date object are day, month, and year:

In [74] da_vinci_birthday.day

Out [74] 15

In [75] da_vinci_birthday.month

Out [75] 4

In [76] da_vinci_birthday.year

Out [76] 1452

A method is an action or command that we can issue to the object. Think of a method
as being a function that belongs to an object. Attributes make up the object’s state, and
methods represent the object’s behavior. Like a function, a method can accept argu-
ments and produce a return value.

 We invoke a method with a pair of parentheses after its name. Be sure to add a dot
between the object and the method name. One sample method a date object has is
weekday. The weekday method returns the date’s day of the week as an integer. 0
denotes Sunday, and 6 denotes Saturday:

In [77] da_vinci_birthday.weekday()

Out [77] 3

Leonardo was born on a Wednesday!

365String methods
 The easiness and reusability of methods such as weekday is why date objects exist.
Imagine how difficult it would be to model date logic with a text string. Imagine if
every developer built their own custom solution. Ouch. Python’s developers antici-
pated that users would need to work with dates, so they built a reusable date class to
model that real-world construct.

 The key takeaway is that the Python standard library offers developers many utility
classes and functions to solve common problems. As programs grow in complexity,
however, it becomes difficult to model real-world ideas with only Python’s core
objects. To solve this problem, developers add custom objects to the language. These
objects model business logic pertinent to a specific domain. Developers bundle these
objects into libraries. That’s all pandas is: a bundle of additional classes to solve spe-
cific problems in the domain of data analysis.

B.8 String methods
A string object has its own set of methods. Here are a few examples.

 The upper method returns a new string with all characters in uppercase:

In [78] "Hello".upper()

Out [78] "HELLO"

We can invoke methods on variables. Recall that a variable is a placeholder name for
an object. Python will substitute the variable for the object that it references. The next
example invokes the upper method on the string that the greeting variable refer-
ences. The output is the same as that of the preceding code example:

In [79] greeting = "Hello"
 greeting.upper()

Out [79] "HELLO"

There are two categories of objects: mutable and immutable. A mutable object is capa-
ble of change. An immutable object is incapable of change. Strings, numbers, and Bool-
eans are examples of immutable objects; we cannot modify them after we create them.
The string "Hello" will always be the string "Hello". The number 5 will always be
the number 5.

 In the preceding example, the upper method call did not modify the original
"Hello" string assigned to the greeting variable. Rather, the method invocation
returned a new string with all capital letters. We can output the greeting variable to
confirm that the characters have their original casing:

In [80] greeting

Out [80] 'Hello'

A string is immutable, so its methods will not modify the original object. We’ll explore
some mutable objects starting in section B.9.

366 APPENDIX B Python crash course
 The complementary lower method returns a new string with all characters in
lowercase:

In [81] "1611 BROADWAY".lower()

Out [81] '1611 broadway'

There’s even a swapcase method that returns a new string with each character case
inverted. Uppercase letters become lowercase, and lowercase letters become uppercase:

In [82] "uPsIdE dOwN".swapcase()

Out [82] 'UpSiDe DoWn'

A method can accept arguments. Let’s take a peek at the replace method, which
swaps all occurrences of a substring with a specified character sequence. The function-
ality is similar to the Find and Replace feature in a word processing program. The
replace method accepts two arguments:

 The substring to look for
 The value to replace it with

The next example replaces all occurrences of "S" with "$":

In [83] "Sally Sells Seashells by the Seashore".replace("S", "$")

Out [83] '$ally $ells $eashells by the $eashore'

In this example,

 "Sally Sells Seashells by the Seashore" is the original string object.
 replace is the method invoked on the string.
 "S" is the first argument passed to the replace method invocation.
 "$" is the second argument passed to the replace method invocation.
 "$ally $ells $eashells by the $eashore" is the return value of the

replace method.

A method’s return value can be of a different data type than the original object. The
isspace method, for example, is invoked on a string but returns a Boolean. The
method returns True if the string consists of only spaces; otherwise, it returns False.

In [84] " ".isspace()

Out [84] True

In [85] "3 Amigos".isspace()

Out [85] False

Strings have a family of methods for removing whitespace. The rstrip (right strip)
method removes whitespace from the end of a string:

In [86] data = " 10/31/2019 "
 data.rstrip()

Out [86] ' 10/31/2019'

367String methods
The lstrip (left strip) method removes whitespace from the beginning of a string:

In [87] data.lstrip()

Out [87] '10/31/2019 '

The strip method removes whitespace from both ends of the string:

In [88] data.strip()

Out [88] '10/31/2019'

The capitalize method capitalizes the first character of a string. This method often
proves to be helpful for working with lowercase names, places, or organizations:

In [89] "robert".capitalize()

Out [89] 'Robert'

The title method capitalizes the first letter of every word in a string, using a space to
identify where each word begins and ends:

In [90] "once upon a time".title()

Out [90] 'Once Upon A Time'

We can invoke multiple methods in sequence on a single line. This technique is called
method chaining. In the next example, the lower method returns a new string object
upon which we invoke the title method. The return value from title is yet
another new string object:

In [91] "BENJAMIN FRANKLIN".lower().title()

Out [91] 'Benjamin Franklin'

The in keyword checks whether a substring exists in another string. Enter the string
to search for before the keyword and the string to search within after the keyword.
The operation returns a Boolean:

In [92] "tuna" in "fortunate"

Out [92] True

In [93] "salmon" in "fortunate"

Out [93] False

The startswith method checks whether a substring exists at the beginning of a string:

In [94] "factory".startswith("fact")

Out [94] True

The endswith method checks whether a substring exists at the end of a string:

In [95] "garage".endswith("rage")

Out [95] True

368 APPENDIX B Python crash course
The count method counts the occurrences of a substring within a string. The next
example counts the number of "e" characters in "celebrate":

In [96] "celebrate".count("e")

Out [96] 3

The find and index methods locate the index position of a character or substring.
The methods return the first index position at which the argument occurs. Recall that
index positions start counting at 0. The next example searches for the index of the
first "e" in "celebrate". Python locates it at index 1:

In [97] "celebrate".find("e")

Out [97] 1

In [98] "celebrate".index("e")

Out [98] 1

What’s the difference between the find and index methods? If the string does not con-
tain the argument, find will return -1, and index will raise a ValueError exception:

In [99] "celebrate".find("z")

Out [99] -1

In [100] "celebrate".index("z")

ValueError Traceback (most recent call last)
<ipython-input-5-bf78a69262aa> in <module>
----> 1 "celebrate".index("z")

ValueError: substring not found

Each method exists for a specific situation; neither option is better than the other. If
your program depends on a substring existing within a larger string, for example, you
may use the index method and react to the error. By comparison, if the absence of a
substring does not prohibit your program from executing, you can use the find
method to avoid crashing.

B.9 Lists
A list is a container for storing objects in order. The purpose of lists is twofold: to pro-
vide a “box” to store values and to keep them in sequence. We refer to the items
within a list as elements. In other programming languages, this data structure is often
called an array.

 We declare a list with a pair of opening and closing square brackets. We write our
elements inside the square brackets, separating every two with a comma. The next
example creates a list of five strings:

In [101] backstreet_boys = ["Nick", "AJ", "Brian", "Howie", "Kevin"]

369Lists
The length of a list is equal to its number of elements. Remember the trusty len func-
tion? It can help us figure how many members are in the greatest boy band of all time:

In [102] len(backstreet_boys)

Out [102] 5

An empty list is a list without elements. It has a length of 0:

In [103] []

Out [103] []

A list can store elements of any data type: strings, numbers, floats, Booleans, and
more. A homogeneous list is one in which all elements have the same type. The follow-
ing three lists are homogeneous. The first holds integers, the second holds floating-
points, and the third holds Booleans:

In [104] prime_numbers = [2, 3, 5, 7, 11]

In [105] stock_prices_for_last_four_days = [99.93, 105.23, 102.18, 94.45]

In [106] settings = [True, False, False, True, True, False]

Lists can also store elements of different data types. A heterogeneous list is one in which
elements have different data types. The following list has a string, an integer, a Bool-
ean, and a floating-point number:

In [107] motley_crew = ["rhinoceros", 42, False, 100.05]

Much as it does for each character in a string, Python assigns each list element an
index position. The index represents an element’s place in line and starts counting
from 0. In the following three-item favorite_foods list,

 "Sushi" occupies index position 0.
 "Steak" occupies index position 1.
 "Barbeque" occupies index position 2.

In [108] favorite_foods = ["Sushi", "Steak", "Barbeque"]

Two quick notes on list formatting. First, Python permits us to insert a comma after a list’s
last element. The comma does not affect the list whatsoever; it is an alternative syntax:

In [109] favorite_foods = ["Sushi", "Steak", "Barbeque",]

Second, some Python style guides recommend breaking up long lists so that each ele-
ment occupies a single line. This format also does not affect the list in any technical
way. The syntax looks like this:

In [110] favorite_foods = [
 "Sushi",
 "Steak",
 "Barbeque",
]

370 APPENDIX B Python crash course
Throughout the examples in this book, I’ve used whatever formatting style I believe
best enhances readability. You are welcome to use whichever format feels best to you.

 We can access a list element by its index position. Pass the index between a pair of
square brackets after the list (or the variable that references it):

In [111] favorite_foods[1]

Out [111] 'Steak'

In section B.1.2, we introduced a slicing syntax to extract characters from a string. We
can use the same syntax to extract elements from a list. The next example pulls out
the elements from index positions 1 to 3. Remember that in a list slice, the starting
index is inclusive, and the ending index is exclusive:

In [112] favorite_foods[1:3]

Out [112] ['Steak', 'Barbeque']

We can remove the number before the colon to pull from the beginning of the list.
The next example extracts elements from the start of the list to index 2 (exclusive):

In [113] favorite_foods[:2]

Out [113] ['Sushi', 'Steak']

We can remove the number after the colon to pull to the end of the list. The next
example extracts elements from index 2 to the end of the list:

In [114] favorite_foods[2:]

Out [114] ['Barbeque']

Leave out both numbers to create a copy of the list:

In [115] favorite_foods[:]

Out [115] ['Sushi', 'Steak', 'Barbeque']

Finally, we can provide an optional third number in the square brackets to extract ele-
ments in intervals. The next example pulls elements from index position 0 (inclusive)
to index position 3 (exclusive) in increments of 2:

In [116] favorite_foods[0:3:2]

Out [116] ['Sushi', 'Barbeque']

All slicing options return a new list.
 Let’s walk through some list methods. The append method adds a new element to

the end of a list:

In [117] favorite_foods.append("Burrito")
 favorite_foods

Out [117] ['Sushi', 'Steak', 'Barbeque', 'Burrito']

371Lists
Do you recall our discussion on mutability versus immutability? A list is an example of
a mutable object, an object that is capable of change. We can add, remove, or replace
elements within a list after we create it. In the preceding example, the append
method mutated the list referenced by the favorite_foods variable. We did not cre-
ate a new list.

 By comparison, a string is an example of an immutable object. When we invoke a
method like upper, Python returns a new string; the original string remains unaf-
fected. Immutable objects cannot change.

 Lists include a variety of mutational methods. The extend method adds multiple
elements to the end of a list. It accepts one argument, a list with the values to add:

In [118] favorite_foods.extend(["Tacos", "Pizza", "Cheeseburger"])
 favorite_foods

Out [118] ['Sushi', 'Steak', 'Barbeque', 'Burrito', 'Tacos', 'Pizza',
 'Cheeseburger']

The insert method adds an element to the list at a specific index position. Its first
argument is the index where we want to inject the element, and its second argument
is the new element. Python pushes values at and after the specified index position to
the next slot. The next example inserts the string "Pasta" at index position 2. The
list shifts the value "Barbeque" and all subsequent elements up one index position:

In [119] favorite_foods.insert(2, "Pasta")
 favorite_foods

Out [119] ['Sushi',
 'Steak',
 'Pasta',
 'Barbeque',
 'Burrito',
 'Tacos',
 'Pizza',
 'Cheeseburger']

The in keyword can check whether a list includes an element. "Pizza" exists in our
favorite_foods list, and "Caviar" does not:

In [120] "Pizza" in favorite_foods

Out [120] True

In [121] "Caviar" in favorite_foods

Out [121] False

The not in operator confirms the absence of an element from a list. It returns the
inverse Boolean of the in operator:

In [122] "Pizza" not in favorite_foods

Out [122] False

372 APPENDIX B Python crash course
In [123] "Caviar" not in favorite_foods

Out [123] True

The count method counts the number of times an element appears in the list:

In [124] favorite_foods.append("Pasta")
 favorite_foods

Out [124] ['Sushi',
 'Steak',
 'Pasta',
 'Barbeque',
 'Burrito',
 'Tacos',
 'Pizza',
 'Cheeseburger',
 'Pasta']

In [125] favorite_foods.count("Pasta")

Out [125] 2

The remove method deletes the first occurrence of an element from the list. Note
that Python does not remove subsequent occurrences of the element:

In [126] favorite_foods.remove("Pasta")
 favorite_foods

Out [126] ['Sushi',
 'Steak',
 'Barbeque',
 'Burrito',
 'Tacos',
 'Pizza',
 'Cheeseburger',
 'Pasta']

Let’s get rid of the other "Pasta" string at the end of the list. The pop method
removes and returns the last element from the list:

In [127] favorite_foods.pop()

Out [127] 'Pasta'

In [128] favorite_foods

Out [128] ['Sushi', 'Steak', 'Barbeque', 'Burrito', 'Tacos', 'Pizza',
 'Cheeseburger']

The pop method also accepts an integer argument with the index position of the
value Python should delete. The next example removes the "Barbeque" value at
index position 2. The "Burrito" string slides into index position 2, and the elements
after it also shift down by one index:

In [129] favorite_foods.pop(2)

Out [129] 'Barbeque'

373Lists
In [130] favorite_foods

Out [130] ['Sushi', 'Steak', 'Burrito', 'Tacos', 'Pizza', 'Cheeseburger']

A list can hold any object, including other lists. The next example declares a list with
three nested lists. Each nested list contains three integers:

In [131] spreadsheet = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]
]

Let’s take a second to reflect on the preceding visual. Can you see any parallels with a
spreadsheet? A nested list is one way we can represent a multidimensional, tabular col-
lection of data. We can view the outermost list as being a worksheet and each internal
list as being a row of data.

B.9.1 List iteration

A list is an example of a collection object. It is capable of storing multiple values—a
collection of values. To iterate means to move over a collection object’s elements one at a
time.

 The most common way to iterate over a list’s items is with a for loop. Its syntax
looks like this:

for variable_name in some_list:
 # Do something

A for loop consists of several components:

 The for keyword.
 A variable name that will store each list element one at a time as the iteration

runs.
 The in keyword.
 The list to iterate over.
 A block of code that Python will run during each iteration. We can use the vari-

able name in this block of code.

As a reminder, a block is a section of indented code. Python uses indentation to associ-
ate constructs in our program. The block below a function name defines what the
function does. Similarly, the block below a for loop defines what happens during
each iteration.

 The next example iterates over a list of four strings, printing the length of each one:

In [132] for season in ["Winter", "Spring", "Summer", "Fall"]:
 print(len(season))

Out [132] 6
 6
 6
 4

374 APPENDIX B Python crash course
The preceding iteration consists of four loops. The season variable holds the values
"Winter", "Spring", "Summer", and "Fall" in sequence. During each iteration,
we pass the current string to the len function. The len function returns a number,
which we print out.

 Suppose that we want to add the lengths of the strings together. We have to combine
a for loop with some other Python concepts. In the next example, we first initialize a
letter_count variable to hold a cumulative sum. Inside the for loop block, we cal-
culate the length of the current string with the len function and then overwrite the
running total. Finally, we output the value of letter_count after the loop completes:

In [133] letter_count = 0

 for season in ["Winter", "Spring", "Summer", "Fall"]:
 letter_count = letter_count + len(season)

 letter_count

Out [133] 22

The for loop is the most conventional option for iterating over a list. Python also sup-
ports another syntax, which we discuss in section B.9.2.

B.9.2 List comprehension

List comprehension is a shorthand syntax to create a list from a collection object. Sup-
pose that we have a list of six numbers:

In [134] numbers = [4, 8, 15, 16, 23, 42]

Let’s say that we want to create a new list with the squares of those numbers. In other
words, we want to apply a consistent operation to each element in the original list.
One solution is to iterate over each integer in numbers, take its square, and add the
result to a new list. As a reminder, the append method adds an element to the end of
a list:

In [135] squares = []

 for number in numbers:
 squares.append(number ** 2)

 squares

Out [135] [16, 64, 225, 256, 529, 1764]

List comprehension can produce the same list of squares in a single line of code. Its
syntax requires a pair of opening and closing square brackets. Inside the brackets, we
first describe what we’d like to do with each element we iterate over and then the col-
lection from which the iterable items will come.

 The next example still iterates over the numbers list and assigns each list element
to a number variable. We declare what we’d like to do with each number before the

375Lists
for keyword. We move the number ** 2 calculation to the beginning and the for
in logic to the end:

In [136] squares = [number ** 2 for number in numbers]
 squares

Out [136] [16, 64, 225, 256, 529, 1764]

List comprehension is considered to be the more Pythonic way to create a new list
from an existing data structure. The Pythonic way describes the collection of recom-
mended practices adopted by Python developers over time.

B.9.3 Converting a string to a list and vice versa

We’re familiar with lists and strings now, so let’s see how we can use them together.
Suppose that we have a string in our program that holds an address:

In [137] empire_state_bldg = "20 West 34th Street, New York, NY, 10001"

What if we want to break the address into smaller components: street, city, state, and
zip code? Notice that the string uses a comma to separate the four pieces.

 A string’s split method breaks a string apart by using a delimiter, a sequence of
one or more characters marking a boundary. The next example asks the split
method to split empire_state_building on every occurrence of a comma. The
method returns a list consisting of the smaller strings:

In [138] empire_state_bldg.split(",")

Out [138] ['20 West 34th Street', ' New York', ' NY', ' 10001']

This code is a step in the right direction. But notice that the last three elements in the
list have a leading space. Although we could iterate over the list’s elements and call
the strip on each one to remove its whitespace, a more optimal solution is to add the
space to the split method’s delimiter argument:

In [139] empire_state_bldg.split(", ")

Out [139] ['20 West 34th Street', 'New York', 'NY', '10001']

We’ve successfully broken the string into a list of strings.
 The process also works in reverse. Suppose that we stored our address in a list and

want to concatenate the list’s elements into a single string:

In [140] chrysler_bldg = ["405 Lexington Ave", "New York", "NY", "10174"]

First, we must declare the string that we’d like Python to inject between every two list
elements. Then we can invoke the join method on the string and pass in a list as the
argument. Python will join the list’s elements, separating each two with the delimiter.
The next example uses a delimiter of a comma and a space:

In [141] ", ".join(chrysler_bldg)

Out [141] '405 Lexington Ave, New York, NY, 10174'

376 APPENDIX B Python crash course
The split and join methods are helpful for working with text data, which often
needs to be separated and remerged.

B.10 Tuples
A tuple is a similar data structure to a Python list. A tuple also stores elements in order,
but unlike a list, it is immutable. We cannot add, remove, or replace elements within
the tuple after we create it.

 The only technical requirement for defining a tuple is to declare multiple ele-
ments and separate every subsequent two with a comma. The following example
declares a three-element tuple:

In [142] "Rock", "Pop", "Country"

Out [142] ('Rock', 'Pop', 'Country')

Usually, however, we declare a tuple with a pair of parentheses. The syntax makes it
easier to identify the object visually:

In [143] music_genres = ("Rock", "Pop", "Country")
 music_genres

Out [143] ('Rock', 'Pop', 'Country')

The len function returns the length of a tuple:

In [144] len(music_genres)

Out [144] 3

To declare a tuple with one element, we must include a comma after the element.
Python needs the comma to identify the tuple. Compare the differences in the next two
outputs. The first example does not use a comma; Python reads the value as a string.

In [145] one_hit_wonders = ("Never Gonna Give You Up")
 one_hit_wonders

Out [145] 'Never Gonna Give You Up'

By comparison, the syntax here returns a tuple. Yes, one symbol can make a world of
difference in Python:

In [146] one_hit_wonders = ("Never Gonna Give You Up",)
 one_hit_wonders

Out [146] ('Never Gonna Give You Up',)

Use the tuple function to create an empty tuple, which is one without elements:

In [147] empty_tuple = tuple()
 empty_tuple

Out [147] ()

In [148] len(empty_tuple)

Out [148] 0

377Dictionaries
As with a list, you can access tuple elements by index position. As with a list, you can
iterate over tuple elements with a for loop. The only thing you can’t do is modify the
tuple. Because of its immutability, a tuple doesn’t include mutational methods such as
append, pop, and insert.

 If you have a collection of elements in order, and you know that it will not change,
you can prefer a tuple over a list to store it.

B.11 Dictionaries
Lists and tuples are optimal data structures for storing objects in order. We need
another data structure to solve a different kind of problem: establishing associations
between objects.

 Consider a restaurant menu. Each menu item is a unique identifier that we use to
look up a corresponding price. The menu item and its cost are associated. The order
of items is not what’s important; it’s the connection between two pieces of data.

 A dictionary is a mutable, unordered collection of key-value pairs. A pair consists of
a key and a value. Each key serves as an identifier for a value. Keys must be unique.
Values can contain duplicates.

 We declare a dictionary with a pair of curly braces ({}). The following example
creates an empty dictionary:

In [149] {}

Out [149] {}

Let’s model a sample restaurant menu in Python. Inside the curly braces, we assign a
key to its value with a colon (:). The following example declares a dictionary with one
key-value pair. The string key "Cheeseburger" is assigned the floating-point value
7.99:

In [150] { "Cheeseburger": 7.99 }

Out [150] {'Cheeseburger': 7.99}

When declaring a dictionary with multiple key-value pairs, separate every two pairs
with a comma. Let’s expand our menu dictionary to hold three key-value pairs. Notice
that the values for the "French Fries" and "Soda" keys are identical:

In [151] menu = {"Cheeseburger": 7.99, "French Fries": 2.99, "Soda": 2.99}
 menu

Out [151] {'Cheeseburger': 7.99, 'French Fries': 2.99, 'Soda': 2.99}

We can count the number of key-value pairs in a dictionary by passing it to Python’s
built-in len function:

In [152] len(menu)

Out [152] 3

378 APPENDIX B Python crash course
We use keys to retrieve values from dictionaries. Place a pair of square brackets with
the key immediately after the dictionary. The syntax is identical to accessing a list ele-
ment by index position. The following example extracts the value for the "French
Fries" key:

In [153] menu["French Fries"]

Out [153] 2.99

In a list, the index position is always a number. In a dictionary, a key can be any
immutable data type: integers, floats, strings, Booleans, and more.

 Python raises a KeyError exception if the key does not exist in the dictionary.
KeyError is another example of a native Python error:

In [154] menu["Steak"]

KeyError Traceback (most recent call last)
<ipython-input-19-0ad3e3ec4cd7> in <module>
----> 1 menu["Steak"]

KeyError: 'Steak'

As always, case sensitivity matters. If a single character is mismatched, Python will not be
able to find a key. The key "soda" does not exist in our dictionary. Only "Soda" does:

In [155] menu["soda"]

KeyError Traceback (most recent call last)
<ipython-input-20-47940ceca824> in <module>
----> 1 menu["soda"]

KeyError: 'soda'

The get method also extracts a dictionary value by using a key:

In [156] menu.get("French Fries")

Out [156] 2.99

The get method’s advantage is that it returns None if the key does not exist rather
than raise an error. Remember that None is an object that Python uses to represent
the idea of absence or nullness. The None value produces no visual output in Jupyter
Notebook. But we can wrap the invocation in a print function to force Python to
print None’s string representation:

In [157] print(menu.get("Steak"))

Out [157] None

The second argument to the get method is a custom value to return if the key does
not exist in the dictionary. In the next example, the string "Steak" does not exist as a
key in the menu dictionary, so Python returns 99.99 instead:

379Dictionaries
In [158] menu.get("Steak", 99.99)

Out [158] 99.99

A dictionary is a mutable data structure. We can add key-value pairs to or remove key-
value pairs from the dictionary after we create it. To add a new key-value pair, provide
the key in square brackets, and assign a value to it with the assignment operator (=):

In [159] menu["Taco"] = 0.99
 menu

Out [159] {'Cheeseburger': 7.99, 'French Fries': 2.99, 'Soda': 1.99,
 'Taco': 0.99}

If the key already exists in the dictionary, Python will overwrite its original value. The
next example changes the value of the "Cheeseburger" key from 7.99 to 9.99:

In [160] print(menu["Cheeseburger"])
 menu["Cheeseburger"] = 9.99
 print(menu["Cheeseburger"])

Out [160] 7.99
 9.99

The pop method removes a key-value pair from a dictionary; it accepts a key as an
argument and returns its value. Python will raise a KeyError exception if the key
does not exist in the dictionary:

In [161] menu.pop("French Fries")

Out [161] 2.99

In [162] menu

Out [162] {'Cheeseburger': 9.99, 'Soda': 1.99, 'Taco': 0.99}

The in keyword checks whether an element exists in the dictionary’s keys:

In [163] "Soda" in menu

Out [163] True

In [164] "Spaghetti" in menu

Out [164] False

To check for inclusion among the dictionary’s values, invoke the values method on
the dictionary. The method returns a listlike object that contains the dictionary’s values.
We can use the in operator in combination with the values method’s return value:

In [165] 1.99 in menu.values()

Out [165] True

In [166] 499.99 in menu.values()

Out [166] False

380 APPENDIX B Python crash course
The values method returns a different type of object from the lists, tuples, and dic-
tionaries we’ve already seen. We don’t necessarily need to know what the object is,
however. All we care about is how we can work with it. The in operator checks for the
inclusion of a value in an object, and the object returned by the values method
knows how to handle it.

B.11.1 Dictionary Iteration

We should always assume that a dictionary’s key-value pairs are unordered. If you need
a data structure that maintains order, use a list or a tuple. If you need to create associ-
ations between objects, use a dictionary.

 Even if we cannot guarantee a deterministic iteration order, we can still loop over a
dictionary one key-value pair at a time with a for loop. The dictionary’s items
method yields a two-item tuple on each iteration. The tuple holds a key and its respec-
tive value. We can declare multiple variables after the for keyword to store each key
and value. In the next example, the state variable holds each dictionary key, and the
capital variable holds each value:

In [167] capitals = {
 "New York": "Albany",
 "Florida": "Tallahassee",
 "California": "Sacramento"
 }

 for state, capital in capitals.items():
 print("The capital of " + state + " is " + capital + ".")

 The capital of New York is Albany.
 The capital of Florida is Tallahassee.
 The capital of California is Sacramento.

In the first iteration, Python yields a tuple of ("New York", "Albany"). In the sec-
ond iteration, it yields a tuple of ("Florida", "Tallahassee"), and so on.

B.12 Sets
List and dictionary objects help solve the problems of order and association. A set
assists with another common need: uniqueness. A set is an unordered, mutable collec-
tion of unique elements. It prohibits duplicates.

 We declare a set with a pair of curly braces. We populate the braces with
elements, separating every two with a comma. The next example declares a set of six
numbers:

In [168] favorite_numbers = { 4, 8, 15, 16, 23, 42 }

Readers with a sharp eye may notice that the curly-brace syntax for declaring a set is
identical to the syntax for declaring a dictionary. Python can distinguish between the
two types of objects based on the presence or absence of key-value pairs.

381Sets
 Because Python interprets an empty pair of curly braces as an empty dictionary,
the only way to create an empty set is with the built-in set function:

In [169] set()

Out [169] set()

Here are some helpful set methods. The add method adds a new element to the set:

In [170] favorite_numbers.add(100)
 favorite_numbers

Out [170] {4, 8, 15, 16, 23, 42, 100}

Python will add an element to a set only if the set does not already have it. The next
example attempts to add 15 to favorite_numbers. Python sees that 15 already exists
within the set, so the object remains unchanged:

In [171] favorite_numbers.add(15)
 favorite_numbers

Out [171] {4, 8, 15, 16, 23, 42, 100}

A set has no concept of order. Python will raise a TypeError exception if we attempt
to access a set element by index position:

In [172] favorite_numbers[2]

TypeError Traceback (most recent call last)
<ipython-input-17-e392cd51c821> in <module>
----> 1 favorite_numbers[2]

TypeError: 'set' object is not subscriptable

Python raises a TypeError exception when we attempt to apply an operation to an
invalid object. Set elements are unordered, so elements do not have index positions.

 In addition to preventing duplicates, sets are ideal for identifying similarities and
differences between two collections of data. Let’s define two sets of strings:

In [173] candy_bars = { "Milky Way", "Snickers", "100 Grand" }
 sweet_things = { "Sour Patch Kids", "Reeses Pieces", "Snickers" }

The intersection method returns a new set with elements found in both of the
original sets. The & symbol performs the same logic. In the next example, "Snick-
ers" is the only string in common between candy_bars and sweet_things:

In [174] candy_bars.intersection(sweet_things)

Out [174] {'Snickers'}

In [175] candy_bars & sweet_things

Out [175] {'Snickers'}

382 APPENDIX B Python crash course
The union method returns a set that combines all elements of the two sets. The |
symbol performs the same logic. Keep in mind that duplicate values such as "Snick-
ers" will appear only once:

In [176] candy_bars.union(sweet_things)

Out [176] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Snickers', 'Sour
 Patch Kids'}

In [177] candy_bars | sweet_things

Out [177] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Snickers', 'Sour
 Patch Kids'}

The difference method returns a set of elements that are present in the set the
method is called on but not present in the set passed in as an argument. We can use
the - symbol as a shortcut. In the next example, "100 Grand" and "Milky Way" are
present in candy_bars but not in sweet_things:

In [178] candy_bars.difference(sweet_things)

Out [178] {'100 Grand', 'Milky Way'}

In [179] candy_bars - sweet_things

Out [179] {'100 Grand', 'Milky Way'}

The symmetric_difference method returns a set with elements found in either of
the sets but not both. The ^ syntax accomplishes the same result:

In [180] candy_bars.symmetric_difference(sweet_things)

Out [180] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Sour Patch Kids'}

In [181] candy_bars ^ sweet_things

Out [181] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Sour Patch Kids'}

And that’s all there is to cover! We’ve learned quite a bit of Python: data types, func-
tions, iterations, and more. It’s OK if you don’t remember all the details. Rather, come
back to this appendix whenever you need a refresher on the core mechanics of
Python. We’ll be using and reviewing a lot of these ideas as we work with the pandas
library.

appendix C
NumPy crash course

The open source NumPy (Numerical Python) library is a dependency of pandas that
exposes a powerful ndarray object for storing homogeneous, n-dimensional arrays.
That’s quite a mouthful, so let’s break it down. An array is an ordered collection of
values akin to a Python list. Homogeneous means that the values within the array are of
the same data type. N-dimensional means that the array can hold any number of
dimensions. (We’ll talk about dimensions in section C.1.) NumPy was developed by
data scientist Travis Oliphant, who founded Anaconda, the company that builds the
Python distribution we used to set up our development environment.

 We can use NumPy to generate randomized data sets of any size and shape; in
fact, the official pandas documentation does so extensively. Basic knowledge of the
library will help enhance our understanding of the underlying mechanics of pandas.

C.1 Dimensions
Dimensions refers to the number of reference points needed to extract a single value
from a data structure. Consider a collection of temperatures across several cities on
a given day:

If I asked you to find a specific temperature in this data set, you’d need only one
point of reference: the city’s name (such as “San Francisco”) or its order (such as
“the third city in the list”). Thus, the table depicts a one-dimensional data set.

Temperature

New York 38

Chicago 36

San Francisco 51

Miami 73
383

384 APPENDIX C NumPy crash course
 Compare that table with a data set of temperatures for multiple cities over multiple
days:

How many points of reference do you need now to extract a specific value from this
data set? The answer is 2. We need a city and a day of the week (such as “San Francisco
on Thursday”) or a row number and a column number (such as “row 3 and column
4”). Neither the city nor the weekday is a sufficient identifier by itself, because each
one associates with multiple values in the data set. The combination of a city and a
weekday (or, equivalently, a row and a column) filters the results down to one value;
thus, this data set is two-dimensional.

 A data set’s number of rows and columns does not affect its number of dimensions.
A table with 1 million rows and 1 million columns would still be two-dimensional. We
would still need a combination of a row position and a column position to pull out a
value.

 Every additional point of reference adds another dimension. We might collect
temperatures over two weeks:

Monday Tuesday Wednesday Thursday Friday

New York 38 41 35 32 35

Chicago 36 39 31 27 25

San Francisco 51 52 50 49 53

Miami 73 74 72 71 74

Week 1

Monday Tuesday Wednesday Thursday Friday

New York 38 41 35 32 35

Chicago 36 39 31 27 25

San Francisco 51 52 50 49 53

Miami 73 74 72 71 74

Week 2

Monday Tuesday Wednesday Thursday Friday

New York 40 42 38 36 28

Chicago 32 28 25 31 25

San Francisco 49 55 54 51 48

Miami 75 78 73 76 71

385The ndarray object
The city and weekday are no longer sufficient to extract a single value. We now need
three points of reference (Week, City, and Day), so we can classify this data set as
being three-dimensional.

C.2 The ndarray object
Let’s begin by creating a new Jupyter Notebook and importing the NumPy library,
which is typically assigned the alias np:

In [1] import numpy as np

NumPy excels at generating both random and nonrandom data. Let’s begin with a
simple challenge: creating a sequential range of numbers.

C.2.1 Generating a numeric range with the arange method

The arange function returns a one-dimensional ndarray object with a range of
sequential numeric values. When we invoke arange with one argument, NumPy will
set 0 as the lower bound, the value at which the range begins. The first argument will
set the upper bound, the number at which the range terminates. The upper bound is
exclusive; NumPy will go up to that value but not include it. An argument of 3, for
example, will produce an ndarray holding the values 0, 1, and 2:

In [2] np.arange(3)

Out [2] array([0, 1, 2])

We can also pass arange two arguments, which will declare the lower and upper
bounds of the range. The lower bound is inclusive; the range will include its value.
The endpoint remains exclusive. In the next example, notice that NumPy includes 2
but not 6:

In [3] np.arange(2, 6)

Out [3] array([2, 3, 4, 5])

The first two arguments to arange correspond to start and stop keyword parame-
ters. We can write the keyword arguments out explicitly. The preceding and following
code samples produce the same array:

In [4] np.arange(start = 2, stop = 6)

Out [4] array([2, 3, 4, 5])

The arange function’s optional third parameter, step, sets the interval between
every two values. It helps to think about this concept mathematically. Start at the lower
bound, and add the interval value until you reach the upper bound. The next exam-
ple creates a range from 0 to 111 (exclusive) in gaps of 10:

In [5] np.arange(start = 0, stop = 111, step = 10)

Out [5] array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110])

386 APPENDIX C NumPy crash course
Let’s save that last ndarray to a tens variable:

In [6] tens = np.arange(start = 0, stop = 111, step = 10)

Now the tens variable points to an ndarray object that holds 12 numbers.

C.2.2 Attributes on a ndarray object

The NumPy library’s ndarray object has its own set of attributes and methods. As a
reminder, an attribute is a piece of data that belongs to an object. A method is a com-
mand we can send to an object.

 The shape attribute returns a tuple with the array’s dimensions. The length of the
shape tuple is equal to the ndarray’s number of dimensions. The following output
communicates that tens is a one-dimensional array with 12 values:

In [7] tens.shape

Out [7] (12,)

We can also ask for the ndarray’s number of dimensions with the ndim attribute:

In [8] tens.ndim

Out [8] 1

The size attribute returns the number of elements in the array:

In [9] tens.size

Out [9] 12

Next up, let’s see how we can manipulate the shape of the 12 elements in the array.

C.2.3 The reshape method

Currently, our 12-element tens ndarray is one-dimensional. We can access any ele-
ment with one reference point, its position in the array:

In [10] tens

Out [10] array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
 110])

We may want to manipulate an existing one-dimensional array into a multidimen-
sional one with a different shape. Let’s say that our 12 values represent a collection of
3 daily measurements captured across 4 days. It’s easier to think about the data in a 4
x 3 shape than in a 12 x 1 shape.

 The reshape method uses its arguments to return a new ndarray object with a
specified shape. The next example contorts tens into a new two-dimensional array
with 4 rows and 3 columns:

387The ndarray object
In [11] tens.reshape(4, 3)

Out [11] array([[0, 10, 20],
 [30, 40, 50],
 [60, 70, 80],
 [90, 100, 110]])

The number of arguments passed to reshape will equal the number of dimensions in
the new ndarray:

In [12] tens.reshape(4, 3).ndim

Out [12] 2

We must ensure that the product of the arguments equals the number of elements
within the original array. The values 4 and 3 are valid arguments because their prod-
uct is 12, and tens has 12 values. Another valid example is a two-dimensional array
with 2 rows and 6 columns:

In [13] tens.reshape(2, 6)

Out [13] array([[5, 15, 25, 35, 45, 55],
 [65, 75, 85, 95, 105, 115]])

NumPy raises a ValueError exception if it cannot contort the original array into the
requested shape. In the next example, the library is unable to fit the 12 values in tens
into a 2 x 5 array:

In [14] tens.reshape(2, 5)

Out [14]

ValueError Traceback (most recent call last)
<ipython-input-68-5b9588276555> in <module>
----> 1 tens.reshape(2, 5)

ValueError: cannot reshape array of size 12 into shape (2,5)

Can an ndarray store more than two dimensions of data? Absolutely. Let’s provide a
third argument to reshape to see it in action. The next example shapes the one-
dimensional tens array into a three-dimensional array with a 2 x 3 x 2 shape:

In [15] tens.reshape(2, 3, 2)

Out [15] array([[[5, 15],
 [25, 35],
 [45, 55]],

 [[65, 75],
 [85, 95],
 [105, 115]]])

388 APPENDIX C NumPy crash course
Let’s access the ndim attribute on the new array. The data structure does indeed have
three dimensions:

In [16] tens.reshape(2, 3, 2).ndim

Out [16] 3

We can also pass an argument of -1 to reshape to denote an unknown dimension.
NumPy will infer the correct number of values to populate within that dimension. The
next example passes arguments of 2 and -1. NumPy calculates that the new two-
dimensional array should have a 2 x 6 shape:

In [17] tens.reshape(2, -1)

Out [17] array([[0, 10, 20, 30, 40, 50],
 [60, 70, 80, 90, 100, 110]])

In the next example, the library calculates that the returned ndarray should have a
2 x 3 x 2 shape:

In [18] tens.reshape(2, -1, 2)

Out [18] array([[[0, 10],
 [20, 30],
 [40, 50]],

 [[60, 70],
 [80, 90],
 [100, 110]]])

We can pass only one unknown dimension into a reshape method invocation.
 The reshape method returns a new ndarray object. The original array is not

mutated. Thus, our tens array still has its original 1 x 12 shape.

C.2.4 The randint function

The randint function generates one or more random numbers between a range.
When passed a single argument, it returns a random integer from 0 up to the value.
The next example returns a random value between 0 and 5 (exclusive):

In [19] np.random.randint(5)

Out [19] 3

We can pass randint two arguments to declare an inclusive lower bound and an
exclusive upper bound. NumPy will select a number from within the range:

In [20] np.random.randint(1, 10)

Out [20] 9

What if we want to generate an array of random integers? We can pass a third argu-
ment to randint to specify the desired array shape. We can pass either a single inte-
ger or a one-element list to create a one-dimensional array:

389The ndarray object
In [21] np.random.randint(1, 10, 3)

Out [21] array([4, 6, 3])

In [22] np.random.randint(1, 10, [3])

Out [22] array([9, 1, 6])

To create a multidimensional ndarray, we pass a list specifying the number of values
in each dimension. The following example populates a two-dimensional 3 x 5 array of
values between 1 and 10 (exclusive):

In [23] np.random.randint(1, 10, [3, 5])

Out [23] array([[2, 9, 8, 8, 7],
 [9, 8, 7, 3, 2],
 [4, 4, 5, 3, 9]])

You can provide any number of values inside the list to create ndarrays with more
dimensions. A list with three values, for example, will create a three-dimensional array.

C.2.5 The randn function

The randn function returns an ndarray with random values from the standard nor-
mal distribution. Each sequential argument to the function sets the number of values
to store in a dimension. If we pass one argument, the ndarray will have one dimen-
sion. The next example creates a 1 x 3 (1 row by 3 column) array:

In [24] np.random.randn(3)

Out [24] array([-1.04474993, 0.46965268, -0.74204863])

If we pass two arguments to the randn function, the ndarray will have two dimen-
sions, and so on. The next example creates a 2 x 4 two-dimensional array:

In [25] np.random.randn(2, 4)

Out [25] array([[-0.35139565, 1.15677736, 1.90854535, 0.66070779],
 [-0.02940895, -0.86612595, 1.41188378, -1.20965709]])

The next example creates a 3-dimensional array with a 2 x 4 x 3 shape. We can think
of this shape as being two data sets, each with four rows and three columns:

In [26] np.random.randn(2, 4, 3)

Out [26] array([[[0.38281118, 0.54459183, 1.49719148],
 [-0.03987083, 0.42543538, 0.11534431],
 [-1.38462105, 1.54316814, 1.26342648],
 [0.6256691 , 0.51487132, 0.40268548]],

 [[-0.24774185, -0.64730832, 1.65089833],
 [0.30635744, 0.21157744, -0.5644958],
 [0.35393732, 1.80357335, 0.63604068],
 [-1.5123853 , 1.20420021, 0.22183476]]])

390 APPENDIX C NumPy crash course
The rand family of functions is a phenomenal way to generate fake numeric data. We
can also create fake data of different types and categories such as names, addresses, or
credit cards. For more on that topic, see appendix D.

C.3 The nan object
The NumPy library uses a special nan object to represent a missing or invalid value.
The acronym nan is short for not a number, a generic catch-all term for missing data.
We’ll be seeing nan frequently throughout the book as we import data sets with miss-
ing values into pandas. For now, we can access the nan object directly as a top-level
attribute on the np package:

In [27] np.nan

Out [27] nan

A nan object is not equal to any value:

In [28] np.nan == 5

Out [28] False

A nan value is also unequal to another nan. From NumPy’s perspective, nan values are
missing or absent. We cannot say with certainty that they are the same, so we assume
that they are different.

In [29] np.nan == np.nan

Out [29] False

And that’s it! Those are the most important details about the NumPy library, which
pandas uses underneath its hood.

 In your spare time, take a peek at the pandas documentation (https://pandas
.pydata.org/docs/user_guide/10min.html). You’ll likely see many examples that use
NumPy to generate random data.

appendix D
Generating fake
data with Faker

Faker is a Python library for generating fake data. It specializes in creating lists of
names, phone numbers, street addresses, emails, and the like. In combination with
NumPy, which can generate random numeric data, it can quickly create data sets of
any size, shape, and type. If you’re looking to practice pandas concepts but can’t
find the perfect data set to apply them to, Faker offers a fantastic solution. In this
appendix, we’ll walk through everything you need to know to get started with the
library.

D.1 Installing Faker
First, let’s install the Faker library in our conda environment. In Terminal
(macOS) or Anaconda Prompt (Windows), activate the conda environment you’ve
set up for this book. When I created an environment for appendix A, I called mine
pandas_in_action:

conda activate pandas_in_action

If you’ve forgotten your available Anaconda environments, you can execute conda
info --envs to see a list of them. When the environment is active, install the
Faker library with the conda install command:

conda install faker

When prompted to confirm, enter "Y" for Yes and press Enter. Anaconda will
download and install the library. When the process completes, launch Jupyter Note-
book and create a new Notebook.
391

392 APPENDIX D Generating fake data with Faker
D.2 Getting started with Faker
Let’s explore some core features of Faker and then pair it with NumPy to generate a
1,000-row DataFrame. First, we’ll import the pandas and NumPy libraries and assign
them to their respective aliases (pd and np). Let’s also import the faker library:

In [1] import pandas as pd
 import numpy as np
 import faker

The faker package exports a Faker class (notice the capital F). As a reminder, a class
is a blueprint for an object—a template for a data structure. Series and DataFrame
are two sample classes from the pandas library, and Faker is a sample class from the
Faker library.

 Let’s create an instance of the Faker class with a pair of parentheses and assign
the resulting Faker object to a fake variable:

In [2] fake = faker.Faker()

A Faker object includes many instance methods, each of which returns a random
value from a given category. The name instance method, for example, returns a string
with a person’s full name:

In [3] fake.name()

Out [3] 'David Lee'

Due to Faker’s inherent randomness, the return values will likely vary when you exe-
cute the code on your computer. That’s totally fine.

 We can invoke the complementary name_male and name_female methods to
return full names by gender:

In [4] fake.name_male()

Out [4] 'James Arnold'

In [5] fake.name_female()

Out [5] 'Brianna Hall'

Use the first_name and last_name methods to return only a first name or last name:

In [6] fake.first_name()

Out [6] 'Kevin'

In [7] fake.last_name()

Out [7] 'Soto'

There are also gender-specific first_name_male and first_name_female methods:

In [8] fake.first_name_male()

Out [8] 'Brian'

393Getting started with Faker
In [9] fake.first_name_female()

Out [9] 'Susan'

As you can see, Faker’s syntax is simple but powerful. Here’s another example. Sup-
pose that we want to generate some random locations for a data set. The address
method returns a string with a complete address, including a street, city, state, and
postal code:

In [10] fake.address()

Out [10] '6162 Chase Corner\nEast Ronald, SC 68701'

Note that the address is completely fake; it is not an actual location on a map. Faker
simply follows conventions on what an address usually looks like.

 Notice that Faker separates the street and the remainder of the address with a line
break (\n). You can wrap the return value in a print function call to break the
address across multiple lines:

In [11] print(fake.address())

Out [11] 602 Jason Ways Apt. 358
 Hoganville, NV 37296

We can generate the individual components of an address with methods such as
street_address, city, state, and postcode:

In [12] fake.street_address()

Out [12] '58229 Heather Walk'

In [13] fake.city()

Out [13] 'North Kristinside'

In [14] fake.state()

Out [14] 'Oklahoma'

In [15] fake.postcode()

Out [15] '94631'

We can generate business-related data with another batch of methods. The following
methods return a random company, catchphrase, job title, and URL:

In [16] fake.company()

Out [16] 'Parker, Harris and Sutton'

In [17] fake.catch_phrase()

Out [17] 'Switchable systematic task-force'

In [18] fake.job()

Out [18] 'Copywriter, advertising'

394 APPENDIX D Generating fake data with Faker
In [19] fake.url()

Out [19] 'https://www.gutierrez.com/'

Faker also supports email addresses, phone numbers, and credit card numbers:

In [20] fake.email()

Out [20] 'sharon13@taylor.com'

In [21] fake.phone_number()

Out [21] '680.402.4787'

In [22] fake.credit_card_number()

Out [22] '4687538791240162'

The Faker website (https://faker.readthedocs.io/en/master) offers complete docu-
mentation for the Faker object’s instance methods. The library groups methods into
parent categories such as address, automotive, and bank. Figure D.1 shows a sample
page from the Faker documentation.

Figure D.1 A sample documentation page on Faker’s official website

Take some time to explore Faker’s available categories. A little variety can help make
the next fake data set you generate a lot more intriguing.

https://faker.readthedocs.io/en/master

395Populating a DataFrame with fake values
D.3 Populating a DataFrame with fake values
Now that we’re comfortable using Faker to generate one fake value, let’s use it to pop-
ulate a whole data set. Our goal is to create a 1,000-row DataFrame with four col-
umns: Name, Company, Email, and Salary.

 Here’s how we’ll tackle the problem: we’ll use a for loop to iterate 1,000 times,
and in each iteration, we’ll ask Faker to generate a fake name, company, and email
address. We’ll also ask NumPy to generate a random number to represent the salary.

 We can use Python’s range function for the iteration. The function accepts an
integer argument. It returns an iterable sequence of ascending numbers, starting at 0
and proceeding up to (but not including) the argument. In the next example, we use
a for loop to iterate over a range of values from 0 (inclusive) to 5 (exclusive):

In [23] for i in range(5):
 print(i)

Out [23] 0
 1
 2
 3
 4

To generate our data set, we’ll use range(1000) to iterate 1,000 times.
 The DataFrame’s class constructor accepts various inputs for its data parameter,

including a list of dictionaries. Pandas maps each dictionary key to a DataFrame col-
umn and each value to the row’s value for that column. Here’s a preview of what we
want our input to look like:

[
 {
 'Name': 'Ashley Anderson',
 'Company': 'Johnson Group',
 'Email': 'jessicabrooks@whitaker-crawford.biz',
 'Salary': 62883
 },
 {
 'Name': 'Katie Lee',
 'Company': 'Ward-Aguirre',
 'Email': 'kennethbowman@fletcher.com',
 'Salary': 102971
 }
 # … and 998 more dictionaries
]

You’ll notice some logical inconsistencies in the Faker-generated data. The first per-
son’s name is Ashley Anderson, for example, but the email is jessicabrooks@whitaker-
crawford.biz. This inconsistency is due to the randomness of Faker. For the following
examples, we’re not going to worry about these imperfections. If we want our data set
to be more “accurate,” however, we can combine Faker with regular Python code to
generate whatever values we desire. We can ask Faker for a first name ("Morgan")

396 APPENDIX D Generating fake data with Faker
and last name ("Robinson"), for example, and then concatenate the two strings to
form a more realistic email address ("MorganRobinson@gmail.com"):

In [24] first_name = fake.first_name_female()
 last_name = fake.last_name()
 email = first_name + last_name + "@gmail.com"
 email

Out [24] 'MorganRobinson@gmail.com'

Back to business. Let’s use list comprehension with the range function to create a list
of 1,000 dictionaries. Within each dictionary, we’ll declare the same four keys:
"Name", "Company", "Email", and "Salary. For the first three values, we’ll invoke
the name, company, and email instance methods on our Faker object. Remember
that Python will invoke these methods on each iteration, so the values will differ each
time. For the "Salary" value, we’ll use NumPy’s randint function to return a ran-
dom integer between 50,000 and 200,000. For a more in-depth tutorial on NumPy
functions, see appendix C.

In [25] data = [
 { "Name": fake.name(),
 "Company": fake.company(),
 "Email": fake.email(),
 "Salary": np.random.randint(50000, 200000)
 }
 for i in range(1000)
]

Our data variable holds a list of 1,000 dictionaries. The last step is passing the list of
dictionaries to the DataFrame constructor at the top level of pandas:

In [26] df = pd.DataFrame(data = data)
 df

Out [26]

 Name Company Email Salary

0 Deborah Lowe Williams Group ballbenjamin@gra... 147540
1 Jennifer Black Johnson Inc bryannash@carlso... 135992
2 Amy Reese Mitchell, Hughes... ajames@hotmail.com 101703
3 Danielle Moore Porter-Stevens logan76@ward.com 133189
4 Jennifer Wu Goodwin Group vray@boyd-lee.biz 57486
 … … … … …
995 Joseph Stewart Rangel, Garcia a... sbrown@yahoo.com 123897
996 Deborah Curtis Rodriguez, River... smithedward@yaho... 51908
997 Melissa Simmons Stevenson Ltd frederick96@hous... 108791
998 Tracie Martinez Morales-Moreno caseycurry@lopez... 181615
999 Phillip Andrade Anderson and Sons anthony23@glover... 198586

1000 rows × 4 columns

And there you have it—a DataFrame with 1,000 rows of random data to practice with.
Feel free to explore the Faker and NumPy documentation to see what other types of
random data you can generate.

appendix E
Regular expressions

A regular expression (often abbreviated RegEx) is a search pattern for text. It defines a
logical sequence of characters that the computer should look for in a string.

 Here’s a simple example. You’ve likely used the Find feature in your web
browser at some point. In most web browsers, you can access this feature by press-
ing Ctrl-F in Windows or Command-F in macOS. The browser reveals a dialog box
in which we type a sequence of characters. Then the browser searches for those
characters on the web page. Figure E.1 shows an example of the browser searching
for and finding romance in the page’s content.

Figure E.1 Searching for the text romance by using the Find feature in Google Chrome

Chrome’s Find feature is a simple example of RegEx in action. The tool does have
its limitations. We can search for characters only in the exact order in which they
397

398 APPENDIX E Regular expressions
appear, for example. We can search for the character sequence "cat", but we cannot
declare a condition such as either the letter "c" or "a" or "t". Regular expressions
make this kind of dynamic search possible.

 A regular expression describes how to look for content in a piece of text. We can
search for characters such as letters, digits, or spaces, but we can also use special sym-
bols to declare conditions. Here are a few examples of what we can search for:

 Any two digits in a row
 A sequence of three or more alphabetic characters followed by a space
 The character s, but only at the beginning of a word

In this appendix, we’ll explore how regular expressions work in Python and then
apply our knowledge to a data set in pandas. Entire textbooks and college courses are
dedicated to RegEx, so our hope here is to scratch the surface of this complex field of
study. RegEx is easy to get started with and difficult to master.

E.1 Introduction to Python’s re module
Let’s begin by creating a new Jupyter Notebook. We’ll import pandas and a special
module called re. The re (regular expressions) module is part of Python’s standard
library and is built into the language:

In [1] import re
 import pandas as pd

The re module has a search function that looks for a substring in a string. The func-
tion accepts two arguments: a search sequence and a string in which to look for it. The
next example looks for the string "flower" within the string "field of flowers":

In [2] re.search("flower", "field of flowers")

Out [2] <re.Match object; span=(9, 15), match='flower'>

The search function returns a Match object if Python finds the character sequence
in the target string. The Match object stores information on what content matched
the search pattern and where it exists in the target string. The preceding output com-
municates that "flower" was found in a span of characters from index positions 9 to
15. The first index is inclusive, and the second index is exclusive. If we count charac-
ter index positions in "field of flowers", we see that index 9 is the lowercase "f"
in "flowers", and index 15 is the "s" in "flowers".

 The search function returns None if the search pattern does not exist in the target
string. By default, Jupyter Notebook will not output anything for a None value. But we
can wrap the search invocation in a print function to force Jupyter to print the value:

In [3] print(re.search("flower", "Barney the Dinosaur"))

Out [3] None

The search function returns only the first match in the target string. We can use the
findall function to find all matches. This function accepts the same two arguments—

399Metacharacters
a search sequence and a target string—and returns a list of strings that match the search
sequence. In the next example, Python finds the search pattern "flower" twice within
"Picking flowers in the flower field":

In [4] re.findall("flower", "Picking flowers in the flower field")

Out [4] ['flower', 'flower']

Note that the search is case-sensitive.

E.2 Metacharacters
Now let’s declare a more complex search pattern using regular expressions. We’ll start
by assigning a long string to a sentence variable. The next code sample breaks the
string across multiple lines for readability, but you are welcome to type it in a single
line in Jupyter Notebook:

In [5] sentence = "I went to the store and bought " \
 "5 apples, 4 oranges, and 15 plums."

 sentence

Out [5] 'I went to the store and bought 5 apples, 4 oranges, and 15 plums.'

Inside a regular expression, we can declare metacharacters—special symbols that define
search patterns. The \d metacharacter, for example, instructs Python to match any
digit. Let’s say we want to identify all digits in our sentence string. The next example
invokes the findall function with the regular expression "\d" as the search pattern:

In [6] re.findall("\d", sentence)

Out [6] ['5', '4', '1', '5']

The function’s return value is a list of the four digits in sentence in the order in
which they appear:

 the "5" in "5 apples"
 the "4" in "4 oranges"
 the "1" in "15 plums"
 the "5" in "15 plums"

We’ve learned our first metacharacter! With a simple \d symbol, we’ve created a
search pattern that matches any digit in a target string.

 Two points are worth mentioning before we move forward:

 When a list contains many elements, Jupyter Notebook likes to print each ele-
ment on a separate line. This stylistic approach makes the output easier to read
but also causes it to take up significant space. To force Jupyter to print the list
normally—add line breaks only after a certain threshold of characters has been
output—we’ll wrap our findall function calls inside Python’s built-in print
function from this point on.

400 APPENDIX E Regular expressions
 We’ll pass our RegEx arguments to the findall function as raw strings. Python
interprets each character in a raw string literally. This parsing option prevents
conflicts between regular expressions and escape sequences. Consider the char-
acter sequence \b. It has a symbolic meaning in a plain Python string and a dif-
ferent meaning in a regular expression. When we use a raw string, we instruct
Python to treat \b as a literal backslash character followed by a literal b charac-
ter. This syntax guarantees that Python will parse the regular expression’s
metacharacters correctly.

We declare a raw string with an "r" character before the double quotes. Let’s rewrite
the preceding example with a print function call and a raw string:

In [7] print(re.findall(r"\d", sentence))

Out [7] ['5', '4', '1', '5']

To declare the inverse of an operation, we swap the letter casing of the metacharacter.
If \d means “match any digit,” for example, \D means "match any nondigit." Nondigit
characters consist of letters, spaces, commas, and symbols. In the next example, we
use \D to identify all nondigit characters in sentence:

In [8] print(re.findall(r"\D", sentence))

Out [8] ['I', ' ', 'w', 'e', 'n', 't', ' ', 't', 'o', ' ', 't', 'h', 'e', '
 ', 's', 't', 'o', 'r', 'e', ' ', 'a', 'n', 'd', ' ', 'b', 'o',
 'u', 'g', 'h', 't', ' ', ' ', 'a', 'p', 'p', 'l', 'e', 's', ',', '
 ', ' ', 'o', 'r', 'a', 'n', 'g', 'e', 's', ',', ' ', 'a', 'n',
 'd', ' ', ' ', 'p', 'l', 'u', 'm', 's', '.']

Now that you understand the basics of regular expressions, the next step is learning
more metacharacters and building complex search queries. Here’s another example.
The \w metacharacter matches any word character, a category that includes letters,
digits, and underscores:

In [9] print(re.findall(r"\w", sentence))

Out [9] ['I', 'w', 'e', 'n', 't', 't', 'o', 't', 'h', 'e', 's', 't', 'o',
 'r', 'e', 'a', 'n', 'd', 'b', 'o', 'u', 'g', 'h', 't', '5', 'a',
 'p', 'p', 'l', 'e', 's', '4', 'o', 'r', 'a', 'n', 'g', 'e', 's',
 'a', 'n', 'd', '1', '5', 'p', 'l', 'u', 'm', 's']

The inverse \W metacharacter matches any nonword character. Nonword characters
include spaces, commas, and periods:

In [10] print(re.findall(r"\W", sentence))

Out [10] [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ',', ' ', ' ', ',', ' ',
 ' ', ' ', '.']

The \s metacharacter searches for any whitespace character:

In [11] print(re.findall(r"\s", sentence))

Out [11] [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']

401Metacharacters
The inverse \S metacharacter searches for any nonwhitespace character:

In [12] print(re.findall(r"\S", sentence))

Out [12] ['I', 'w', 'e', 'n', 't', 't', 'o', 't', 'h', 'e', 's', 't', 'o',
 'r', 'e', 'a', 'n', 'd', 'b', 'o', 'u', 'g', 'h', 't', '5', 'a',
 'p', 'p', 'l', 'e', 's', ',', '4', 'o', 'r', 'a', 'n', 'g', 'e',
 's', ',', 'a', 'n', 'd', '1', '5', 'p', 'l', 'u', 'm', 's', '.']

To search for a specific character, declare it literally in the search pattern. The next
example searches for all occurrences of the letter "t". This syntax is the same one we
used in this appendix’s first examples:

In [13] print(re.findall(r"t", sentence))

Out [13] ['t', 't', 't', 't', 't']

To search for a sequence of characters, write them in order in the search pattern. The
next example searches for the letters "to" in the sentence string. Python finds it
twice (the "to" word and the "to" in "store"):

In [14] print(re.findall(r"to", sentence))

Out [14] ['to', 'to']

The \b metacharacter declares a word boundary. A word boundary mandates where a
character must exist relative to a space. The next example searches for "\bt". The
logic translates to “any t character after a word boundary” or, equivalently, “any t
character after a space.” The pattern matches the "t" characters in "to" and "the":

In [15] print(re.findall(r"\bt", sentence))

Out [15] ['t', 't']

Let’s flip the symbols around. If we use "t\b", we search for “any t character before a
word boundary” or, equivalently, “any t character before a space.” The "t" characters
that Python matches are different. These are the "t" characters at the end of "went"
and "bought":

In [16] print(re.findall(r"t\b", sentence))

Out [16] ['t', 't']

The inverse \B metacharacter declares a nonword boundary. "\Bt", for example,
means “any t character that does not come after a word boundary” or, equivalently,
“any t character that does not come after a space”:

In [17] print(re.findall(r"\Bt", sentence))

Out [17] ['t', 't', 't']

The preceding example matched the "t" characters in "went", "store", and
"bought". Python ignored the "t" characters in "to" and "the" because they
appear after a word boundary.

402 APPENDIX E Regular expressions
E.3 Advanced search patterns
In review, a metacharacter is a symbol that designates a search sequence in a regular
expression. Section E.2 explored the \d, \w, \s, and \b metacharacters for digits,
word characters, spaces, and word boundaries. Let’s learn some new metacharacters
and then combine them into a complex search query.

 The dot (.) metacharacter matches any character whatsoever:

In [18] soda = "coca cola."
 soda

Out [18] 'coca cola.'

In [19] print(re.findall(r".", soda))

Out [19] ['c', 'o', 'c', 'a', ' ', 'c', 'o', 'l', 'a', '.']

At first glance, this metacharacter may not seem to be particularly helpful, but it works
wonders when paired with other symbols. The regular expression "c.", for example,
searches for the character "c" followed by any character. There are three such
matches in our string:

In [20] print(re.findall(r"c.", soda))

Out [20] ['co', 'ca', 'co']

What if we want to search for a literal dot in a string? In that case, we have to escape it
with a backslash in the regular expression. The "\." in the next example locates the
period at the end of the soda string:

In [21] print(re.findall(r"\.", soda))

Out [21] ['.']

Earlier, we saw that we could combine characters to search for them in sequence in
the target string. Here, we search for the exact sequence of "co":

In [22] print(re.findall(r"co", soda))

Out [22] ['co', 'co']

What if we want to search for either the character "c" or the character "o"? To do so,
we can wrap the characters in a pair of square brackets. The matches will include any
occurrence of either "c" or "o" in the target string:

In [23] print(re.findall(r"[co]", soda))

Out [23] ['c', 'o', 'c', 'c', 'o']

The order of characters in the square brackets does not affect the result:

In [24] print(re.findall(r"[oc]", soda))

Out [24] ['c', 'o', 'c', 'c', 'o']

403Advanced search patterns
Suppose that we want to target any characters between "c" and "l". One option
would be to write out the complete sequence of alphabetic characters within the
square brackets:

In [25] print(re.findall(r"[cdefghijkl]", soda))

Out [25] ['c', 'c', 'c', 'l']

A better solution is to use the dash symbol (-) to declare a range of characters. The
following code sample yields the same list as the preceding code:

In [26] print(re.findall(r"[c-l]", soda))

Out [26] ['c', 'c', 'c', 'l']

Next, let’s explore how we can target multiple occurrences of characters in a row.
Consider the string "bookkeeper":

In [27] word = "bookkeeper"
 word

Out [27] 'bookkeeper'

To search for exactly two "e" characters in a row, we can pair them in the search
sequence:

In [28] print(re.findall(r"ee", word))

Out [28] ['ee']

We can also search for multiple occurrences of a character with a pair of curly braces.
Inside the braces, we declare the number of occurrences to match. In the next exam-
ple, we search for two "e" characters in a row within "bookkeeper":

In [29] print(re.findall(r"e{2}", word))

Out [29] ['ee']

If we search for three "e" characters in a row with "e{3}", the return value will be an
empty list because there are no sequences of three consecutive "e" characters in
"bookkeeper":

In [30] print(re.findall(r"e{3}", word))

Out [30] []

We can also enter two numbers inside the curly braces, separated by a comma. The
first value sets the lower bound of occurrences, and the second value sets the upper
bound of occurrences. The next example searches for between one and three occur-
rences of the "e" character in a row. The first match is the sequential "ee" characters
in "keeper", and the second match is the final "e" in "keeper":

In [31] print(re.findall(r"e{1,3}", word))

Out [31] ['ee', 'e']

404 APPENDIX E Regular expressions
Let’s walk through this example in more detail. The pattern searches for one to three
"e" characters in a row. When Python finds a match, it keeps traversing the string
until the search pattern is violated. The regular expression first looks at the letters
"bookk" individually. None of these letters fits the search pattern, so Python moves
on. Then the pattern locates its first "e". Python cannot mark this match as final yet
because the next character may also be an "e", so, it checks the next character. That
character is indeed another "e", which fits the original search criteria. Python pro-
ceeds to the "p", which does not match the pattern, and declares the match to be
"ee" rather than two individual "e" characters. The same logic repeats for the "e"
closer to the end of the string.

 We’re making good progress, but all the previous examples have been mostly theo-
retical. How can we use RegEx when working with real-world data sets?

 Imagine that we are running a customer-support hotline and storing transcriptions
of phone calls. We may have a message like this one:

In [32] transcription = "I can be reached at 555-123-4567. "\
 "Look forward to talking to you soon."

 transcription

Out [32] 'I can be reached at 555-123-4567. Look forward to talking to you
 soon.'

Let's say we'd like to pull out a phone number from each person’s message, but each
transcription is unique. We can assume, however, that a phone number has a consis-
tent pattern consisting of

1 Three digits
2 A dash
3 Three digits
4 A dash
5 Four digits

The beauty of RegEx is that it can identify this search pattern irrespective of the
string’s contents. The next example declares our most complex regular expression
yet. We simply combine metacharacters and symbols to describe the logic above:

1 \d{3} searches for exactly three digits.
2 - searches for a dash.
3 \d{3} searches for exactly three digits.
4 - searches for a dash.
5 \d{4} searches for exactly four digits.

In [33] print(re.findall(r"\d{3}-\d{3}-\d{4}", transcription))

Out [33] ['555-123-4567']

Voila!

405Regular expressions and pandas
 There’s also a convenient + metacharacter that indicates “one or more” of the pre-
ceding characters or metacharacters. \d+, for example, searches for one or more dig-
its in a row. We can use the + symbol to simplify the preceding code. The next regular
expression holds a different search pattern but returns the same result:

1 One or more sequential digits
2 A dash
3 One or more sequential digits
4 A dash
5 One or more sequential digits

In [34] print(re.findall(r"\d+-\d+-\d+", transcription))

Out [34] ['555-123-4567']

With one line of code, we can extract a telephone number from a dynamic piece of
text—pretty powerful stuff.

E.4 Regular expressions and pandas
In chapter 6, we introduced the StringMethods object for manipulating Series of
strings. The object is available via the str attribute, and many of its methods support
RegEx arguments, which significantly expand their power. Let’s practice these RegEx
concepts on a real data set.

 The ice_cream.csv data set is a collection of ice cream flavors for four popular
brands (Ben & Jerry’s, Haagen-Dazs, Breyers, and Talenti). Each row includes a brand,
a flavor, and a description:

In [35] ice_cream = pd.read_csv("ice_cream.csv")
 ice_cream.head()

Out [35]

 Brand Flavor Description

0 Ben and Jerry's Salted Caramel Core Sweet Cream Ice Cream with Blon...
1 Ben and Jerry's Netflix & Chilll'd™ Peanut Butter Ice Cream with Sw...
2 Ben and Jerry's Chip Happens A Cold Mess of Chocolate Ice Cr...
3 Ben and Jerry's Cannoli Mascarpone Ice Cream with Fudge...
4 Ben and Jerry's Gimme S’more!™ Toasted Marshmallow Ice Cream w...

NOTE ice_cream is a modified version of a data set available from Kaggle
(https://www.kaggle.com/tysonpo/ice-cream-dataset). There are typos and
inconsistencies within the data; we have preserved them so that you can see the
data irregularities that appear in the real world. I encourage you to consider
how you can optimize this data with the techniques you’ll learn in this chapter.

I’m curious how many different chocolate treats we can find in the flavors. Our chal-
lenge is to find all words that immediately follow the string "Chocolate" within the
Description column. We can use the str.extract method on a Series to accom-
plish this task. The method accepts a RegEx pattern and returns a DataFrame with its
matches.

https://www.kaggle.com/tysonpo/ice-cream-dataset

406 APPENDIX E Regular expressions
 Let’s construct our regular expression. We’ll begin with a word boundary (\b).
Then we’ll target the literal text "Chocolate". Next, we’ll mandate a single
whitespace character (\s). Finally, we’ll match one or more word characters in a row
(\w+) to capture all alphanumeric letters until Python encounters a space or period.
Thus, the final expression is "\bChocolate\s\w+)".

 For technical reasons, we have to wrap the regular expression in parentheses when
passing it to the str.extract method. The method supports an advanced syntax
that searches for multiple regular expressions, and the parentheses limit it to one:

In [36] ice_cream["Description"].str.extract(r"(\bChocolate\s\w+)").head()

Out [36]

 0

0 NaN
1 NaN
2 Chocolate Ice
3 NaN
4 Chocolate Cookie

So far, so good. Our Series includes matches such as "Chocolate Ice" at index
position 2 and "Chocolate Cookie" at index position 4; it also stores NaN values
wherever it could not find the search pattern in the row. Let’s invoke the dropna
method to remove rows with missing values:

In [37] (
 ice_cream["Description"]
 .str.extract(r"(\bChocolate\s\w+)")
 .dropna()
 .head()
)

Out [37]

 0

2 Chocolate Ice
4 Chocolate Cookie
8 Chocolate Ice
9 Chocolate Ice
13 Chocolate Cookie

We’re getting closer.
 Next, let’s convert the DataFrame to a Series. The str.extract method

returns a DataFrame by default to support the potential of multiple search patterns.
We can use the squeeze method to coerce the single-column DataFrame into a
Series. You may recall the related squeeze parameter from the read_csv import
function; the squeeze method accomplishes the same result:

In [38] (
 ice_cream["Description"]
 .str.extract(r"(\bChocolate\s\w+)")

407Regular expressions and pandas
 .dropna()
 .squeeze()
 .head()
)

Out [38] 2 Chocolate Ice
 4 Chocolate Cookie
 8 Chocolate Ice
 9 Chocolate Ice
 13 Chocolate Cookie
 Name: Chocolate, dtype: object

Our method chaining is getting quite lengthy, so let’s assign the current Series to a
chocolate_flavors variable:

In [39] chocolate_flavors = (
 ice_cream["Description"]
 .str.extract(r"(\bChocolate\s\w+)")
 .dropna()
 .squeeze()
)

We ultimately want to identify what ingredients come after "Chocolate". Let’s
invoke the str.split method to split each string by the occurrence of whitespace.
Instead of passing a string with a single space, we’ll provide an argument of a regular
expression here as well. As a reminder, the "\s" metacharacter looks for a single
whitespace:

In [40] chocolate_flavors.str.split(r"\s").head()

Out [40] 2 [Chocolate, Ice]
 4 [Chocolate, Cookie]
 8 [Chocolate, Ice]
 9 [Chocolate, Ice]
 13 [Chocolate, Cookie]
 Name: 0, dtype: object

The str.get method retrieves a value at a consistent index position from each list in
a Series. In the next example, we retrieve the second element (index position 1) from
each list or, equivalently, the word that follows "Chocolate" in the original string:

In [41] chocolate_flavors.str.split(r"\s").str.get(1).head()

Out [41] 2 Ice
 4 Cookie
 8 Ice
 9 Ice
 13 Cookie
 Name: Chocolate, dtype: object

408 APPENDIX E Regular expressions
For curiosity’s sake, let’s invoke the value_counts method to see the most frequent
words that follow "Chocolate" across all ice cream flavors. Unsurprisingly, "Ice" is
the winner. "Cookie" comes in at a distant second:

In [42] chocolate_flavors.str.split(r"\s").str.get(1).value_counts()

Out [42] Ice 11
 Cookie 4
 Chip 3
 Cookies 2
 Sandwich 2
 Malt 1
 Mint 1
 Name: Chocolate, dtype: int64

Regular expressions offer a sophisticated way of searching for patterns in text. I hope
that you’ve gained greater understanding of the benefits of RegEx and how to apply it
to various methods in pandas.

index
Symbols

%matplotlib inline function 320
~ character 126–127

A

advanced search patterns 402–405
agg method 231, 238
aggregate operations 229–232
aggregate, meaning of term 201
Anaconda

Anaconda distribution 329–330
environment

creating new 336–341
installing xlrd and openpyxl libraries in 301

installing
in macOS 330–331
in Windows 333–335

Anaconda Navigator 341–343
Anaconda Prompt

commands 335–336
launching 335

AND condition 124–125
append method 371, 374, 377
apply method 72–78, 232, 237–238, 296–297
arange method 385–386
arguments 357–361
arithmetic operations 43–45
arrays 291
astype method 116–120, 140, 143
attributes 364–365

DataFrame and Series sharing 84–87
of GroupBy object 225–229
on ndarray object 386
Series object 32–34

B

B metacharacter 401
b metacharacter 401–402
bar graphs 325–327
between method 129, 142, 144
blocks 361, 373
Boolean methods 127–130, 155–157, 351–352
broadcasting Series object 45–47
buckets 221

C

capitalize method 164, 367
cd (change directory) command 333, 336
character replacement 153–155
charts

line 320–325
pie 327–328

chop threshold 316–317
class method 167
classes 24, 363–364, 392
closed intervals 70
clusters 221
coding challenges

DataFrame object 109–112
dates and times 282–287
filtering DataFrame 139–143
GroupBy object 235–237
importing and exporting 306–309
MultiIndex DataFrames 194–197
reshaping and pivoting 214–218
Series methods 75–77
Series object 50–52
text data 162–163

colormaps method 325
409

INDEX410
columns
converting to datetimes 268–269
extracting values from specific 103–106
extracting with MultiIndex DataFrames

179–182
filtering by one or more criteria 15–17
grouping by multiple 233–234
maximum width 316
renaming 106–108
selecting from DataFrame object 96–99

selecting multiple columns 97–99
selecting single column 96–97

sorting by column index 95
commands

Anaconda Prompt 335–336
Terminal 332–333

comments 348
concat function 243–244, 247, 256, 259
concatenating 239–259

coding challenge 254–258
data sets 243–245
introducing data sets 241–242
missing values in concatenated

DataFrames 245–247
conditions

between method 128–130
dealing with null values 132–134
isin method 127–128
isnull and notnull methods 130–132
multiple conditions 124–127

AND condition 124–125
inversion with ~ 126–127
methods for Booleans 127
OR condition 125–126

single condition 120–124
constructors 24
contains method 155–156, 164
context blocks 317
count method 36, 86, 368, 372
counting values

in Series 14–15
with value_counts method 66–72

cross-sections, MultiIndex DataFrames 188–189
CSV files 299–301
cumsum (cumulative sum) method 38
custom functions 361–362
custom operations 232–233

D

d metacharacter 402
d+ metacharacter 405
data

fake data 391–396
getting started with Faker 392–394
installing Faker 391

populating DataFrame with fake values
395–396

grouping 18–20
in 21st century 4
text data 147–164

Boolean methods 155–157
coding challenge 162–163
letter casing and whitespace 148–151
regular expressions 163–164
splitting strings 157–161
string slicing 151–153
string slicing and character replacement

153–155
wide vs. narrow 199–200

data analysis 7
data sets

concatenating 243–245
creating GroupBy object from 222–225
importing 9–11
importing with read_csv function 55–60
melting 209–213
optimizing for memory use 114–116

data types 348–352
Booleans 351–352
converting with astype method 116–120
None object 352
numbers 348–349
strings 349–351

DataFrame 79–112
coding challenge 109–112
columns from, selecting 96–99

selecting multiple columns 97–99
selecting single column 96–97

creating
from dictionary 80–81
from NumPy ndarray 81–83
pivot table from DataFrame 200–207

extracting values from Series 106
filtering 113–144

coding challenge 139–143
by condition 127–134
converting data types with astype

method 116–120
duplicates 134–139
by multiple conditions 124–127
optimizing data set for memory use 114–116
by single condition 120–124

JSON (JavaScript Object Notation) files
exporting 298
loading into 292–298

manipulating 11–14
missing values in concatenated 245–247
populating with fake values 395–396
renaming columns or rows 106–108
resetting index 108–109
rows from, selecting 99–106

extracting rows by index label 99–101

INDEX 411
extracting rows by index position 101–103
extracting values from specific columns

103–106
setting new index 95–96
similarities between Series and 83–90

importing DataFrame with read_csv
function 83–84

shared and exclusive attributes 84–87
shared methods 87–90

sorting 90–93
by index 94–95
by multiple columns 92–93
by single column 90–92

date offsets 275–277
date() function 364
dates and times 260–288

adding and subtracting durations of time
273–275

coding challenge 282–287
converting column or index values to

datetimes 268–269
date offsets 275–277
storing multiple timestamps in

DatetimeIndex 266–268
timedelta object 277–282
Timestamp object 261–266

pandas and datetimes 264–266
Python and datetimes 261–264

using DatetimeProperties object 269–273
DatetimeIndex 266–268
DatetimeProperties object 269–273
day_name method 271
day_of_week function 76–77
default argument 25, 359
delimiters 375
dependencies 329
describe_option function 311–312, 318
dictionaries 30, 80–81, 377–380
difference method 382
dimensions 383–385
dir (directory) command 335
drop method 163
drop_duplicates method 143, 257
dropna method 62, 77, 132, 142, 144, 152, 406
dt method 271
dt.day_name method 271, 284
duplicated method 144
duplicates 134–139

drop_duplicates method 136–139
duplicated method 134–136

E

elements 368
empty lists 369
empty strings 349
endswith method 164, 367

environments 329
equality operators 354–356
Excel workbooks 301–306

exporting 305–306
importing 302–305
installing xlrd and openpyxl libraries in Ana-

conda environment 301
exceptions 354
explode method 214, 219
exploding list of values 213–214
exporting 289–309

coding challenge 306–309
CSV files 299–301
Excel workbooks 305–306
JavaScript Object Notation (JSON) files 290–298

exporting DataFrame to 298
loading into DataFrame 292–298

extend method 371

F

Faker 391–396
getting started with 392–394
installing 391
populating DataFrame with fake values 395–396

fillna method 118, 132, 144
filtering DataFrame 113–144

by condition 127–134
between method 128–130
dealing with null values 132–134
isin method 127–128
isnull and notnull methods 130–132

by multiple conditions 124–127
AND condition 124–125
inversion with ~ 126–127
methods for Booleans 127
OR condition 125–126

by single condition 120–124
coding challenge 139–143
column by one or more criteria 15–17
converting data types with astype method

116–120
duplicates 134–139

drop_duplicates method 136–139
duplicated method 134–136

optimizing data set for memory use 114–116
find method 368
findall function 398–400
first method 226, 238
first-class object 72
flags 332, 337
flattening 294
float function 349, 358
floating-point number 349
floor division 353
foreign keys 240, 259
forward-fill strategy 39

INDEX412
from_tuples method 167, 169
functions 10, 357–362

arguments and return values 357–361
custom functions 361–362
invoking on every series value with apply

method 72–75

G

get method 159–160, 378
get_group method 222, 228–229, 234, 236
get_largest_row function 232–233
get_level_values method 173–174
get_option function 312, 315
graphical spreadsheet applications 6–8
graphs, bar 325–327
groupby method 220–221, 224, 234–235
GroupBy object 220–238

aggregate operations 229–232
applying custom operation to all groups

232–233
attributes and methods of 225–229
coding challenge 235–237
creating

from data set 222–225
from scratch 221–222

grouping by multiple columns 233–234
grouping data 18–20
groups 221

H

half-open intervals 70
head method 35–36, 87, 91, 174, 228, 238, 287
heterogeneous data 85
heterogeneous lists 369
hierarchical data 166
homogeneous data 22, 383
homogeneous lists 369

I

iloc 186–188
immutable objects 262, 365
importing 289–309

coding challenge 306–309
CSV files 299–301
data set with read_csv function 55–60
data sets 9–11
Excel workbooks 301–306
JavaScript Object Notation (JSON) files 290–298

in keyword 367
index 350

converting values to datetimes 268–269
customizing Series object 26–29
extracting rows by position 101–103

labels
extracting rows by 99–101
merging on 253–254

sorting DataFrame object by 94–95
sorting with sort_index method 62–64
stacking and unstacking levels 207–209

index method 368
index position 12
inequality operators 354–356
info method 115, 117, 119, 172, 283–284
inner joins 249–250
inplace parameter 65–66
insert method 371, 377
installing 329–346

Anaconda distribution 329–330
Anaconda environment

creating new 336–341
xlrd and openpyxl libraries in 301

Anaconda Navigator 341–343
Faker 391
Jupyter Notebook 343–346
macOS setup process 330–333

Anaconda 330–331
common Terminal commands 332–333
launching Terminal 331–332

matplotlib 320
Windows setup process 333–336

Anaconda 333–335
common Anaconda Prompt commands

335–336
launching Anaconda Prompt 335

instances 24, 363
instantiation 363
int function 358
intersection method 381
inversion with 126–127
invoking functions 357
isin method 127–128, 142
isnull methods 130–132
isspace method 366
iterations

dictionary 380
list 373–374

J

join method 376
joining 239–259

coding challenge 254–258
inner joins 249–250
introducing data sets 241–242
left joins 247–248
outer joins 251–253

joins 247
JSON (JavaScript Object Notation) files 290–298

exporting DataFrame to 298
loading into DataFrame 292–298

INDEX 413
json_normalize function 294–297, 307, 309
Jupyter Notebook 343–346

K

keyword arguments 360

L

labels 22
last method 226, 238
last_name method 392
left joins 247–248
len function 72, 235, 357–358, 369, 374
letter casing 148–151
libraries 3, 329
line charts 320–325
linters 291
list function 31
lists 368–376

converting string to 375–376
list comprehension 374–375
list iteration 373–374

literals 363
loc 182–186
local variables 362
long data set 199
lower method 150, 155–156, 164, 366–367
lstrip (left strip) method 149, 367

M

macOS 330–333
installing Anaconda in 330–331
Terminal

commands 332–333
launching 331–332

mathematical operations 36–47, 352–354
arithmetic operations 43–45
broadcasting 45–47
statistical operations 36–43

matplotlib 320
max method 69, 72, 88, 232, 236, 281
maximum column width 316
mean method 222–223, 230, 236, 271, 281, 287
melt method 211–212, 217–219
melting 211
merge method 248–249, 251–253, 256, 258–259
merging 239–259

coding challenge 254–258
introducing data sets 241–242
on index labels 253–254

metacharacters 399–401
method chaining 69, 367
methods 34, 364–365

DataFrame and Series sharing 87–90

for Booleans 127
of GroupBy object 225–229

microseconds 283
min method 69, 72, 88–89, 231, 237, 281
missing values

creating Series object with 29–30
in concatenated DataFrames 245–247

modules 261, 362–363
modulo operator 353
MultiIndex DataFrames 165–197

coding challenge 194–197
cross-sections 188–189
manipulating 189–194

resetting index 189–193
setting index 193–194

MultiIndex object 166–170
selecting with 179–188

extracting one or more columns 179–182
extracting one or more rows with iloc 186–188
extracting one or more rows with loc 182–186

sorting 175–179
MultiIndex object 166–170
munging 147
mutable object 365

N

nan object 390
narrow data 199–200
ndarray object 385–390

attributes on 386
generating numeric range with arange

method 385–386
randint function 388–389
randn function 389–390
reshape method 386–388

nlargest method 64–65, 89, 110, 232
None object 352
normalizing 294
not a number 29, 390
notnull method 130–132, 144
nsmallest method 64–65, 89, 91
nth method 226–227, 238
null values 132–134
numbers 348–349
NumPy 383–390

dimensions 383–385
nan object 390
ndarray object 385–390

attributes on 386
creating DataFrame object from 81–83
generating numeric range with arange

method 385–386
randint function 388–389
randn function 389–390
reshape method 386–388

nunique method 67, 88, 118, 140, 174, 194

INDEX414
O

objects 363–364
OOP (object-oriented programming) 347
open intervals 70
openpyxl libraries 301
operands 352
operators 352–356

equality and inequality 354–356
mathematical 352–354

option_context function 317–318
OR condition 125–126
order 22
outer joins 251–253
overwriting 65–66

P

packages 3, 320, 329
pandas 3–21

competitors vs. 8–9
configuring 310–318

chop threshold 316–317
maximum column width 316
option context 317–318
options 311–315
precision 315–316

data in 21st century 4
datetimes and 264–266
graphical spreadsheet applications vs. 6–8
regular expressions and 405–408
tour of 9–20

counting values in Series 14–15
filtering column by one or more criteria 15–17
grouping data 18–20
importing data set 9–11
manipulating DataFrame 11–14

parameters 25, 359, 361
pct_change (percent change) method 39
pd.DataFrame() function 80
pd.Series() function 25
pie charts 327–328
pivot_table method 201–205, 212, 215–216, 218
pivoting 198–219

coding challenge 214–218
creating pivot table from DataFrame 200–207

additional options for pivot tables 205–207
pivot_table method 201–205

exploding list of values 213–214
melting data set 209–213
stacking and unstacking index levels 207–209
wide vs. narrow data 199–200

plot method 321–323, 325–328
pop method 372, 377, 379
precision 315–316
primary keys 240, 253, 259
print function 358–360, 378, 393, 398–400

product method 37
pwd (print working directory) command 332–333
PyPi (Python Package Index) 347
Python 347–382

attributes and methods 364–365
classes and objects 363–364
creating Series object from 30–32
data types 348–352

Booleans 351–352
None object 352
numbers 348–349
strings 349–351

datetimes and 261–264
dictionaries 377–380
functions 357–362

arguments and return values 357–361
custom functions 361–362

lists 368–376
converting string to 375–376
list comprehension 374–375
list iteration 373–374

modules 362–363
operators 352–356

equality and inequality 354–356
mathematical 352–354

passing Series object to functions 48–49
re module 398–399
sets 380–382
string methods 365–368
tuples 376–377
variables 356–357

Pythonic way 375

Q

quotient 353

R

randint function 31, 81, 388–389, 396
randn function 389–390
range function 34
RDBMS (relational database management

systems) 239
read_csv function 10, 54, 77, 79, 96, 109–110, 114,

132, 140, 157, 170–171, 189, 201, 242, 255,
268, 293, 299, 302, 309

importing data sets with 55–60
importing DataFrame with 83–84

read_excel function 302–303, 309
read_json function 293, 309
RegEx (regular expressions) 163–164, 312,

397–408
advanced search patterns 402–405
metacharacters 399–401
pandas and 405–408
Python’s re module 398–399

INDEX 415
relational databases 8
remove method 372
rename method 107, 112
renaming columns or rows 106–108
reorder_levels method 190
replace method 152, 155, 164, 366
reset_index method 108, 111–112, 190–192, 197
reset_option function 315, 318
resetting index 108–109, 189–193
reshape method 386–388
reshaping 198–219

coding challenge 214–218
creating pivot table from DataFrame 200–207

additional options for pivot tables 205–207
pivot_table method 201–205

exploding list of values 213–214
melting data set 209–213
stacking and unstacking index levels 207–209
wide vs. narrow data 199–200

return values 357–361
round function 68, 73
rows 171

extracting
with iloc 186–188
with loc 182–186

renaming 106–108
retrieving first and last 34–36
selecting from DataFrame object 99–106

extracting rows by index label 99–101
extracting rows by index position 101–103
extracting values from specific columns

103–106
sorting by index 94

rstrip (right strip) method 366

S

S metacharacter 401
s metacharacter 400, 402, 407
sample method 88
save method 306, 309
search function 398
search patterns, advanced 402–405
select_dtypes method 98
Series object 22–78

attributes 32–34
classes and instances 24
coding challenge 50–52, 75–77
counting values in 14–15, 66–72
creating

from Python objects 30–32
with missing values 29–30

customizing index 26–29
extracting values from 106
importing data set with read_csv function 55–60
invoking function with apply method 72–75
mathematical operations 36–47

arithmetic operations 43–45
broadcasting 45–47
statistical operations 36–43

overwriting with inplace parameter 65–66
passing to Python’s built-in functions 48–49
populating with values 24–26
retrieving first and last rows 34–36
similarities between DataFrame object and

83–90
importing DataFrame with read_csv

function 83–84
shared and exclusive attributes 84–87
shared methods 87–90

sorting 60–65
by index with sort_index method 62–64
by values with sort_values method 60–62
retrieving with nsmallest and nlargest

methods 64–65
set function 381
set_index method 95, 108, 110, 177, 193, 197
set_option function 312, 314, 318
setdefault method 296–297
sets 380–382
setting index 95–96, 193–194
size method 224, 233, 236
slice method 153–155
slicing 350
sort_index method 62–64, 78, 94–95, 175–176,

197, 267
sort_values method 60–62, 65–66, 78, 90–93,

110–112, 175, 281–282, 287
sorting 60–65

by index with sort_index method 62–64
by values with sort_values method 60–62
DataFrame object 90–93

by index 94–95
by multiple columns 92–93
by single column 90–92

MultiIndex DataFrames 175–179
nsmallest and nlargest methods 64–65

split method 158–159, 161–162, 164, 375–376
splitting strings 157–161
SQL (Structured Query Language) 8
squeeze method 406
stack method 208, 217, 219
stacking index levels 207–209
standard library 261, 362
startswith method 164, 367
statistical operations 36–43
str function 155, 358
str.capitalize method 151
str.endswith method 157
str.extract method 405–406
str.get method 159, 407
str.len method 158
str.replace method 155
str.slice method 154

INDEX416
str.split method 158, 160, 213, 407
str.startswith method 156
str.strip method 150
str.title method 151
str.upper method 151
strftime method 75, 77
strings 349–351

methods 365–368
slicing 151–155

strip method 149, 162, 164, 367, 375
subtracting duration of time 273–275
sum method 37, 86–87, 229–230
SUMIF function 6
swapcase method 366
symmetric_difference method 382

T

tail method 35–36, 228, 238
tall data set 199
Terminal

commands 332–333
launching 331–332

text data 147–164
Boolean methods 155–157
coding challenge 162–163
letter casing and whitespace 148–151
regular expressions 163–164
splitting strings 157–161
string slicing 151–153
string slicing and character replacement

153–155
time-series graph 321
timedelta object 277–282
times and dates 260–288

adding and subtracting durations of time
273–275

coding challenge 282–287
converting column or index values to

datetimes 268–269
date offsets 275–277
storing multiple timestamps in

DatetimeIndex 266–268
timedelta object 277–282
Timestamp object 261–266

pandas and datetimes 264–266
Python and datetimes 261–264

using DatetimeProperties object 269–273
title method 151, 164, 367
to_csv method 299–300
to_datetime function 269, 279, 283–284, 288
to_excel method 305–306, 308–309
to_json method 298
to_timedelta function 278, 285
transpose method 81

tuple function 30, 376
tuples 376–377
type function 32, 294, 363

U

union method 382
unique method 152
unstack method 208–209, 219
unstacking index levels 207–209
upper method 155, 164, 365, 371

V

value_counts method 66–72, 78, 85, 110, 284, 286,
325, 327

values
counting with value_counts method 66–72
creating Series object with missing 29–30
exploding list of 213–214
populating Series object with 24–26
sorting with sort_values method 60–62

values method 380
variables 11, 199, 356–357, 365
VBA (Visual Basic for Applications) 7
visualization 319–328

bar graphs 325–327
installing matplotlib 320
line charts 320–325
pie charts 327–328

VLOOKUP function 6

W

W metacharacter 400
w metacharacter 400
weekday method 364–365
whitespace 148–151
wide data 199–200
Windows 333–336

Anaconda Prompt
commands 335–336
launching 335

installing Anaconda in 333–335
word boundaries 401
wrangling 147

X

xlrd libraries 301
xs method 188–189, 196

Boris Paskhaver

ISBN: 978-1-61729-743-4

D
ata analysis with Python doesn’t have to be hard. If you
can use a spreadsheet, you can learn pandas! While its
grid-style layouts may remind you of Excel, pandas is

far more fl exible and powerful. Th is Python library quickly
performs operations on millions of rows, and it interfaces
easily with other tools in the Python data ecosystem. It’s a
perfect way to up your data game.

Pandas in Action introduces Python-based data analysis using
the amazing pandas library. You’ll learn to automate repetitive
operations and gain deeper insights into your data that
would be impractical—or impossible—in Excel. Each chapter
is a self-contained tutorial. Realistic downloadable datasets
help you learn from the kind of messy data you’ll fi nd in
the real world.

What’s Inside
● Organize, group, merge, split, and join datasets
● Find trends in text-based and time-based data
● Sort, fi lter, pivot, optimize, and draw conclusions
● Apply aggregate operations

For readers experienced with spreadsheets and basic Python
programming.

Boris Paskhaver is a software engineer, Agile consultant, and
online educator. His programming courses have been taken by
300,000 students across 190 countries.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Pandas IN ACTION

PYTHON/DATA SCIENCE

M A N N I N G

“Of all the introductory
pandas books I’ve read—and
I did read a few—this is the

best, by a mile.”
—Erico Lendzian, idibu.com

“Th is approachable guide
will get you up and running

quickly with all the basics you
need to analyze your data.”

—Jonathan Sharley
SiriusXM Media

“Understanding and putting
in practice the concepts of this

book will help you increase
productivity and make you

 look like a pro.”
—Jose Apablaza

Steadfast Networks

“Teaches both novice
and expert Python users

the essential concepts
required for data analysis

 and data science.”—Ben McNamara, DataGeek

See first page

	Pandas in Action
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1 Core pandas
	1 Introducing pandas
	1.1 Data in the 21st century
	1.2 Introducing pandas
	1.2.1 Pandas vs. graphical spreadsheet applications
	1.2.2 Pandas vs. its competitors

	1.3 A tour of pandas
	1.3.1 Importing a data set
	1.3.2 Manipulating a DataFrame
	1.3.3 Counting values in a Series
	1.3.4 Filtering a column by one or more criteria
	1.3.5 Grouping data

	Summary

	2 The Series object
	2.1 Overview of a Series
	2.1.1 Classes and instances
	2.1.2 Populating the Series with values
	2.1.3 Customizing the Series index
	2.1.4 Creating a Series with missing values

	2.2 Creating a Series from Python objects
	2.3 Series attributes
	2.4 Retrieving the first and last rows
	2.5 Mathematical operations
	2.5.1 Statistical operations
	2.5.2 Arithmetic operations
	2.5.3 Broadcasting

	2.6 Passing the Series to Python’s built-in functions
	2.7 Coding challenge
	2.7.1 Problems
	2.7.2 Solutions

	Summary

	3 Series methods
	3.1 Importing a data set with the read_csv function
	3.2 Sorting a Series
	3.2.1 Sorting by values with the sort_values method
	3.2.2 Sorting by index with the sort_index method
	3.2.3 Retrieving the smallest and largest values with the nsmallest and nlargest methods

	3.3 Overwriting a Series with the inplace parameter
	3.4 Counting values with the value_counts method
	3.5 Invoking a function on every Series value with the apply method
	3.6 Coding challenge
	3.6.1 Problems
	3.6.2 Solutions

	Summary

	4 The DataFrame object
	4.1 Overview of a DataFrame
	4.1.1 Creating a DataFrame from a dictionary
	4.1.2 Creating a DataFrame from a NumPy ndarray

	4.2 Similarities between Series and DataFrames
	4.2.1 Importing a DataFrame with the read_csv function
	4.2.2 Shared and exclusive attributes of Series and DataFrames
	4.2.3 Shared methods of Series and DataFrames

	4.3 Sorting a DataFrame
	4.3.1 Sorting by a single column
	4.3.2 Sorting by multiple columns

	4.4 Sorting by index
	4.4.1 Sorting by row index
	4.4.2 Sorting by column index

	4.5 Setting a new index
	4.6 Selecting columns and rows from a DataFrame
	4.6.1 Selecting a single column from a DataFrame
	4.6.2 Selecting multiple columns from a DataFrame

	4.7 Selecting rows from a DataFrame
	4.7.1 Extracting rows by index label
	4.7.2 Extracting rows by index position
	4.7.3 Extracting values from specific columns

	4.8 Extracting values from Series
	4.9 Renaming columns or rows
	4.10 Resetting an index
	4.11 Coding challenge
	4.11.1 Problems
	4.11.2 Solutions

	Summary

	5 Filtering a DataFrame
	5.1 Optimizing a data set for memory use
	5.1.1 Converting data types with the astype method

	5.2 Filtering by a single condition
	5.3 Filtering by multiple conditions
	5.3.1 The AND condition
	5.3.2 The OR condition
	5.3.3 Inversion with ~
	5.3.4 Methods for Booleans

	5.4 Filtering by condition
	5.4.1 The isin method
	5.4.2 The between method
	5.4.3 The isnull and notnull methods
	5.4.4 Dealing with null values

	5.5 Dealing with duplicates
	5.5.1 The duplicated method
	5.5.2 The drop_duplicates method

	5.6 Coding challenge
	5.6.1 Problems
	5.6.2 Solutions

	Summary

	Part 2 Applied pandas
	6 Working with text data
	6.1 Letter casing and whitespace
	6.2 String slicing
	6.3 String slicing and character replacement
	6.4 Boolean methods
	6.5 Splitting strings
	6.6 Coding challenge
	6.6.1 Problems
	6.6.2 Solutions

	6.7 A note on regular expressions
	Summary

	7 MultiIndex DataFrames
	7.1 The MultiIndex object
	7.2 MultiIndex DataFrames
	7.3 Sorting a MultiIndex
	7.4 Selecting with a MultiIndex
	7.4.1 Extracting one or more columns
	7.4.2 Extracting one or more rows with loc
	7.4.3 Extracting one or more rows with iloc

	7.5 Cross-sections
	7.6 Manipulating the Index
	7.6.1 Resetting the index
	7.6.2 Setting the index

	7.7 Coding challenge
	7.7.1 Problems
	7.7.2 Solutions

	Summary

	8 Reshaping and pivoting
	8.1 Wide vs. narrow data
	8.2 Creating a pivot table from a DataFrame
	8.2.1 The pivot_table method
	8.2.2 Additional options for pivot tables

	8.3 Stacking and unstacking index levels
	8.4 Melting a data set
	8.5 Exploding a list of values
	8.6 Coding challenge
	8.6.1 Problems
	8.6.2 Solutions

	Summary

	9 The GroupBy object
	9.1 Creating a GroupBy object from scratch
	9.2 Creating a GroupBy object from a data set
	9.3 Attributes and methods of a GroupBy object
	9.4 Aggregate operations
	9.5 Applying a custom operation to all groups
	9.6 Grouping by multiple columns
	9.7 Coding challenge
	9.7.1 Problems
	9.7.2 Solutions

	Summary

	10 Merging, joining, and concatenating
	10.1 Introducing the data sets
	10.2 Concatenating data sets
	10.3 Missing values in concatenated DataFrames
	10.4 Left joins
	10.5 Inner joins
	10.6 Outer joins
	10.7 Merging on index labels
	10.8 Coding challenge
	10.8.1 Problems
	10.8.2 Solutions

	Summary

	11 Working with dates and times
	11.1 Introducing the Timestamp object
	11.1.1 How Python works with datetimes
	11.1.2 How pandas works with datetimes

	11.2 Storing multiple timestamps in a DatetimeIndex
	11.3 Converting column or index values to datetimes
	11.4 Using the DatetimeProperties object
	11.5 Adding and subtracting durations of time
	11.6 Date offsets
	11.7 The Timedelta object
	11.8 Coding challenge
	11.8.1 Problems
	11.8.2 Solutions

	Summary

	12 Imports and exports
	12.1 Reading from and writing to JSON files
	12.1.1 Loading a JSON file Into a DataFrame
	12.1.2 Exporting a DataFrame to a JSON file

	12.2 Reading from and writing to CSV files
	12.3 Reading from and writing to Excel workbooks
	12.3.1 Installing the xlrd and openpyxl libraries in an Anaconda environment
	12.3.2 Importing Excel workbooks
	12.3.3 Exporting Excel workbooks

	12.4 Coding challenge
	12.4.1 Problems
	12.4.2 Solutions

	Summary

	13 Configuring pandas
	13.1 Getting and setting pandas options
	13.2 Precision
	13.3 Maximum column width
	13.4 Chop threshold
	13.5 Option context
	Summary

	14 Visualization
	14.1 Installing matplotlib
	14.2 Line charts
	14.3 Bar graphs
	14.4 Pie charts
	Summary

	appendix A Installation and setup
	A.1 The Anaconda distribution
	A.2 The macOS setup process
	A.2.1 Installing Anaconda in macOS
	A.2.2 Launching Terminal
	A.2.3 Common Terminal commands

	A.3 The Windows setup process
	A.3.1 Installing Anaconda in Windows
	A.3.2 Launching Anaconda Prompt
	A.3.3 Common Anaconda Prompt commands

	A.4 Creating a new Anaconda environment
	A.5 Anaconda Navigator
	A.6 The basics of Jupyter Notebook

	appendix B Python crash course
	B.1 Simple data types
	B.1.1 Numbers
	B.1.2 Strings
	B.1.3 Booleans
	B.1.4 The None object

	B.2 Operators
	B.2.1 Mathematical operators
	B.2.2 Equality and inequality operators

	B.3 Variables
	B.4 Functions
	B.4.1 Arguments and return values
	B.4.2 Custom functions

	B.5 Modules
	B.6 Classes and objects
	B.7 Attributes and methods
	B.8 String methods
	B.9 Lists
	B.9.1 List iteration
	B.9.2 List comprehension
	B.9.3 Converting a string to a list and vice versa

	B.10 Tuples
	B.11 Dictionaries
	B.11.1 Dictionary Iteration

	B.12 Sets

	appendix C NumPy crash course
	C.1 Dimensions
	C.2 The ndarray object
	C.2.1 Generating a numeric range with the arange method
	C.2.2 Attributes on a ndarray object
	C.2.3 The reshape method
	C.2.4 The randint function
	C.2.5 The randn function

	C.3 The nan object

	appendix D Generating fake data with Faker
	D.1 Installing Faker
	D.2 Getting started with Faker
	D.3 Populating a DataFrame with fake values

	appendix E Regular expressions
	E.1 Introduction to Python’s re module
	E.2 Metacharacters
	E.3 Advanced search patterns
	E.4 Regular expressions and pandas

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Pandas in Action-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CombiNumerals-Solid
 /HumanistMann521-BoldCondensed
 /Univers
 /Univers-Light
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

