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preface
Truth be told, I discovered pandas entirely by luck.

 In 2015, I interviewed for a data operations analyst position at Indeed.com, the
world’s largest jobs site. For my final technical challenge, I was asked to derive insights
from an internal data set, using the Microsoft Excel spreadsheet software. Eager to
impress, I pulled out as many tricks as I could from my data analysis toolbox: column
sorts, text manipulations, pivot tables, and of course the iconic VLOOKUP function.
(OK, maybe iconic is a bit of an exaggeration.)

 Strange as it may sound, at the time I didn’t realize that there were any tools for
data analysis besides Excel. Excel was ubiquitous: my parents used it, my teachers used
it, and my colleagues used it. It felt like an established standard. So when I received a
job offer, I immediately bought about $100 worth of Excel books and started studying.
It was time to become a spreadsheet specialist!

 I showed up for my first day of work with a printout of the 50 most-used Excel func-
tions. Barely after I finished logging into my work computer, my manager pulled me
into a conference room and informed me that priorities had shifted. The team’s data
sets had ballooned to a size that Excel could no longer support. My teammates were
also looking for ways to automate the redundant steps in their daily and weekly
reports. Luckily, my manager had figured out a solution to both problems. He asked
me whether I’d heard of pandas.

 “The furry animal?” I asked, perplexed.
 “No,” he said. “The Python data analysis library.”
 After all my prep, it was time to learn a new technology from scratch. I was a little

nervous; I’d never written a line of code before. I was an Excel guy, wasn’t I? Was I
capable of doing this? There was only one way to find out. I started diving into the offi-
xiii
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cial pandas documentation, into YouTube videos, books, workshops, Stack Overflow
questions, and whatever data sets I could get my hands on. I was relieved to discover
how easy and joyful it was to get started with pandas. The code felt intuitive and
straightforward. The library was fast. The features were well-developed and expansive.
With pandas, I could accomplish a lot of data manipulation with a little code.

 Stories like mine are common in the Python community. The language’s astro-
nomical growth over the past decade is often attributed to the ease with which new
developers can pick it up. I am confident that if you’re in a position similar to mine,
you can learn pandas just as well. If you’re looking to expand your data analysis skills
beyond Excel spreadsheets, this book is your invitation.

 When I felt comfortable with pandas, I continued to explore Python and then
other programming languages. In many ways, pandas spearheaded my transition into
full-time software engineering. I owe a lot to this powerful library, and I’m excited to
pass on the torch of knowledge to you. I hope that you discover the magic of what
code can do for you.
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about this book
Who should read this book

Pandas in Action is a comprehensive introduction to the pandas library for data analy-
sis. Pandas enables you to perform a multitude of data manipulations with ease: sort-
ing, joining, pivoting, cleaning, deduping, aggregating, and more. The book
approaches the subject matter incrementally. It introduces pandas one piece at a time,
starting with its smaller building blocks and proceeding to its larger data structures. 

 Pandas in Action is written for data analysts who have intermediate experience with
spreadsheet software (such as Microsoft Excel, Google Sheets, and Apple Numbers)
and/or alternative data analysis tools (such as R and SAS). It is also a fitting title for
Python developers who are curious to learn more about data analysis.

How this book is organized: A road map

Pandas in Action consists of 14 chapters spread across two parts.
 Part 1, “Core pandas,” introduces the base mechanics of the pandas library in an

incremental manner:

 Chapter 1 analyzes a sample dataset with pandas to present a big-picture over-
view of what the library is capable of. 

 Chapter 2 introduces the Series object, a core pandas data structure that stores
a collection of ordered data.

 Chapter 3 dives into the Series object in greater depth. We explore various
Series operations, including sorting values, dropping duplicates, extracting
minimums and maximums, and more.

 Chapter 4 introduces the DataFrame, a two-dimensional table of data. We apply
concepts from the previous chapters to the new data structure and introduce
additional manipulations.
xvii
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 Chapter 5 shows you how to filter subsets of rows from a DataFrame by using var-
ious logical conditions: equality, inequality, comparison, inclusion, exclusion,
and more.

Part 2, “Applied pandas,” focuses on more-advanced pandas features and the prob-
lems they solve in real-world datasets:

 Chapter 6 teaches you how to work with imperfect text data in pandas. We dis-
cuss how to solve issues such as removing whitespace, fixing character casing,
and extracting multiple values from a single column.

 Chapter 7 discusses the MultiIndex, which allows us to combine multiple col-
umn values into a single identifier for a row of data.

 Chapter 8 describes how to aggregate our data in a pivot table, shift headers
from the row axis to the column axis, and convert our data from wide format to
narrow format.

 Chapter 9 explores how to group rows into buckets and aggregate the resulting
collections via the GroupBy object.

 Chapter 10 walks you through combining multiple data sets into a single one by
using various joins.

 Chapter 11 demonstrates how to work with dates and times in pandas. It covers
topics such as sorting dates, calculating durations, and determining whether a
date falls at the start of a month or quarter.

 Chapter 12 shows you how to import additional file types into pandas, including
Excel and JSON. We also learn how to export data from pandas.

 Chapter 13 focuses on configuring the library’s settings. We dive into how to
modify the number of displayed rows, alter the precision of floating-point num-
bers, round values below a threshold, and more.

 Chapter 14 explores data visualization using the matplotlib library. We see how
to use pandas data to create line charts, bar graphs, pie charts, and more.

Each chapter builds upon the preceding one. For those who are learning pandas from
scratch, I recommend proceeding through the chapters in linear order. Simultane-
ously, to ensure that the book is helpful as a reference guide, I’ve written each chapter
as an independent tutorial with its own data sets. We start writing our code from
scratch at the beginning of each chapter, so you can start with any chapter you like.

 Most chapters conclude with a coding challenge that allows you to practice its con-
cepts. I strongly recommend taking a shot at these exercises. 

 Pandas is built on the Python programing language, and basic knowledge of the lan-
guage’s mechanics is recommended before you get started. For those who have limited
experience in Python, appendix B offers a hearty introduction to the language.

About the code

This book contains many examples of source code, which is formatted in a fixed-width
font like this to separate it from ordinary text. 



ABOUT THIS BOOK xix
 The source code for the book’s examples is available at the following GitHub
repository: https://github.com/paskhaver/pandas-in-action. For those who are new
to Git and GitHub, look for a Download Zip button on the repository page. Those
who are experienced with Git and GitHub are welcome to clone the repo from the
command line.

 The repository also includes the complete data sets for the text. When I was learn-
ing pandas, one of my biggest frustrations was that tutorials loved to rely on randomly
generated data. There was no consistency, no context, no story, no fun. In this book,
we’ll work with many real-world data sets that cover everything from basketball play-
ers’ salaries to Pokémon types to restaurant health inspections. Data is everywhere
around us, and pandas is one of the best tools available today to make sense of it. I
hope that you enjoy the casual focus of the data sets.

liveBook discussion forum

Purchase of Pandas in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/#!/book/pandas-in-action/discussion. You can
also learn more about Manning’s forums and the rules of conduct at https://live
book.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking the author some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

Other online resources

 The official pandas documentation is available at https://pandas.pydata.org
/docs.

 In my spare time, I create technical video courses on Udemy. You can find the
courses at https://www.udemy.com/user/borispaskhaver; they include a 20-
hour pandas course and a 60-hour Python course.

 Feel free to reach out to me via Twitter (https://twitter.com/borispaskhaver) or
LinkedIn (https://www.linkedin.com/in/boris-paskhaver).

https://livebook.manning.com/#!/book/pandas-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://github.com/paskhaver/pandas-in-action
https://pandas.pydata.org/docs
https://pandas.pydata.org/docs
https://pandas.pydata.org/docs
https://www.udemy.com/user/borispaskhaver
https://twitter.com/borispaskhaver
https://www.linkedin.com/in/boris-paskhaver
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about the cover illustration
The figure on the cover of Pandas in Action is captioned “Dame de Calais,” or Lady
from Calais. The illustration is taken from a collection of dress costumes from various
countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents
Pays, published in France in 1797. Each illustration is finely drawn and colored by
hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were only 200 years ago. Isolated
from one another, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify by their dress alone where they lived and what
their trade or station in life was.

 The way we dress has changed since then, and diversity by region, so abundant at
the time, has faded away. Now it is hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the deep diversity of regional life of two centuries ago, brought back to life
by Grasset de Saint-Sauveur’s pictures.
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Part 1

Core pandas

Welcome! In this section, we’ll familiarize ourselves with the core
mechanics of pandas and its two primary data structures: the one-dimensional
Series and the two-dimensional DataFrame. Chapter 1 begins with an analysis
of a data set with pandas so you can immediately get a sense of what is possible
with the library. From there, we proceed to an in-depth exploration of the
Series in chapters 2 and 3. We learn how to create a Series from scratch;
import it from an external data set; and apply a slew of mathematical, statistical,
and logical operations to it. In chapter 4, we introduce the tabular DataFrame
and various ways to extract rows, columns, and values from its data. Finally, chap-
ter 5 focuses on extracting subsets of DataFrame rows by applying logical crite-
ria. Along the way, we’ll work through eight datasets that cover everything from
box-office grosses to NBA players to Pokémon.

 This part covers the essentials of pandas, the fundamentals you need to know
to work effectively with the library. I’ve made every effort to start from square
one, from the smallest building blocks possible, and proceed to the larger and
more complex elements. The following five chapters build the foundation for
your mastery of pandas. Good luck!

 



2 CHAPTER 



Introducing pandas
Welcome to Pandas in Action! Pandas is a library for data analysis built on top of the
Python programming language. A library (also called a package) is a collection of
code for solving problems in a specific field of endeavor. Pandas is a toolbox for
data manipulation operations: sorting, filtering, cleaning, deduping, aggregating,
pivoting, and more. The epicenter of Python’s vast data science ecosystem, pandas
pairs well with other libraries for statistics, natural language processing, machine
learning, data visualization, and more.

 In this introductory chapter, we’ll explore the history and evolution of modern
data analytics tools. We’ll see how pandas grew from one financial analyst’s pet

This chapter covers
 The growth of data science in the 21st century

 The history of the pandas library for data analysis

 The pros and cons of pandas and its competitors

 Data analysis in Excel versus data analysis with a 
programming language

 A tour of the library’s features through a working 
example
3



4 CHAPTER 1 Introducing pandas
project to an industry standard used by companies such as Stripe, Google, and J.P.
Morgan. We’ll compare the library with its competitors, including Excel and R. We’ll
discuss the differences between working with a programming language and working
with a graphical spreadsheet application. Finally, we’ll use pandas to analyze a real-
world data set. Consider this chapter to be a sneak preview of the concepts you’ll mas-
ter throughout the book. Let’s dive in!

1.1 Data in the 21st century
“It is a capital mistake to theorize before one has data,” Sherlock Holmes advises his
assistant John Watson in “A Scandal in Bohemia,” the first of Sir Arthur Conan Doyle’s
classic short stories pairing the duo. “Insensibly one begins to twist facts to suit theo-
ries, instead of theories to suit facts.”

 The wise detective’s words continue to ring true more than a century after the pub-
lication of Doyle’s work, in a world in which data is becoming increasingly prevalent in
every facet of our lives. “The world’s most valuable resource is no longer oil, but data,”
declared The Economist in a 2017 opinion piece. Data is evidence, and evidence is critical
to businesses, governments, institutions, and individuals solving increasingly complex
problems in our interconnected world. Across a breadth of industries, the world’s
most successful companies, from Facebook to Amazon to Netflix, cite data as the most
prized asset in their portfolios. United Nations Secretary-General António Guterres
called accurate data “the lifeblood of good policy and decision-making.” Data powers
everything from movie recommendations to medical treatments, from supply chain
logistics to poverty-reduction initiatives. The success of communities, companies, and
even countries in the 21st century will depend on their ability to acquire, aggregate,
and analyze data.

1.2 Introducing pandas
The technological ecosystem of tools for working with data has grown tremendously
over the past decade. Today, the open source pandas library is one of the most popular
solutions available for data analysis and manipulation. Open source means that the
library’s source code is publicly available to download, use, modify, and distribute. Its
license grants users more permissions than proprietary software such as Excel. Pandas
is free to use. A global team of volunteer software developers maintains the library, and
you can find its complete source code on GitHub (https://github.com/pandas-dev/
pandas).

 Pandas is comparable to Microsoft’s Excel spreadsheet software and Google’s in-
browser Sheets application. In all three technologies, a user interacts with tables con-
sisting of rows and columns of data. A row represents a record or, equivalently, one
collection of values for the columns. Transformations are applied to coax the data
into the desired state.

 Figure 1.1 displays a sample transformation of a data set. The analyst applies an
operation to the four-row data set on the left to arrive at the two-row data set on the

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas


5Introducing pandas
right. They may select rows that fit a criterion, for example, or remove duplicate rows
from the original data set.

 What makes pandas unique is the balance it strikes between processing power and
user productivity. By relying on lower-level languages such as C for many of its calcula-
tions, the library can efficiently transform million-row data sets in milliseconds. At the
same time, it maintains a simple and intuitive set of commands. It is easy to accom-
plish a lot with a little code in pandas.

 Figure 1.2 shows some sample pandas code that imports and sorts a CSV data set.
Don’t worry about the code yet, but take a second to notice that the entire operation
takes only two lines of code.

Figure 1.2 A sample of code that imports and sorts a data set in pandas

Pandas works seamlessly with numbers, text, dates, times, missing data, and more.
We’ll explore its incredible versatility as we proceed through the more than 30 data
sets included with this book.

 The first version of pandas was developed in 2008 by software developer Wes
McKinney, who was working at New York’s AQR Capital Management investment firm.
Dissatisfied with both Excel and the statistical programming language R, McKinney
searched for a tool that would make it easy to solve common data problems in the

Figure 1.1 A sample transformation of a tabular data set
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financial industry, particularly cleanup and aggregation. Unable to find an ideal prod-
uct, he decided to build one himself. At the time, Python was far from the powerhouse
it is today, but the beauty of the language inspired McKinney to build his library on
top of its foundation. “I loved [Python] for its economy of expressions,” he stated in
Quartz (http://mng.bz/w0Na). “You can express complicated ideas in Python with
very little code, and it is very easy to read.”

 Pandas has seen continual, extensive growth since its release to the public in
December 2009. User counts are estimated to be between five and ten million.1 As of
June 2021, pandas has been downloaded more than 750 million times from PyPi, the
centralized online repository of Python packages (https://pepy.tech/project/pandas).
Its GitHub code repository has more than 30,000 stars (a star is equivalent to a “like” on
the platform). Pandas questions make up a growing percentage of questions on the
question-answer aggregator Stack Overflow, suggesting increased user interest.

 I would argue that we can even credit pandas for the astronomical growth of
Python itself. The language has exploded in popularity because of its prevalence in
data science, a field to which pandas contributes greatly. Python is now the most com-
mon first language taught at colleges and universities. The TIOBE index, a ranking of
programming language popularity by search engine traffic, declared Python to be the
fastest-growing language of 2018.2 “If Python can keep this pace, it will probably
replace C and Java in 3 to 4 years’ time, thus becoming the most popular program-
ming language of the world,” wrote TIOBE in a press release. As you learn pandas,
you’ll also be learning Python, which is another perk of the library.

1.2.1 Pandas vs. graphical spreadsheet applications

Pandas requires a different mindset from a graphical spreadsheet app such as Excel.
Programming is inherently more verbal than it is visual. We communicate with the
computer through commands, not clicks. Because it makes fewer assumptions about
what you’re trying to accomplish, a programming language tends to be more unfor-
giving. It needs to be told what to do with no uncertainty. We need to issue the correct
instructions with the correct inputs in the correct order; otherwise, the program will
not work.

 Due to these stricter requirements, pandas has a steeper learning curve than Excel
or Sheets. But if you have limited experience in Python or programming in general,
there’s no need to worry! When you’re fiddling with functions such as SUMIF and
VLOOKUP in Excel, you’re already thinking like a programmer. The process is the
same: identify the correct function to use and then supply the right inputs in the
proper order. Pandas requires an identical set of skills; the difference is that we’re
communicating with the computer in a more verbose language.

1 See “What’s the future of the pandas library?,” Data School, https://www.dataschool.io/future-of-pandas.
2 See Oliver Peckham, “TIOBE Index: Python Reaches Another All-Time High,” HPC Wire, http://mng.bz/

w0XP.

https://pepy.tech/project/pandas
https://www.dataschool.io/future-of-pandas
http://mng.bz/w0XP
http://mng.bz/w0XP
http://mng.bz/w0Na
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 When you become familiar with its complexities, pandas grants you greater power
and flexibility in your data manipulations. In addition to extending the range of your
available procedures, programming allows you to automate them. You can write a
piece of code once and reuse it across multiple files—perfect for those pesky daily and
weekly reports. It’s important to note that Excel comes bundled with Visual Basic for
Applications (VBA), a programming language that also enables you to automate
spreadsheet procedures. I would argue, however, that Python is easier to pick up than
VBA and has uses beyond data analysis, making it a better investment of your time.

 There are additional benefits to making the jump from Excel to Python. Jupyter
Notebook, the coding environment often paired with pandas, allows for more
dynamic, interactive, and comprehensive reports. A Jupyter Notebook consists of cells,
each of which contains a chunk of executable code. An analyst can integrate these
cells with headers, charts, descriptions, annotations, images, videos, diagrams, and
more. Readers can follow the analyst’s step-by-step logic to see how they reached their
conclusion, not only their final result.

 Another advantage of pandas is Python’s large data science ecosystem. Pandas inte-
grates easily with libraries for statistics, natural language processing, machine learn-
ing, web scraping, data visualization, and more. New libraries appear yearly.
Experimentation is welcomed. Innovation is constant. These robust tools sometimes
remain underdeveloped in corporate competitors, which lack the support of a large,
global community of contributors.

 Graphical spreadsheet applications also begin to struggle as data sets grow; pandas
is significantly more powerful than Excel in this aspect. The capacity of the library is
limited only by the computer’s memory and processing power. On most modern
machines, pandas plays well with multigigabyte data sets with millions of rows, espe-
cially when a developer knows how to exploit all its performance optimizations. In a
blog post describing the limitations of the library, creator Wes McKinney wrote, “Now-
adays, my rule of thumb for pandas is that you should have 5 to 10 times more RAM as
the size of your data set” (http://mng.bz/qeK6).

 Part of the challenge in choosing the best tool for the job is defining what terms
such as data analysis and big data mean to your organization and your project. Excel,
which is used by approximately 750 million working professionals globally, limits its
spreadsheets to 1,048,576 rows of data.3 For some analysts, 1 million rows of data are
more than any report requires; for others, 1 million rows only scratch the surface.

 I would advise you to look at pandas as being not the best data analysis solution but
a powerful option to use alongside other modern technologies. Excel is still an excel-
lent choice for quick, easy data manipulations. A spreadsheet application usually
makes assumptions about your intent, which is why it takes only a few clicks to import
a CSV file or sort a column of 100 values. There’s no real advantage to using pandas
for simple tasks like these (although it’s more than capable of doing them). But what

3 See Andy Patrizio, “Excel: Your entry into the world of data analytics,” Computer World, http://mng.bz/qe6r.

http://mng.bz/qe6r
http://mng.bz/qeK6
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do you use when you need to clean text values in two data sets of ten million rows
each, remove their duplicate records, join them, and replicate that logic for 100
batches of files? For those scenarios, it’s easier and less time-consuming to do the work
with Python and pandas.

1.2.2 Pandas vs. its competitors

Data science enthusiasts frequently compare pandas with the open source program-
ming language R and the proprietary software suite SAS. Each solution has its own
community of advocates.

 R is a specialized language with a foundation in statistics, whereas Python is a gen-
eralist language used in multiple technical domains. Predictably, the two languages
tend to attract users with expertise in specific fields. Hadley Wickham, a prominent
developer in the R community who built a collection of data science packages called
tidyverse, advises users to see the two languages as collaborators rather than rivals.
“These things exist independently and are both awesome in different ways,” he said in
Quartz (http://mng.bz/Jv9V). “A pattern that I see is that the data science team in a
company uses R and the data engineering team uses Python. The Python people tend
to have a background in software engineering and are very confident about their pro-
gramming skills. . . . [The R users] really like R, but can’t argue with the engineering
team because they don’t have the language to make that argument.” One language
may have an advanced feature that the other does not, but the two have achieved near
parity when it comes to common tasks in data analysis. Developers and data scientists
simply gravitate to what they know best.

 A suite of complementary software tools that supports statistics, data mining,
econometrics, and more, SAS is a commercial product developed by the North Caro-
lina-based SAS Institute. It charges an annual user subscription fee that varies based
on the bundle of selected software. The advantages conferred by a corporate-backed
product include technical and visual consistency across tools, robust documentation,
and a product road map geared towards enterprise clients’ needs. Open source tech-
nology like pandas enjoys a more free-for-all approach; developers work for their
needs and for other developers’ needs, which sometimes miss market trends.

 Certain technologies share features with pandas but serve intrinsically different
purposes. SQL is one example. SQL (Structured Query Language) is a language for
communicating with relational databases. A relational database consists of tables of data
linked by common keys. We can use SQL for basic data manipulations such as extract-
ing columns from tables and filtering rows by a criterion, but its functionalities are
greater in scope and fundamentally revolve around data management. Databases are
built to store data; data analysis is a secondary use case. SQL can create new tables,
update existing records with new values, delete existing records, and so on. By com-
parison, pandas is built entirely for data analysis: statistical calculations, data wran-
gling, data merges, and more. In a typical work environment, the two tools often serve
as complements. An analyst might use SQL to extract an initial cluster of data and
then use pandas to manipulate it.

http://mng.bz/Jv9V
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 In summary, pandas is not the only tool in town, but it is a powerful, popular, and
valuable solution for solving most data analysis problems. Again, Python truly shines
in its focus on brevity and productivity. As its creator, Guido van Rossum, remarked,
“The joy of coding Python should be in seeing short, concise, readable [data struc-
tures] that express a lot of action in a small amount of clear code” (http://mng.bz/
7jo7). Pandas lives up to that standard and is an excellent next step for spreadsheet
analysts who are eager to grow their programming skills with a powerful, modern data
analysis toolkit.

1.3 A tour of pandas
The best way to grasp the power of pandas is to see it in action. Let’s take a quick tour
of the library by analyzing a data set of the 700 highest-grossing movies of all time. I
hope you are pleasantly surprised by how intuitive the syntax of pandas can be, even if
you are new to programming.

 As you proceed through the rest of the chapter, try not to overanalyze the code
samples; you don’t even need to copy them. Our goal right now is to get a bird’s-eye
view of the features and functionalities of pandas. Think about what the library can
do; we’ll worry about how in greater detail later.

 We’ll be using the Jupyter Notebook development environment to write our code
throughout the book. If you need help setting up pandas and Jupyter Notebook on
your computer, see appendix A. You can download all data sets and completed Jupyter
Notebooks at https://www.github.com/paskhaver/pandas-in-action.

1.3.1 Importing a data set

Let’s get started! First, we’ll create a new Jupyter Notebook inside the same directory
as the movies.csv file; then we’ll import the pandas library to gain access to its features:

In  [1] import pandas as pd

The box to the left of the code (displaying the number 1 in the previous example)
marks the cell’s execution order relative to the launch or restart of the Jupyter Note-
book. You can execute the cells in any order, and you can execute the same cell multi-
ple times.

 As you read through the book, you are encouraged to experiment by executing dif-
ferent snippets of code in your Jupyter cells. Thus, it is OK if your execution numbers
do not match those in the text.

 Our data is stored in a single movies.csv file. A CSV (comma-separated values) file
is a plain-text file that separates each row of data with a line break and each row value
with a comma. The first row in the file holds the column headers for the data. Here’s
a preview of the first three rows of movies.csv:

Rank,Title,Studio,Gross,Year
1,Avengers: Endgame,Buena Vista,"$2,796.30",2019
2,Avatar,Fox,"$2,789.70",2009

https://www.github.com/paskhaver/pandas-in-action
http://mng.bz/7jo7
http://mng.bz/7jo7
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The first row lists the five columns in the data set: Rank, Title, Studio, Gross, and Year.
The second row holds the first record or, equivalently, the data for the first movie. The
film has a Rank of 1, a Title of "Avengers: Endgame", a Studio of "Buena Vista", a
Gross of "$2,796.30", and a Year of 2019. The next line holds the values for the
next movie, and the pattern repeats for the remaining 750-plus rows in the data set.

 Pandas can import various file types, each of which has an associated import func-
tion at the top level of the library. A function in pandas is equivalent to a function in
Excel. It’s a command that we issue, either to the library or an entity within it. In this
scenario, we’ll use the read_csv function to import the movies.csv file:

In  [2] pd.read_csv("movies.csv")

Out [2]

     Rank                         Title            Studio      Gross   Year

  0     1             Avengers: Endgame       Buena Vista  $2,796.30   2019
  1     2                        Avatar               Fox  $2,789.70   2009
  2     3                       Titanic         Paramount  $2,187.50   1997
  3     4  Star Wars: The Force Awakens       Buena Vista  $2,068.20   2015
  4     5        Avengers: Infinity War       Buena Vista  $2,048.40   2018
  …     …                             …                 …          …      …
777   778                     Yogi Bear   Warner Brothers    $201.60   2010
778   779           Garfield: The Movie               Fox    $200.80   2004
779   780                   Cats & Dogs   Warner Brothers    $200.70   2001
780   781      The Hunt for Red October         Paramount    $200.50   1990
781   782                      Valkyrie               MGM    $200.30   2008

782 rows × 5 columns

Pandas imports the CSV file’s contents into an object called a DataFrame. Think of
an object as a container for storing data. Different objects are optimized for different
types of data, and we interact with them in different ways. Pandas uses one type of
object (the DataFrame) to store multicolumn data sets and another type of object
(the Series) to store single-column data sets. A DataFrame is comparable to a multi-
column table in Excel.

 To avoid cluttering the screen, pandas displays only the first five and last five rows
of the DataFrame. A row of ellipses ( . . . ) marks where the data gap occurs.

 This DataFrame consists of five columns (Rank, Title, Studio, Gross, Year) and an
index. The index is the range of ascending numbers on the left side of the Data-
Frame. Index labels serve as identifiers for rows of data. We can set any column as the
index of the DataFrame. When we do not explicitly tell pandas which column to use,
the library generates a numeric index starting from 0.

 What column is a good candidate for the index? It’s one whose values can act as a
primary identifier or point of reference for each row. Among our five columns, Rank
and Title are the two best options. Let’s swap the autogenerated numeric index with
the values from the Title column. We can do so directly during the CSV import:
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In  [3] pd.read_csv("movies.csv", index_col = "Title")

Out [3]

                              Rank            Studio       Gross   Year
Title

           Avengers: Endgame     1       Buena Vista   $2,796.30   2019
                      Avatar     2               Fox   $2,789.70   2009
                     Titanic     3         Paramount   $2,187.50   1997
Star Wars: The Force Awakens     4       Buena Vista   $2,068.20   2015
      Avengers: Infinity War     5       Buena Vista   $2,048.40   2018
                           …     …                 …           …      …
                   Yogi Bear   778   Warner Brothers     $201.60   2010
         Garfield: The Movie   779               Fox     $200.80   2004
                 Cats & Dogs   780   Warner Brothers     $200.70   2001
    The Hunt for Red October   781         Paramount     $200.50   1990
                    Valkyrie   782               MGM     $200.30   2008

782 rows × 4 columns

Next, we’ll assign the DataFrame to a movies variable so that we can reference it else-
where in our program. A variable is a user-assigned name for an object in the program:

In  [4] movies = pd.read_csv("movies.csv", index_col = "Title")

For more on variables, check out appendix B.

1.3.2 Manipulating a DataFrame

We can look at the DataFrame from a variety of angles. We can extract a few rows
from the beginning:

In  [5] movies.head(4)

Out [5]

                              Rank        Studio      Gross   Year
Title

Avengers: Endgame                1   Buena Vista  $2,796.30   2019
Avatar                           2           Fox  $2,789.70   2009
Titanic                          3     Paramount  $2,187.50   1997
Star Wars: The Force Awakens     4   Buena Vista  $2,068.20   2015

Or we can peek at the end of the data set instead:

In  [6] movies.tail(6)

Out [6]

                          Rank           Studio     Gross   Year
Title

21 Jump Street             777             Sony   $201.60   2012
Yogi Bear                  778  Warner Brothers   $201.60   2010
Garfield: The Movie        779              Fox   $200.80   2004
Cats & Dogs                780  Warner Brothers   $200.70   2001
The Hunt for Red October   781        Paramount   $200.50   1990
Valkyrie                   782              MGM   $200.30   2008
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We can find out how many rows the DataFrame has:

In  [7] len(movies)

Out [7] 782

We can ask pandas for the number of rows and columns in the DataFrame. This data
set has 782 rows and 4 columns:

In  [8] movies.shape

Out [8] (782, 4)

We can inquire about the total number of cells:

In  [9] movies.size

Out [9] 3128

We can ask for the data types of the four columns. In the following output, int64
denotes an integer column, and object denotes a text column:

In  [10] movies.dtypes

Out [10]

Rank       int64
Studio    object
Gross     object
Year       int64
dtype: object

We can extract a row from the data set by its numeric order in line, also called its index
position. In most programming languages, the index starts counting at 0. Thus, if we
wanted to pull out the 500th movie in the data set, we would target index position 499:

In  [11] movies.iloc[499]

Out [11] Rank           500
         Studio         Fox
         Gross      $288.30
         Year          2018
         Name: Maze Runner: The Death Cure, dtype: object

Pandas returns a new object here called a Series, a one-dimensional labeled array of
values. Think of it as a single column of data with an identifier for each row. Notice
that the Series’ index labels (Rank, Studio, Gross, and Year) are the four columns
from the movies DataFrame. Pandas has altered the presentation of the original
row’s values.

 We can also use an index label to access a DataFrame row. As a reminder, our
DataFrame index holds the films’ titles. Let’s extract the row values for everyone’s
favorite tearjerker, Forrest Gump. The next example extracts a row by its index label
rather than its numeric position:
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In  [12] movies.loc["Forrest Gump"]

Out [12] Rank            119
         Studio    Paramount
         Gross       $677.90
         Year           1994
         Name: Forrest Gump, dtype: object

Index labels can contain duplicates. Two movies in the DataFrame have the title "101
Dalmatians", for example (the 1961 original and the 1996 remake):

In  [13] movies.loc["101 Dalmatians"]

Out [13]

                Rank        Studio     Gross   Year
Title

101 Dalmatians   425   Buena Vista   $320.70   1996
101 Dalmatians   708   Buena Vista   $215.90   1961

Although pandas permits duplicates, I recommend keeping index labels unique if
possible. A unique collection of labels accelerates the speed at which pandas can
locate and extract a specific row.

 The films in the CSV are sorted by values in the Rank column. What if we wanted
to see the five movies with the most recent release date? We can sort the DataFrame
by the values in another column, such as Year:

In  [14] movies.sort_values(by = "Year", ascending = False).head()

Out [14]

                                 Rank                  Studio   Gross  Year
Title

Avengers: Endgame                   1             Buena Vista  2796.3  2019
John Wick: Chapter 3 - Parab...   458               Lionsgate   304.7  2019
The Wandering Earth               114  China Film Corporation   699.8  2019
Toy Story 4                       198             Buena Vista   519.8  2019
How to Train Your Dragon: Th...   199               Universal   519.8  2019

We can also sort DataFrames by values across multiple columns. Let’s sort movies
first by the Studio column’s values and then by the Year column’s values. Now we can
see the films organized alphabetically by both studio and release date:

In  [15] movies.sort_values(by = ["Studio", "Year"]).head()

Out [15]

                         Rank       Studio    Gross  Year
Title

The Blair Witch Project   588      Artisan  $248.60  1999
101 Dalmatians            708  Buena Vista  $215.90  1961
The Jungle Book           755  Buena Vista  $205.80  1967
Who Framed Roger Rabbit   410  Buena Vista  $329.80  1988
Dead Poets Society        636  Buena Vista  $235.90  1989
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We can also sort the index, which is helpful if we want to see the movies in alphabeti-
cal order:

In  [16] movies.sort_index().head()

Out [16]

                  Rank           Studio    Gross  Year
Title

10,000 B.C.        536  Warner Brothers  $269.80  2008
101 Dalmatians     708      Buena Vista  $215.90  1961
101 Dalmatians     425      Buena Vista  $320.70  1996
2 Fast 2 Furious   632        Universal  $236.40  2003
2012                93             Sony  $769.70  2009

The operations we’ve performed so far return new DataFrame objects. Pandas has not
altered the original movies DataFrame from the CSV file. The nondestructive nature
of these operations is beneficial; it actively encourages experimentation. We can
always confirm that a result is correct before making it permanent.

1.3.3 Counting values in a Series

Let’s try a more sophisticated analysis. What if we wanted to find out which movie stu-
dio had the greatest number of highest-grossing films? To solve this problem, we’ll
need to count the number of times each studio appears in the Studio column.

 We can extract a single column of data from a DataFrame as a Series. Notice
that pandas preserves the DataFrame’s index, the movie titles, in the Series:

In  [17] movies["Studio"]

Out [17] Title
         Avengers: Endgame                   Buena Vista
         Avatar                                      Fox
         Titanic                               Paramount
         Star Wars: The Force Awakens        Buena Vista
         Avengers: Infinity War              Buena Vista
                                              ...
         Yogi Bear                       Warner Brothers
         Garfield: The Movie                         Fox
         Cats & Dogs                     Warner Brothers
         The Hunt for Red October              Paramount
         Valkyrie                                    MGM
         Name: Studio, Length: 782, dtype: object

If a Series has a large number of rows, pandas truncates the data set to show only the
first five and the last five rows.

 Now that we’ve isolated the Studio column, we can count each unique value’s
number of occurrences. Let’s limit our results to the top 10 studios:

In  [18] movies["Studio"].value_counts().head(10)

Out [18] Warner Brothers    132
         Buena Vista        125
         Fox                117
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         Universal          109
         Sony                86
         Paramount           76
         Dreamworks          27
         Lionsgate           21
         New Line            16
         MGM                 11
         Name: Studio, dtype: int64

The return value above is yet another Series object! This time around, pandas uses
the studios from the Studio column as the index labels and their counts as the
Series values.

1.3.4 Filtering a column by one or more criteria

You’ll often want to extract a subset of rows based on one or more criteria. Excel
offers the Filter tool for this exact purpose.

 What if we wanted to find only the films released by Universal Studios? We can
accomplish this task with one line of code in pandas:

In  [19] movies[movies["Studio"] == "Universal"]

Out [19]

                                Rank     Studio      Gross  Year
Title

Jurassic World                     6  Universal  $1,671.70  2015
Furious 7                          8  Universal  $1,516.00  2015
Jurassic World: Fallen Kingdom    13  Universal  $1,309.50  2018
The Fate of the Furious           17  Universal  $1,236.00  2017
Minions                           19  Universal  $1,159.40  2015
                             …     …          …          …     …
The Break-Up                     763  Universal    $205.00  2006
Everest                          766  Universal    $203.40  2015
Patch Adams                      772  Universal    $202.30  1998
Kindergarten Cop                 775  Universal    $202.00  1990
Straight Outta Compton           776  Universal    $201.60  2015

109 rows × 4 columns

We can assign the filtering condition to a variable to provide context for readers:

In  [20] released_by_universal = (movies["Studio"] == "Universal")
         movies[released_by_universal].head()

Out [20]

                                Rank     Studio      Gross  Year
Title

Jurassic World                     6  Universal  $1,671.70  2015
Furious 7                          8  Universal  $1,516.00  2015
Jurassic World: Fallen Kingdom    13  Universal  $1,309.50  2018
The Fate of the Furious           17  Universal  $1,236.00  2017
Minions                           19  Universal  $1,159.40  2015
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We can also filter DataFrame rows by multiple criteria. The next example targets all
movies released by Universal Studios and released in 2015:

In  [21] released_by_universal = movies["Studio"] == "Universal"
         released_in_2015 = movies["Year"] == 2015
         movies[released_by_universal & released_in_2015]

Out [21]

                        Rank     Studio       Gross  Year
Title

Jurassic World             6  Universal  $1,671.70  2015
Furious 7                  8  Universal  $1,516.00  2015
Minions                   19  Universal  $1,159.40  2015
Fifty Shades of Grey     165  Universal    $571.00  2015
Pitch Perfect 2          504  Universal    $287.50  2015
Ted 2                    702  Universal    $216.70  2015
Everest                  766  Universal    $203.40  2015
Straight Outta Compton   776  Universal    $201.60  2015

The previous example includes rows that satisfied both conditions. We can also filter
for films that fit either condition: released by Universal or released in 2015. The result-
ing DataFrame is longer because more films have a chance of satisfying one of the
two conditions instead of both:

In  [22] released_by_universal = movies["Studio"] == "Universal"
         released_in_2015 = movies["Year"] == 2015
         movies[released_by_universal | released_in_2015]

Out [22]

                                Rank       Studio      Gross  Year
Title

Star Wars: The Force Awakens       4  Buena Vista  $2,068.20  2015
Jurassic World                     6    Universal  $1,671.70  2015
Furious 7                          8    Universal  $1,516.00  2015
Avengers: Age of Ultron            9  Buena Vista  $1,405.40  2015
Jurassic World: Fallen Kingdom    13    Universal  $1,309.50  2018
                             …     …            …          …     …
The Break-Up                     763    Universal    $205.00  2006
Everest                          766    Universal    $203.40  2015
Patch Adams                      772    Universal    $202.30  1998
Kindergarten Cop                 775    Universal    $202.00  1990
Straight Outta Compton           776    Universal    $201.60  2015

140 rows × 4 columns

Pandas provides additional ways to filter a DataFrame. We can target column values
less than or greater than a specific value, for example. Here, we target movies released
before 1975:
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In  [23] before_1975 = movies["Year"] < 1975
         movies[before_1975]

Out [23]

                    Rank           Studio    Gross   Year
Title

The Exorcist         252  Warner Brothers  $441.30   1973
Gone with the Wind   288              MGM  $402.40   1939
Bambi                540              RKO  $267.40   1942
The Godfather        604        Paramount  $245.10   1972
101 Dalmatians       708      Buena Vista  $215.90   1961
The Jungle Book      755      Buena Vista  $205.80   1967

We can also specify a range between which all values must fall. The next example pulls
out movies released between 1983 and 1986:

In  [24] mid_80s = movies["Year"].between(1983, 1986)
         movies[mid_80s]

Out [24]

                                      Rank     Studio     Gross   Year
Title

Return of the Jedi                     222        Fox  $475.10   1983
Back to the Future                     311  Universal  $381.10   1985
Top Gun                                357  Paramount  $356.80   1986
Indiana Jones and the Temple of Doom   403  Paramount  $333.10   1984
Crocodile Dundee                       413  Paramount  $328.20   1986
Beverly Hills Cop                      432  Paramount  $316.40   1984
Rocky IV                               467        MGM  $300.50   1985
Rambo: First Blood Part II             469    TriStar  $300.40   1985
Ghostbusters                           485   Columbia  $295.20   1984
Out of Africa                          662  Universal  $227.50   1985

We can also use the DataFrame index to filter rows. The next example lowercases the
movie titles in the index and finds all movies with the word "dark" in their title:

In  [25] has_dark_in_title = movies.index.str.lower().str.contains("dark")
         movies[has_dark_in_title]

Out [25]

                                Rank           Studio       Gross   Year
Title

Transformers: Dark of the Moon    23        Paramount  $1,123.80   2011
The Dark Knight Rises             27  Warner Brothers  $1,084.90   2012
The Dark Knight                   39  Warner Brothers  $1,004.90   2008
Thor: The Dark World             132      Buena Vista    $644.60   2013
Star Trek Into Darkness          232        Paramount    $467.40   2013
Fifty Shades Darker              309        Universal    $381.50   2017
Dark Shadows                     600  Warner Brothers    $245.50   2012
Dark Phoenix                     603              Fox    $245.10   2019

Notice that pandas finds all movies containing the word "dark" irrespective of where
the text appears in the title.
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1.3.5 Grouping data

Our next challenge is the most complex one yet. We might be curious which studio
had the highest total grosses across all films. Let’s aggregate the values in the Gross
column by studio.

 Our first dilemma is that the Gross column’s values are stored as text rather than as
numbers. Pandas imported the column’s values as text to preserve the dollar signs and
comma symbols in the original CSV. We can convert the column’s values to decimal
numbers, but only if we remove both of those characters. The next example replaces
all occurrences of "$" and "," with empty text. This operation is similar to Find and
Replace in Excel:

In  [26] movies["Gross"].str.replace(
             "$", "", regex = False
         ).str.replace(",", "", regex = False)

Out [26] Title
         Avengers: Endgame               2796.30
         Avatar                          2789.70
         Titanic                         2187.50
         Star Wars: The Force Awakens    2068.20
         Avengers: Infinity War          2048.40
                                           ...
         Yogi Bear                        201.60
         Garfield: The Movie              200.80
         Cats & Dogs                      200.70
         The Hunt for Red October         200.50
         Valkyrie                         200.30
         Name: Gross, Length: 782, dtype: object

With the symbols gone, we can convert the Gross column’s values from text to float-
ing-point numbers:

In  [27] (
             movies["Gross"]
            .str.replace("$", "", regex = False)
            .str.replace(",", "", regex = False)
            .astype(float)
         )

Out [27] Title
         Avengers: Endgame               2796.3
         Avatar                          2789.7
         Titanic                         2187.5
         Star Wars: The Force Awakens    2068.2
         Avengers: Infinity War          2048.4
                                          ...
         Yogi Bear                        201.6
         Garfield: The Movie              200.8
         Cats & Dogs                      200.7
         The Hunt for Red October         200.5
         Valkyrie                         200.3
         Name: Gross, Length: 782, dtype: float64
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Once again, these operations are temporary and do not modify the original Gross
Series. In all the previous examples, pandas created a copy of the original data struc-
ture, performed the operation, and returned a new object. The next example explic-
itly overwrites the Gross column in movies with a new column of decimal-point
numbers. Now the transformation is permanent:

In  [28] movies["Gross"] = (
             movies["Gross"]
             .str.replace("$", "", regex = False)
             .str.replace(",", "", regex = False)
             .astype(float)
         )

Our data type conversion opens the door to more calculations and manipulations.
The next example calculates the average box-office gross of the movies:

In  [29] movies["Gross"].mean()

Out [29] 439.0308184143222

Let’s return to our original problem: calculating the aggregate box-office grosses per
film studio. First, we’ll need to identify the studios and bucket the movies (or rows)
that belong to each one. This process is called grouping. In the next example, we
group the DataFrame’s rows based on values in the Studio column:

In  [30] studios = movies.groupby("Studio")

We can ask pandas to count the number of films per studio:

In  [31] studios["Gross"].count().head()

Out [31] Studio
         Artisan                     1
         Buena Vista               125
         CL                          1
         China Film Corporation      1
         Columbia                    5
         Name: Gross, dtype: int64

The previous results are sorted alphabetically by studio name. We can instead sort the
Series by count of films, from most to least:

In  [32] studios["Gross"].count().sort_values(ascending = False).head()

Out [32] Studio
         Warner Brothers    132
         Buena Vista        125
         Fox                117
         Universal          109
         Sony                86
         Name: Gross, dtype: int64
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Next, let’s add the values of the Gross column per studio. Pandas will identify the sub-
set of movies that belong to each studio, pull out their row’s respective Gross values,
and sum them together:

In  [33] studios["Gross"].sum().head()

Out [33] Studio
         Artisan                     248.6
         Buena Vista               73585.0
         CL                          228.1
         China Film Corporation      699.8
         Columbia                   1276.6
         Name: Gross, dtype: float64

Again, pandas sorts the results by studio name. We want to identify the studios with
the highest grosses, so let’s sort the Series values in descending order. Here are the
five studios with the greatest grosses:

In  [34] studios["Gross"].sum().sort_values(ascending = False).head()

Out [34] Studio
         Buena Vista        73585.0
         Warner Brothers    58643.8
         Fox                50420.8
         Universal          44302.3
         Sony               32822.5
         Name: Gross, dtype: float64

With a few lines of code, we can derive some fun insights from this complex data set.
The Warner Brothers studio, for example, has more movies in the list than Buena Vista,
but Buena Vista has a higher cumulative gross for all films. This fact indicates that the
average gross of a Buena Vista film is greater than that of a Warner Brothers film.

 We have barely scratched the surface of what pandas is capable of doing. I hope
that these examples have shed light on the diverse ways we can manipulate and trans-
form data with this powerful library. We’ll discuss all the code used in this chapter in
much greater detail throughout the book. Next, we’ll dive into a core building block
of pandas: the Series object.

Summary
 Pandas is a data analysis library built on top of the Python programming lan-

guage.
 Pandas excels at performing complex operations on large data sets with a terse

syntax.
 Competitors to pandas include the graphical spreadsheet application Excel, the

statistical programming language R, and the SAS software suite.
 Programming requires a different skill set than working with Excel or Sheets.
 Pandas can import a variety of file formats. A popular format is CSV, which sep-

arates rows with line breaks and row values with commas.
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 The DataFrame is the primary data structure in pandas. It is effectively a table
of data with multiple columns.

 The Series is a one-dimensional labeled array. Think of it as a single column
of data.

 We can access a row in a Series or DataFrame by its row number or index
label.

 We can sort a DataFrame by values across one or more columns.
 We can use logical conditions to extract subsets of data from a DataFrame.
 We bucket DataFrame rows based on a column’s values. We can also perform

aggregate operations such as sums on the resulting groups.



The Series object
One of pandas’ core data structures, the Series is a one-dimensional labeled array
for homogeneous data. An array is an ordered collection of values comparable to a
Python list. The term homogeneous means that the values are of the same data type
(all integers or all Booleans, for example).

 Pandas assigns each Series value a label—an identifier we can use to locate the
value. The library also assigns each Series value an order—a position in line. The
order starts counting from 0; the first Series value occupies position 0, the second

This chapter covers
 Instantiating Series objects from lists, 

dictionaries, tuples, and more

 Setting a custom index on a Series

 Accessing attributes and invoking methods on 
a Series

 Performing mathematical operations on one 
or more Series

 Passing the Series to Python’s built-in 
functions
22
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value occupies position 1, and so on. The Series is a one-dimensional data structure
because we need one reference point to access a value: either a label or a position.

 A Series combines and expands the best features of Python’s native data struc-
tures. Like a list, it holds its values in a sequenced order. Like a dictionary, it assigns a
key/label to each value. We gain the benefits of both of those objects plus more than
180 methods for data manipulation.

 In this chapter, we’ll familiarize ourselves with the mechanics of a Series object,
learn how to calculate the sum and average of Series values, apply mathematical
operations to each Series value, and more. As a building block of pandas, the
Series is a perfect starting point for our exploration of the library.

2.1 Overview of a Series
Let’s create some Series objects, shall we? We’ll begin by importing the pandas and
NumPy packages with the import keyword; we’ll use the latter library in section 2.1.4.
The popular community aliases for pandas and numpy are pd and np. We can assign
an alias to an import with the as keyword:

In  [1] import pandas as pd
        import numpy as np

The pd namespace holds the top-level exports of the pandas package, a bundle of
more than 100 classes, functions, exceptions, constants, and more. For more informa-
tion on these concepts, see appendix B.

 Think of pd as being the lobby to the library—an entrance room where we can
access pandas’ available features. The library’s exports are available as attributes on
pd. We can access an attribute with dot syntax:

pd.attribute

Jupyter Notebook provides a convenient autocomplete feature for use in searching
for attributes. Enter the library’s name, add a dot, and press the Tab key to reveal a
modal of the package’s exports. As you type additional characters, the Notebook fil-
ters the results to those that match your search term.

 Figure 2.1 shows the autocomplete
feature in action. After entering the cap-
ital letter S, we can press Tab to reveal all
pd exports starting with that character.
Note that the search is case-sensitive. If
the autocomplete feature is not working,
add the following code to a cell in your
Notebook, execute it, and try searching
again:

%config Completer.use_jedi = False

Figure 2.1 Using Jupyter Notebook’s 
autocomplete features to show pandas exports 
that start with S
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We can use our keyboard’s up- and down-arrow keys to navigate the modal’s search
results. Luckily, the Series class is our first search result. Press the Enter key to auto-
complete its name.

2.1.1 Classes and instances

A class is a blueprint for a Python object. The pd.Series class is a template, and the
next step is to create a concrete instance of it. We instantiate an object from a class
with a pair of opening and closing parentheses. Let’s create a Series object from the
Series class:

In  [2] pd.Series()

Out [2] Series([], dtype: float64)

A warning might appear in a red box alongside the output:

DeprecationWarning: The default dtype for empty Series will be 'object' 
instead of 'float64' in a future version. Specify a dtype explicitly to 
silence this warning.

Because we did not provide any values to store, pandas could not infer the data type
that the Series should hold. No need to worry; the warning is expected behavior.

 We’ve successfully created our first Series object! Unfortunately, it stores no data.
Let’s populate our Series with some values.

2.1.2 Populating the Series with values

A constructor is a method that builds an object from a class. When we wrote pd.Series()
in section 2.1.1, we used the Series constructor to create a new Series object.

 When we create an object, we’ll often want to define its starting state. We can think
of an object’s starting state as being its initial configuration—its “settings.” We can
often set state by passing arguments to the constructor that we use to create the
object. An argument is an input we pass to a method.

 Let’s practice creating some Series from manual data. The goal is to get comfort-
able with the look and feel of the data structure. In the future, we’ll use an imported
data set to populate our Series’ values.

 The first argument to the Series constructor is an iterable object whose values
will populate the Series. We can pass various inputs, including lists, dictionaries,
tuples, and NumPy ndarrays.

 Let’s create a Series object with data from a Python list. The next example
declares a list of four strings, assigns the list to an ice_cream_flavors variable, and
then passes the list to the Series constructor:

In  [3] ice_cream_flavors = [
            "Chocolate",
            "Vanilla",
            "Strawberry",
            "Rum Raisin",
        ]
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        pd.Series(ice_cream_flavors)

Out [3] 0     Chocolate
        1       Vanilla
        2    Strawberry
        3    Rum Raisin
        dtype: object

Excellent—we’ve created a new Series with the four values from our ice_cream_
flavors list. Notice that pandas preserves the order of the strings from the input list.
We’ll come back to the numbers on the left of the Series in a moment.

 A parameter is a name given to an expected input to a function or method. Behind
the scenes, Python matches every argument we pass to a constructor with a parameter.
We can view a constructor’s parameters directly in Jupyter Notebook. Enter
pd.Series() in a new cell, place the mouse cursor between the parentheses, and
press Shift+Tab. Figure 2.2 shows the documentation modal that appears.

Figure 2.2 A documentation modal with the parameters and default arguments for a 
Series constructor

Press Shift+Tab repeatedly to reveal more information. Eventually, Jupyter will fix the
documentation panel to the bottom of the screen.

 The Series constructor defines six parameters: data, index, dtype, name, copy,
and fastpath. We can use these parameters to set the object’s initial state. We can
think of the parameters as being configuration options for the Series.

 The documentation displays each parameter alongside its default argument. A
default argument is a fallback value that Python uses if we do not provide an argument
for the parameter. If we do not pass a value for the name parameter, for example,
Python will use None. A parameter with a default argument is inherently optional. It
will always have some argument, either explicitly from its invocation or implicitly from
its definition. We were able to instantiate a Series without arguments earlier because
all six of its constructor’s parameters are optional.

 The Series constructor’s first parameter, data, expects the object whose values
will populate the Series. If we pass arguments to the constructor without parameter
names, Python will assume that we are passing them sequentially. In the preceding



26 CHAPTER 2 The Series object
code example, we passed the ice_cream_flavors list as the first argument to the
constructor; thus, Python matched it with data, the first constructor parameter.
Python also fell back to default arguments of None for the index, dtype, and name
parameters and False for the copy and fastpath parameters.

 We can connect parameters and arguments explicitly with keyword arguments (see
appendix B). Enter the parameter, followed by an equal sign and its argument. In the
following example, the first line uses positional arguments, and the second one uses
keyword arguments, but the result is the same:

In  [4] # The two lines below are equivalent
        pd.Series(ice_cream_flavors)
        pd.Series(data = ice_cream_flavors)

Out [4] 0     Chocolate
        1       Vanilla
        2    Strawberry
        3    Rum Raisin
        dtype: object

Keyword arguments are advantageous because they provide context for what each
constructor argument represents. The second line in the example better communi-
cates that ice_cream_flavors represents the data for the Series.

2.1.3 Customizing the Series index

Let’s take a closer look at our Series:

0     Chocolate
1       Vanilla
2    Strawberry
3    Rum Raisin
dtype: object

Earlier, we mentioned that pandas assigns a position in line to each Series value.
The collection of incrementing integers on the left side of the output is called the
index. Each number signifies a value’s order within the Series. The index starts
counting from 0. The string "Chocolate" occupies index 0, the string "Vanilla"
occupies index 1, and so on. In graphical spreadsheet applications, the first row of
data starts counting at 1—an important difference between pandas and Excel.

 The term index describes both the collection of identifiers and an individual iden-
tifier. Both of these two expressions are valid: “The index of the Series consists of
integers” and “The value 'Strawberry' is found at index 2 in the Series.”

 The last index position will always be 1 less than the total number of values. The
current Series has four ice cream flavors, so the index counts up to 3.

 In addition to an index position, we can assign each Series value an index label.
Index labels can be of any immutable data type: strings, tuples, datetimes, and more.
This flexibility makes a Series powerful: we can reference a value by its order or by a
key/label. In a sense, each value has two identifiers.
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 The Series constructor’s second parameter, index, sets the index labels of the
Series. If we do not pass an argument to the parameter, pandas defaults to a
numeric index starting from 0. With this type of index, the label and the position
identifiers are one and the same.

 Let’s construct a Series with a custom index. We can pass objects of different data
types to the data and index parameters, but they must have the same length so that
pandas can associate their values. The next example passes a list of strings for the
data parameter and a tuple of strings to the index parameter. Both the list and the
tuple have a length of 4:

In  [5] ice_cream_flavors = [
            "Chocolate",
            "Vanilla",
            "Strawberry",
            "Rum Raisin",
        ]

        days_of_week = ("Monday", "Wednesday", "Friday", "Saturday")

        # The two lines below are equivalent
        pd.Series(ice_cream_flavors, days_of_week)
        pd.Series(data = ice_cream_flavors, index = days_of_week)

Out [5] Monday         Chocolate
        Wednesday        Vanilla
        Friday        Strawberry
        Saturday      Rum Raisin
        dtype: object

Pandas uses shared index positions to associate the values from the ice_cream_
flavors list and the days_of_week tuple. The library sees "Rum Raisin" and
"Saturday" at index position 3 in their respective objects, for example; thus, it ties
them together in the Series.

 Even though the index consists of string labels, pandas still assigns each Series
value an index position. In other words, we can access the value "Vanilla" either by
the index label "Wednesday" or by index position 1. We’ll explore how to access
Series elements by row and label in chapter 4.

 The index permits duplicates, a detail that distinguishes a Series from a Python
dictionary. In the next example, the string "Wednesday" appears twice in the
Series’ index labels:

In  [6] ice_cream_flavors = [
            "Chocolate",
            "Vanilla",
            "Strawberry",
            "Rum Raisin",
        ]

        days_of_week = ("Monday", "Wednesday", "Friday", "Wednesday")
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        # The two lines below are equivalent
        pd.Series(ice_cream_flavors, days_of_week)
        pd.Series(data = ice_cream_flavors, index = days_of_week)

Out [6] Monday        Chocolate
        Wednesday       Vanilla
        Friday       Strawberry
        Wednesday    Rum Raisin
        dtype: object

Although pandas permits duplicates, it is ideal to avoid them whenever possible,
because a unique index allows the library to locate index labels more quickly.

 One additional advantage of keyword arguments is that they permit us to pass
parameters in any order. By comparison, sequential/positional arguments require us
to pass arguments in the order in which the constructor expects them. The next
example swaps the order of the index and data keyword parameters. Pandas creates
the same Series:

In  [7] pd.Series(index = days_of_week, data = ice_cream_flavors)

Out [7] Monday        Chocolate
        Wednesday       Vanilla
        Friday       Strawberry
        Wednesday    Rum Raisin
        dtype: object

There’s one piece of the output that we haven’t discussed yet: the dtype statement at
the bottom reflects the data type of the values in the Series. For most data types,
pandas will display a predictable type (such as bool, float, or int). For strings and
more-complex objects (such as nested data structures), pandas will show dtype:
object.1

 The next examples create Series objects from lists of Boolean, integer, and float-
ing-point values. Observe the similarities and differences in the Series:

In  [8] bunch_of_bools = [True, False, False]
        pd.Series(bunch_of_bools)

Out [8] 0     True
        1    False
        2    False
        dtype: bool

In  [9] stock_prices = [985.32, 950.44]
        time_of_day = ["Open", "Close"]
        pd.Series(data = stock_prices, index = time_of_day)

Out [9] Open     985.32
        Close    950.44
        dtype: float64

1 See http://mng.bz/7j6v for a discussion of why pandas lists “object” as the dtype for strings.

http://mng.bz/7j6v
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In  [10] lucky_numbers = [4, 8, 15, 16, 23, 42]
         pd.Series(lucky_numbers)

Out [10] 0     4
         1     8
         2    15
         3    16
         4    23
         5    42
         dtype: int64

The float64 and int64 data types indicate that each floating-point/integer value in
the Series occupies 64 bits (8 bytes) of your computer’s RAM. Bits and bytes are stor-
age units for memory. We don’t need to dive extensively into these computer science
concepts right now to work effectively with pandas.

 Pandas does its best to infer an appropriate data type for the Series from the
data parameter’s values. We can force coercion to a different type via the construc-
tor’s dtype parameter. The next example passes an integer list to the constructor but
asks for a floating-point Series: 

In  [11] lucky_numbers = [4, 8, 15, 16, 23, 42]
         pd.Series(lucky_numbers, dtype = "float")

Out [11] 0     4.0
         1     8.0
         2    15.0
         3    16.0
         4    23.0
         5    42.0
         dtype: float64

The previous example used both positional arguments and keyword arguments. We
passed the lucky_numbers list sequentially to the data parameter. We also passed
the dtype parameter explicitly with keyword arguments. The Series constructor
expects the dtype parameter to be third in line, so we cannot pass it directly after
lucky_numbers; we have to use keyword arguments.

2.1.4 Creating a Series with missing values

So far, so good. Our Series so far have been simple and complete. It’s easy to have
perfect data when we’re crafting our own data sets. In the real world, data is a lot
messier. Perhaps the most frequent problem that analysts encounter is missing values.

 When pandas sees a missing value during a file import, the library substitutes
NumPy’s nan object. The acronym nan is short for not a number and is a catch-all term
for an undefined value. In other words, nan is a placeholder object that represents
nullness or absence.

 Let’s sneak a missing value into a Series. We assigned the NumPy library to the
alias np when we imported it earlier. The nan attribute is available as a top-level export
of the library. The next example nestles a np.nan inside a list of temperatures that we
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pass to the Series constructor. Notice the NaN at index position 2 in the output. Get
used to this trio of letters; we’re going to be seeing them a lot throughout the book:

In  [12] temperatures = [94, 88, np.nan, 91]
         pd.Series(data = temperatures)

Out [12] 0    94.0
         1    88.0
         2     NaN
         3    91.0
         dtype: float64

Notice that the Series dtype is float64. Pandas automatically converts numeric
values from integers to floating-points when it spots a nan value; this internal techni-
cal requirement allows the library to store numeric values and missing values in the
same homogeneous Series.

2.2 Creating a Series from Python objects
The Series constructor’s data parameter accepts various inputs, including native
Python data structures and objects from other libraries. In this section, we’ll explore
how the Series constructor deals with dictionaries, tuples, sets, and NumPy arrays.
The Series object that pandas returns operates the same way irrespective of its data
source.

 A dictionary is a collection of key-value pairs (see appendix B). When passed a dic-
tionary, the constructor sets each key as a corresponding index label in the Series:

In  [13] calorie_info = {
             "Cereal": 125,
             "Chocolate Bar": 406,
             "Ice Cream Sundae": 342,
         }

         diet = pd.Series(calorie_info)
         diet

Out [13] Cereal              125
         Chocolate Bar       406
         Ice Cream Sundae    342
         dtype: int64

A tuple is an immutable list. We cannot add, remove, or replace elements in a tuple
after creating it (see appendix B). When passed a tuple, the constructor populates the
Series in an expected manner:

In  [14] pd.Series(data = ("Red", "Green", "Blue"))

Out [14] 0      Red
         1    Green
         2     Blue
         dtype: object
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To create a Series that stores tuples, wrap the tuples in a list. Tuples work well for
row values that consist of multiple parts or components, such as an address:

In  [15] rgb_colors = [(120, 41, 26), (196, 165, 45)]
         pd.Series(data = rgb_colors)

Out [15] 0     (120, 41, 26)
         1    (196, 165, 45)
         dtype: object

A set is an unordered collection of unique values. We can declare it with a pair of curly
braces, exactly like a dictionary. Python uses the presence of key-value pairs to distin-
guish between the two data structures (see appendix B).

 If we pass a set to the Series constructor, pandas raises a TypeError exception. A
set has neither the concept of order (such as a list) nor the concept of association
(such as a dictionary). Thus, the library cannot assume an order in which to store the
set’s values:2

In  [16] my_set = {"Ricky", "Bobby"}
         pd.Series(my_set)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-16-bf85415a7772> in <module>
      1 my_set = { "Ricky", "Bobby" }
----> 2 pd.Series(my_set)

TypeError: 'set' type is unordered

If your program involves a set, transform it to an ordered data structure before pass-
ing it to the Series constructor. The next example converts my_set to a list by using
Python’s built-in list function:

In  [17] pd.Series(list(my_set))

Out [17] 0    Ricky
         1    Bobby
         dtype: object

Because a set is unordered, we cannot guarantee the order of list elements (or the
Series elements).

 The Series constructor’s data parameter also accepts a NumPy ndarray object.
Many data science libraries use NumPy arrays, which are common storage formats for
moving data around. The next example feeds the Series constructor an ndarray
generated by NumPy’s randint function (see appendix C):

2 See “Constructing a Series with a set returns a set and not a Series,” https://github.com/pandas-dev/pandas/
issues/1913.

https://github.com/pandas-dev/pandas/issues/1913
https://github.com/pandas-dev/pandas/issues/1913
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In  [18] random_data = np.random.randint(1, 101, 10)
         random_data

Out [18] array([27, 16, 13, 83,  3, 38, 34, 19, 27, 66])

In  [19] pd.Series(random_data)

Out [19] 0    27
         1    16
         2    13
         3    83
         4     3
         5    38
         6    34
         7    19
         8    27
         9    66
         dtype: int64

As with all other inputs, pandas preserves the order of the ndarray’s values in the
Series.

2.3 Series attributes
An attribute is a piece of data belonging to an object. Attributes reveal information
about the object’s internal state. An attribute’s value may be another object. See
appendix B for an in-depth overview.

 A Series is composed of several smaller objects. Think of these objects as being
puzzle pieces that join to make a greater whole. Consider the calorie_info Series
from section 2.2:

Cereal              125
Chocolate Bar       406
Ice Cream Sundae    342
dtype: int64

This Series uses the NumPy library’s ndarray object to store the calorie counts and
the pandas library’s Index object to store the food names in the index. We can access
these nested objects through Series attributes. The values attribute, for example,
exposes the ndarray object that stores the values:

In  [20] diet.values

Out [20] array([125, 406, 342])

If we’re ever uncertain what type an object is or what library it comes from, we can
pass the object to Python’s built-in type function. The function will return the class
from which the object was instantiated:

In  [21] type(diet.values)

Out [21] numpy.ndarray
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Let’s pause here to reflect for a second. Pandas delegates the responsibility of storing
Series values to an object from a different library. That’s why NumPy is a depen-
dency of pandas. The ndarray object optimizes for speed and efficiency by relying on
the lower-level C programming language for many of its calculations. In many ways,
the Series is a wrapper—an additional layer of functionality around a core NumPy
library object.

 Pandas has its own objects, of course. The index attribute, for example, returns
the Index object that stores the Series labels:

In  [22] diet.index

Out [22] Index(['Cereal', 'Chocolate Bar', 'Ice Cream Sundae'],
         dtype='object')

Index objects such as Index are built into pandas:

In  [23] type(diet.index)

Out [23] pandas.core.indexes.base.Index

Some attributes reveal helpful details about the object. dtype, for example, returns
the data type of the Series’ values:

In  [24] diet.dtype

Out [24] dtype('int64')

The size attribute returns the number of values in the Series:

In  [25] diet.size

Out [25] 3

The complementary shape attribute returns a tuple with the dimensions of a pandas
data structure. For the one-dimensional Series, the tuple’s only value will be the
Series’ size. The comma after the 3 is a standard visual output for one-element
tuples in Python:

In  [26] diet.shape

Out [26] (3,)

The is_unique attribute returns True if all Series values are unique:

In  [27] diet.is_unique

Out [27] True

The is_unique attribute returns False if the Series contains duplicates:

In  [28] pd.Series(data = [3, 3]).is_unique

Out [28] False
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The is_monotonic attribute returns True if each Series value is greater than the
previous one. The increments between values do not have to be equal:

In  [29] pd.Series(data = [1, 3, 6]).is_monotonic

Out [29] True

The is_monotonic attribute returns False if any element is smaller than the previ-
ous one:

In  [30] pd.Series(data = [1, 6, 3]).is_monotonic

Out [30] False

In summary, attributes ask an object for information on its internal state. Attributes
reveal nested objects, which can have their own functionalities. In Python, everything
is an object, including integers, strings, and Booleans. Thus, an attribute that returns
a number is no technically different from one that returns a complex object such as
an ndarray.

2.4 Retrieving the first and last rows
By now, you should feel comfortable creating Series objects. It’s OK if the technical
terminology is a bit overwhelming; we’ve presented a lot of information up front, and
we’ll review it many times throughout the book. In this section, we’ll start exploring
what we can do with Series objects.

 A Python object has both attributes and methods. An attribute is a piece of data
belonging to an object—a characteristic or detail that the data structure can reveal
about itself. In section 2.3, we accessed Series attributes such as size, shape, val-
ues, and index.

 By comparison, a method is a function that belongs to an object—an action or com-
mand that we ask the object to perform. Methods typically involve some analysis, cal-
culation, or manipulation of the object’s attributes. Attributes define an object’s state,
and methods define an object’s behavior.

 Let’s create our largest Series yet. We’ll use Python’s built-in range function to
generate a sequence of all numbers between a starting point and an endpoint. The
range function’s three arguments are a lower bound, the upper bound, and a step
sequence (the interval between every two numbers).

 The next example generates a 100-value range of numbers between 0 and 500 in
increments of 5 and then pass the range object into the Series constructor:

In  [31] values = range(0, 500, 5)
         nums = pd.Series(data = values)
         nums

Out [31] 0       0
         1       5
         2      10
         3      15
         4      20
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               ...
         95    475
         96    480
         97    485
         98    490
         99    495
         Length: 100, dtype: int64

Now we have a Series with 100 values. Fancy! Take note of the ellipses (the three
dots) that appear in the middle of the output. Pandas is telling us that it condensed
the output by hiding some rows. The library conveniently truncates the Series to
show only the first five and the last five rows. Too many rows of printed data can slow
Jupyter Notebook.

 We invoke a method with a pair of parentheses after its name. Let’s invoke some
simple Series methods. We’ll start with the head method, which returns rows from
the beginning or top of the data set. It accepts a single argument n, which sets the
number of rows to extract:

In  [32] nums.head(3)

Out [32] 0     0
         1     5
         2    10
         dtype: int64

We can pass keyword arguments in method calls, as in constructors and functions.
The following code produces the same result as the preceding code:

In  [33] nums.head(n = 3)

Out [33] 0     0
         1     5
         2    10
         dtype: int64

Like functions, methods can declare default arguments for their parameters. The
head method’s n parameter has a default argument of 5. If we do not pass an explicit
argument for n, pandas returns five rows (a design decision of the pandas develop-
ment team):

In  [34] nums.head()

Out [34] 0     0
         1     5
         2    10
         3    15
         4    20
         dtype: int64

The complementary tail method returns rows from the bottom or end of a
Series:
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In  [35] nums.tail(6)

Out [35] 94    470
         95    475
         96    480
         97    485
         98    490
         99    495
         dtype: int64

The tail method’s n parameter also has a default argument of 5:

In  [36] nums.tail()

Out [36] 95    475
         96    480
         97    485
         98    490
         99    495
         dtype: int64

head and tail are the two methods I use most frequently; we can use them to pre-
view the beginning and end of a data set quickly. Next, let’s dive into some more-
advanced Series methods.

2.5 Mathematical operations
A Series object includes plenty of statistical and mathematical methods. Let’s see a
few of these methods in action. Feel free to breeze through this section and revisit it
when you need to track down a specific function.

2.5.1 Statistical operations

We’ll begin by creating a Series from a list of ascending numbers, sneaking in an
np.nan value in the middle. Remember that if a data source has even a single missing
value, pandas will coerce the integers to floating-point values:

In  [37] numbers = pd.Series([1, 2, 3, np.nan, 4, 5])
         numbers

Out [37] 0    1.0
         1    2.0
         2    3.0
         3    NaN
         4    4.0
         5    5.0
         dtype: float64

The count method counts the number of non-null values:

In  [38] numbers.count()

Out [38] 5
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The sum method adds the Series’ values together:

In  [39] numbers.sum()

Out [39] 15.0

Most mathematical methods ignore missing values by default. We can pass an argu-
ment of False to the skipna parameter to force the inclusion of missing values.

 The next example invokes the sum method with the parameter. Pandas returns a
nan because it cannot add the unknown nan value at index 3 to the cumulative sum:

In  [40] numbers.sum(skipna = False)

Out [40] nan

The sum method’s min_count parameter sets the minimum number of valid values a
Series must hold for pandas to calculate its sum. Our six-element numbers Series
contains five present values and one nan value

 In the next example, the Series meets the threshold of three present values, so
pandas returns the sum:

In  [41] numbers.sum(min_count = 3)

Out [41] 15.0

By comparison, the next invocation demands a minimum of six values for pandas to
calculate the sum. The threshold is unmet, so the sum method returns nan:

In  [42] numbers.sum(min_count = 6)

Out [42] nan

TIP If you’re ever curious about a method’s parameters, press Shift+Tab
between a method’s parentheses to bring up the documentation in Jupyter
Notebook.

The product method multiplies all Series values together:

In  [43] numbers.product()

Out [43] 120.0

The method also accepts skipna and min_count parameters. Here, we ask pandas to
include nan values in the calculation:

In  [44] numbers.product(skipna = False)

Out [44] nan

The next example asks for the product of all Series values if it has at least three pres-
ent ones:

In  [45] numbers.product(min_count = 3)

Out [45] 120.0
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The cumsum (cumulative sum) method returns a new Series with a rolling sum of
values. Each index position holds the sum of values up to and including the value at
that index. A cumulative sum helps determine which values contribute most to the
total:

In  [46] numbers

Out [46] 0    1.0
         1    2.0
         2    3.0
         3    NaN
         4    4.0
         5    5.0
         dtype: float64

In  [47] numbers.cumsum()

Out [47] 0     1.0
         1     3.0
         2     6.0
         3     NaN
         4    10.0
         5    15.0
         dtype: float64

Let’s walk through some of the calculations in the result:

 The cumulative sum at index 0 is 1.0, the first value in the numbers Series.
There is nothing to add yet.

 The cumulative sum at index 1 is 3.0, the sum of 1.0 at index 0 and 2.0 at index
position 1.

 The cumulative sum at index 2 is 6.0, the sum of 1.0, 2.0, and 3.0.
 The numbers Series has a nan at index 3. Pandas cannot add a missing value

to the cumulative sum, so it places a nan at the same index in the returned
Series.

 The cumulative sum at index 4 is 10.0. Pandas adds the previous cumulative
sum with the current index’s value (1.0 + 2.0 + 3.0 + 4.0).

If we pass the skipna an argument of False, the Series will list the cumulative sum
up to the index with the first missing value and then NaN for the remaining values:

In  [48] numbers.cumsum(skipna = False)

Out [48] 0    1.0
         1    3.0
         2    6.0
         3    NaN
         4    NaN
         5    NaN
         dtype: float64
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The pct_change (percent change) method returns the percentage difference from
one Series value to the next. At each index, pandas adds the last index’s value and
the current index’s value and then divides the sum by the last index’s value. Pandas
can calculate a percentage difference only if both indexes have valid values.

 The pct_change method defaults to a forward-fill strategy for missing values. With
this strategy, pandas replaces a nan with the last valid value it encountered. Let’s
invoke the method and then walk through the calculations:

In  [49] numbers

Out [49] 0    1.0
         1    2.0
         2    3.0
         3    NaN
         4    4.0
         5    5.0
         dtype: float64

In  [50] numbers.pct_change()

Out [50] 0         NaN
         1    1.000000
         2    0.500000
         3    0.000000
         4    0.333333
         5    0.250000
         dtype: float64

Here’s how pandas operates:

 At index 0, pandas cannot compare the value 1.0 in the numbers Series with
any previous value. Thus, index 0 in the returned Series has a NaN value.

 At index 1, pandas compares index 1’s value of 2.0 with index 0’s value of 1.0.
The percentage change between 2.0 and 1.0 is 100 (double), which translates to
1.00000 at index 1 in the returned Series.

 At index 2, pandas repeats the same operation.
 At index 3, the numbers Series has a NaN missing value. Pandas substitutes

the last encountered value (3.0 from index 2) in its place. The percentage
change between the substituted 3.0 at index 3 and the 3.0 at index 2 is 0.

 At index 4, pandas compares index 4’s value of 4.0 with the previous row’s
value. It again substitutes the nan with the last valid value it saw, 3.0. The per-
centage change between 4 and 3 is 0.333333 (a 33 percent increase).

Figure 2.3 shows a visual representation of a forward-fill percentage-change calcula-
tion. The Series on the left is the starting point. The Series in the middle shows
the intermediate calculations that pandas performs. The Series on the right is the
final result.
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Figure 2.3 A walkthrough of how the pct_change method calculates values with a forward-fill solution

The fill_method parameter customizes the protocol by which pct_change substi-
tutes NaN values. This parameter is available across many methods, so it’s worth taking
the time to familiarize yourself with it. As mentioned earlier, with the default forward-
fill strategy, pandas replaces a nan value with the last valid observation. We can pass
the fill_method parameter an explicit argument of "pad" or "ffill" to achieve
the same result:

In  [51] # The three lines below are equivalent
         numbers.pct_change()
         numbers.pct_change(fill_method = "pad")
         numbers.pct_change(fill_method = "ffill")

Out [51] 0         NaN
         1    1.000000
         2    0.500000
         3    0.000000
         4    0.333333
         5    0.250000
         dtype: float64

An alternative strategy for dealing with missing values is a backfill solution. With this
option, pandas replaces a nan value with the next valid observation. Let’s pass the
fill_method parameter a value of "bfill" to see the results and then walk through
them step by step:

In  [52] # The two lines below are equivalent
         numbers.pct_change(fill_method = "bfill")
         numbers.pct_change(fill_method = "backfill")

Out [52] 0         NaN
         1    1.000000
         2    0.500000
         3    0.333333
         4    0.000000
         5    0.250000
         dtype: float64

Notice that the values at index positions 3 and 4 differ between the forward-fill and
backfill solutions. Here’s how pandas arrives at the previous calculations:
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 At index 0, pandas cannot compare the value 1.0 in the numbers Series with
any previous value. Thus, index 0 in the returned Series has a NaN value.

 At index 3, pandas runs into a NaN in the numbers Series. Pandas substitutes
the next valid value (4.0 at index 4) in its place. The percentage change
between 4.0 at index 3 and 3.0 at index 2 in numbers is 0.33333.

 At index 4, pandas compares 4.0 with index 3’s value. It again replaces the NaN
at index 3 with 4.0, the next valid value available in the numbers Series. The
percentage change between 4 and 4 is 0.0.

Figure 2.4 shows a visual representation of a backfill percentage-change calculation.
The Series on the left is the starting point. The Series in the middle shows the inter-
mediate calculations that pandas performs. The Series on the right is the final result.

Figure 2.4 A walkthrough of how the pct_change method calculates values with a backfill solution

The mean method returns the average of the values in the Series. An average is the
result of dividing the sum of values by the count of values:

In  [53] numbers.mean()

Out [53] 3.0

The median method returns the middle number in a sorted Series of values. Half of
the Series values will be below the median, and half of the values will be above the
median:

In  [54] numbers.median()

Out [54] 3.0

The std method returns the standard deviation, a measure of the variation in the data:

In  [55] numbers.std()

Out [55] 1.5811388300841898

The max and min methods retrieve the largest and smallest value from the Series:

In  [56] numbers.max()

Out [56] 5.0
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In  [57] numbers.min()

Out [57] 1.0

Pandas sorts a string Series alphabetically. The “smallest” string is the one closest to
the start of the alphabet, and the “largest” string is the one closest to the end of the
alphabet. Here’s a simple example with a small Series:

In  [58] animals = pd.Series(["koala", "aardvark", "zebra"])
         animals

Out [58] 0       koala
         1    aardvark
         2       zebra
         dtype: object

In  [59] animals.max()

Out [59] 'zebra'

In  [60] animals.min()

Out [60] 'aardvark'

If you’re looking for a single method to summarize a Series effectively, the powerful
describe method does the trick. It returns a Series of statistical evaluations, includ-
ing count, mean, and standard deviation:

In  [61] numbers.describe()

Out [61] count    5.000000
         mean     3.000000
         std      1.581139
         min      1.000000
         25%      2.000000
         50%      3.000000
         75%      4.000000
         max      5.000000
         dtype: float64

The sample method selects a random assortment of values from the Series. It is pos-
sible for the order of values to differ between the new Series and the original
Series. In the next example, notice that the lack of NaN values from the random
selection allows pandas to return a Series of integers. If NaN was even one of the val-
ues, pandas would return a Series of floats instead:

In  [62] numbers.sample(3)

Out [62] 1    2
         3    4
         2    3
         dtype: int64

The unique method returns a NumPy ndarray of unique values from the Series.
In the next example, the string "Orwell" appears twice in the authors Series but
only once in the returned ndarray:



43Mathematical operations
In  [63] authors = pd.Series(
             ["Hemingway", "Orwell", "Dostoevsky", "Fitzgerald", "Orwell"]
         )

         authors.unique()

Out [63] array(['Hemingway', 'Orwell', 'Dostoevsky', 'Fitzgerald'],
         dtype=object)

The complementary nunique method returns the number of unique values in the
Series:

In  [64] authors.nunique()

Out [64] 4

The nunique method’s return value will be equal to the length of the array that the
unique method returns.

2.5.2 Arithmetic operations

In section 2.5.1, we practiced invoking numerous mathematical methods on our
Series objects. Pandas gives us additional ways to perform arithmetic calculations
with a Series. Let’s start by creating a Series of integers with one missing value:

In  [65] s1 = pd.Series(data = [5, np.nan, 15], index = ["A", "B", "C"])
         s1

Out [65] A     5.0
         B     NaN
         C    15.0
         dtype: float64

We can perform arithmetic on a Series with Python’s standard mathematical
operators:

 + for addition
 - for subtraction
 * for multiplication
 / for division

The syntax is intuitive: treat the Series as a regular operand on one side of a mathe-
matical operator. Place the complementary value on the other side of the operator.
Note that any mathematical operation with a nan yields another nan. The next exam-
ple adds 3 to each value in the s1 Series:

In  [66] s1 + 3

Out [66] A     8.0
         B     NaN
         C    18.0
         dtype: float64
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Some software developers might find the result surprising. How can we add an integer
to a data structure? The types are seemingly incompatible. Behind the scenes, pandas
is smart enough to parse our syntax and understand that we’d like to add an integer to
every value in the Series, not to the Series object itself.

 If you prefer a method-based approach, the add method achieves the same result:

In  [67] s1.add(3)

Out [67] A     8.0
         B     NaN
         C    18.0
         dtype: float64

The next three examples show the complementary syntax options for subtraction (-),
multiplication (*), and division (/). Often, there are multiple ways to accomplish the
same operation in pandas:

In  [68] # The three lines below are equivalent
         s1 - 5
         s1.sub(5)
         s1.subtract(5)

Out [68] A     0.0
         B     NaN
         C    10.0
         dtype: float64

In  [69] # The three lines below are equivalent
         s1 * 2
         s1.mul(2)
         s1.multiply(2)

Out [69] A    10.0
         B     NaN
         C    30.0
         dtype: float64

In  [70] # The three lines below are equivalent
         s1 / 2
         s1.div(2)
         s1.divide(2)

Out [70] A    2.5
         B    NaN
         C    7.5
         dtype: float64

The floor division operator (//) performs a division and removes any digits after the
decimal point in the result. The regular division of 15 by 4, for example, yields 3.75.
By comparison, the floor division of 15 by 4 yields 3. We can apply the operator to a
Series; the alternative is to invoke the floordiv method:
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In  [71] # The two lines below are equivalent
         s1 // 4
         s1.floordiv(4)

Out [71] A    1.0
         B    NaN
         C    3.0
         dtype: float64

The modulo operator (%) returns the remainder of a division. Here’s an example:

In  [72] # The two lines below are equivalent
         s1 % 3
         s1.mod(3)

Out [72] A    2.0
         B    NaN
         C    0.0
         dtype: float64

In the previous example,

 Pandas divides the value of 5.0 at index label A by 3 and leaves a remainder of
2.0.

 Pandas cannot divide the NaN at index label B.
 Pandas divides the value of 15.0 at index label C by 3 and leaves a reminder of

0.0.

2.5.3 Broadcasting

Recall that pandas stores its Series values in a NumPy ndarray under the hood.
When we use syntax such as s1 + 3 or s1 - 5, pandas delegates the mathematical cal-
culations to NumPy.

 The NumPy documentation uses the term broadcasting to describe the derivation of
one array of values from another. Without diving too much into the technical details
(you don’t need to understand NumPy’s complexities to work effectively with pandas),
the term broadcasting comes from a radio broadcast tower, which transmits the same
signal to all recipients listening in. Syntax like s1 + 3 means “Apply the same opera-
tion (add 3) to each value in the Series.” Each Series value gets the same message,
much as every person listening to the same radio station at the same time hears the
same song.

 Broadcasting also describes mathematical operations between multiple Series
objects. As a rule of thumb, pandas uses shared index labels to align values across dif-
ferent data structures. Let’s demonstrate this concept through an example. Let’s
instantiate two Series with the same three-element index:

In  [73] s1 = pd.Series([1, 2, 3], index = ["A", "B", "C"])
         s2 = pd.Series([4, 5, 6], index = ["A", "B", "C"])
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When we use the + operator with the two Series as operands, pandas adds the values
at the same index positions:

 At index A, pandas adds the values 1 and 4 to arrive at 5.
 At index B, pandas adds the values 2 and 5 to arrive at 7.
 At index C, pandas adds the values 3 and 6 to arrive at 9.

In  [74] s1 + s2

Out [74] A    5
         B    7
         C    9
         dtype: int64

Figure 2.5 offers a visualization of how pandas aligns the two Series.

Figure 2.5 Pandas aligns Series by shared index labels when performing a mathematical operation.

Here’s another example of how pandas uses shared index labels to align data. Let’s
create another two Series with the standard numeric index. We’ll add a missing
value to each collection:

In  [75] s1 = pd.Series(data = [3, 6, np.nan, 12])
         s2 = pd.Series(data = [2, 6, np.nan, 12])

Python’s equality operator (==) compares the equality of two objects. We can use this
operator to compare values across two Series, as in the following example. Note that
pandas considers a nan value to be unequal to another nan; it cannot assume that an
absent value is equal to another absent value. The method equivalent for the equality
operator is eq:

In  [76] # The two lines below are equivalent
         s1 == s2
         s1.eq(2)

Out [76] 0    False
         1     True
         2    False
         3     True
         dtype: bool

The inequality operator (!=) confirms whether two values are unequal. Its method
equivalent is ne:
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In  [77] # The two lines below are equivalent
         s1 != s2
         s1.ne(s2)

Out [77] 0     True
         1    False
         2     True
         3    False
         dtype: bool

Comparison operations between Series become trickier when the indices differ.
One index may have a greater or smaller number of labels, or there may be a mis-
match between the labels themselves.

 The next example creates two Series that share only two index labels, B and C:

In  [78] s1 = pd.Series(
             data = [5, 10, 15], index = ["A", "B", "C"]
         )

         s2 = pd.Series(
             data = [4, 8, 12, 14], index = ["B", "C", "D", "E"]
         )

What happens when we try to add s1 and s2? Pandas adds the values at the B and C
labels and returns NaN values for the remaining indices (A, D, and E). As a reminder,
any arithmetic operation with a NaN value always results in a NaN:

In  [79] s1 + s2

Out [79] A     NaN
         B    14.0
         C    23.0
         D     NaN
         E     NaN
         dtype: float64

Figure 2.6 shows how pandas aligns the s1 and s2 Series and then adds their associ-
ated index values.

Figure 2.6 Pandas returns NaN whenever the Series do not share an index label.

In summary, pandas aligns data by shared index labels across two Series, substituting
NaNs where needed.
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2.6 Passing the Series to Python’s built-in functions
Python’s developer community likes to rally around certain design principles to
ensure consistency across codebases. One example is seamless integration between
library objects and Python’s built-in functions. Pandas is no exception. We can pass a
Series to any of Python’s built-in functions and yield a predictable result. Let’s create
a small Series of cities in the United States:

In  [80] cities = pd.Series(
             data = ["San Francisco", "Los Angeles", "Las  Vegas", np.nan]
         )

The len function returns the number of rows in a Series. The count includes miss-
ing values (NaNs):

In  [81] len(cities)

Out [81] 4

As we saw earlier, the type function returns the class of an object. Use this function
when you’re uncertain about the data structure you’re working with or the library it’s
coming from:

In  [82] type(cities)

Out [82] pandas.core.series.Series

The dir function returns a list of an object’s attributes and methods as strings. Note
that the next example displays an abbreviated version of the output:

In  [83] dir(cities)

Out [83] ['T',
          '_AXIS_ALIASES',
          '_AXIS_IALIASES',
          '_AXIS_LEN',
          '_AXIS_NAMES',
          '_AXIS_NUMBERS',
          '_AXIS_ORDERS',
          '_AXIS_REVERSED',
          '_HANDLED_TYPES',
          '__abs__',
          '__add__',
          '__and__',
          '__annotations__',
          '__array__',
          '__array_priority__',
          #...
         ]

A Series’ values can populate a native Python data structure. The next example cre-
ates a list from our cities Series by using Python’s list function:

In  [84] list(cities)

Out [84] ['San Francisco', 'Los Angeles', 'Las  Vegas', nan]
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We can pass the Series to Python’s built-in dict function to create a dictionary. Pan-
das maps the Series’ index labels and values to the dictionary’s keys and values:

In  [85] dict(cities)

Out [85] {0: 'San Francisco', 1: 'Los Angeles', 2: 'Las  Vegas', 3: nan}

In Python, we use the in keyword to check for inclusion. In pandas, we can use the in
keyword to check whether a given value exists in the Series’ index. Here’s a
reminder of what cities looks like:

In  [86] cities

Out [86] 0    San Francisco
         1      Los Angeles
         2       Las  Vegas
         3              NaN
         dtype: object

The next two examples query for "Las Vegas" and 2 in the Series’ index:

In  [87] "Las Vegas" in cities

Out [87] False

In  [88] 2 in cities

Out [88] True

To check for inclusion among the Series’ values, we can pair the in keyword with
the values attribute. Remember that values exposes the ndarray object that holds
the data itself:

In  [89] "Las Vegas" in cities.values

Out [89] True

We can use the inverse not in operator to check for exclusion. The operator returns
True if pandas cannot find the value in the Series:

In  [90] 100 not in cities

Out [90] True

In  [91] "Paris" not in cities.values

Out [91] True

A pandas object will often integrate with Python’s built-in functions and offer its own
attribute/method to return the same data. Choose the syntax option that works best
for you.
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2.7 Coding challenge
Welcome to the book’s first coding challenge! The goal of these exercises is to help
you apply and review the concepts introduced throughout the chapter. You’ll find the
solutions immediately after the questions. Good luck!

2.7.1 Problems

Suppose that you’re given these two data structures:

In  [92] superheroes = [
             "Batman",
             "Superman",
             "Spider-Man",
             "Iron Man",
             "Captain America",
             "Wonder Woman"
         ]

In  [93] strength_levels = (100, 120, 90, 95, 110, 120)

Here are your challenges:

1 Use the list of superheroes to populate a new Series object.
2 Use the tuple of strengths to populate a new Series object.
3 Create a Series with the superheroes as index labels and the strength levels as

the values. Assign the Series to a heroes variable.
4 Extract the first two rows of the heroes Series.
5 Extract the last four rows of the heroes Series.
6 Determine the number of unique values in your heroes Series.
7 Calculate the average strength of the superheroes in heroes.
8 Calculate the maximum and minimum strengths in heroes.
9 Calculate what each superhero’s strength level would be if it doubled.

10 Convert the heroes Series to a Python dictionary.

2.7.2 Solutions

Let’s explore the solutions to the problems in section 2.7.1:

1 To create a new Series object, we can use the Series constructor at the
top level of the pandas library. Pass in the source of data as the first positional
argument:

In  [94] pd.Series(superheroes)

Out [94] 0             Batman
         1           Superman
         2         Spider-Man
         3           Iron Man
         4    Captain America
         5       Wonder Woman
         dtype: object
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2 The solution to this problem is identical to the previous one; we only have to
pass in our tuple of strengths to the Series constructor. This time around, let’s
write out the data keyword parameter explicitly:

In  [95] pd.Series(data = strength_levels)

Out [95] 0    100
         1    120
         2     90
         3     95
         4    110
         5    120
         dtype: int64

3 To create a Series with a custom index, we can pass the index parameter to
the constructor. Here, we set the strength levels as the Series’ values and the
superhero names as the index labels:

In  [96] heroes = pd.Series(
             data = strength_levels, index = superheroes
         )

         heroes

Out [96] Batman             100
         Superman           120
         Spider-Man          90
         Iron Man            95
         Captain America    110
         Wonder Woman       120
         dtype: int64

4 As a reminder, a method is an action or a command we can give to an object. We
can use the head method to extract rows from the top of a pandas data struc-
ture. The method’s only parameter, n, sets the number of rows to pull out. The
head method returns a new Series:

In  [97] heroes.head(2)

Out [97] Batman      100
         Superman    120
         dtype: int64

5 The complementary tail method extracts rows from the end of a pandas data
structure. To target the last four rows, we’ll pass in an argument of 4:

In  [98] heroes.tail(4)

Out [98] Spider-Man          90
         Iron Man            95
         Captain America    110
         Wonder Woman       120
         dtype: int64
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6 To identify the number of unique values in a Series, we can invoke the
nunique method. The heroes Series has six total values and five unique val-
ues; the value 120 appears twice:

In  [99] heroes.nunique()

Out [99] 5

7 To calculate the average of a Series’ values, we can invoke the mean method:

In  [100] heroes.mean()

Out [100] 105.83333333333333

8 The next challenge is to identify the largest and smallest values in the Series.
The max and min methods do the trick:

In  [101] heroes.max()

Out [101] 120

In  [102] heroes.min()

Out [102] 90

9 How can we double each superhero’s strength level? We can multiply each
Series value by 2. The following solution uses the multiplication operator, but
the mul and multiply methods are also suitable options:

In  [103] heroes * 2

Out [103] Batman             200
          Superman           240
          Spider-Man         180
          Iron Man           190
          Captain America    220
          Wonder Woman       240
          dtype: int64

10 The last challenge is to convert the heroes Series to a Python dictionary. To
solve this problem, we can pass the data structure into Python’s dict construc-
tor/function. Pandas sets the index labels as the dictionary keys and the
Series values as the dictionary values:

In  [104] dict(heroes)

Out [104] {'Batman': 100,
           'Superman': 120,
           'Spider-Man': 90,
           'Iron Man': 95,
           'Captain America': 110,
           'Wonder Woman': 120}

Congratulations on completing your first coding challenge!
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Summary
 A Series is a one-dimensional homogeneous labeled array that holds values

and an index.
 A Series’ values can be of any data type. The index labels can be of any

immutable data type.
 Pandas assigns both an index position and an index label to each Series value.
 We can populate a Series with data from lists, dictionaries, tuples, NumPy

arrays, and more.
 The head method retrieves the first rows of a Series.
 The tail method retrieves the last rows of a Series.
 A Series supports common statistical operations such as sum, mean, median,

and standard deviation.
 Pandas uses shared index labels to apply arithmetic operations across multiple

Series.
 A Series plays friendly with Python’s built-in functions, including dict, list,

and len.



Series methods
In chapter 2, we began exploring the Series object, a one-dimensional labeled
array of homogeneous values. We populated our Series with data from different
sources, including lists, dictionaries, and NumPy ndarrays. We observed how pan-
das assigned each Series value an index label and an index position. We learned
how to apply mathematical operations to Series.

 With the basics under our belt, we’re ready to explore some real-world data sets!
In this chapter, we’ll introduce lots of advanced Series operations, including sort-
ing, counting, and bucketing. We’ll also start to see how these methods can help us
derive insights from our data. Let’s dive in.

This chapter covers
 Importing CSV data sets with the read_csv function

 Sorting Series values in ascending and descending 
order

 Retrieving the largest and smallest values in a 
Series

 Counting occurrences of unique values in a Series

 Invoking a function with every value in a Series
54
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3.1 Importing a data set with the read_csv function
A CSV is a plain-text file that separates each row of data with a line break and each row
value with a comma. The first row in the file holds the column headers for the data.
This chapter has three CSV files for us to play with:

 pokemon.csv—A list of more than 800 Pokémon, the cartoon monsters from Nin-
tendo’s popular media franchise. Each Pokémon has one or more associated
types, such as Fire, Water, and Grass.

 google_stock.csv—A collection of daily stock prices in U.S. dollars for the technol-
ogy company Google from its market debut in August 2004 to October 2019.

 revolutionary_war.csv—A record of battles during the American Revolutionary
War. Each skirmish is associated with a start date and a U.S. state.

Let’s begin by importing the data sets. As we proceed, we’ll talk through some optimi-
zations we can make to pave the way for easier analysis.

 Our first step is spinning up a new Jupyter Notebook and importing the pandas
library. Make sure to create the notebook in the same directory as the CSV files:

In [1] import pandas as pd

Pandas has more than a dozen import functions to load various file formats. The func-
tions are available at the library’s top level and begin with the prefix read. In our
case, to import a CSV, we want the read_csv function. The function’s first parameter,
filepath_or_buffer, expects a string with the filename. Make sure that the string
includes the .csv extension ("pokemon.csv", for example, instead of "pokemon").
By default, pandas looks for the file in the same directory as the Notebook:

In  [2] # The two lines below are equivalent
        pd.read_csv(filepath_or_buffer = "pokemon.csv")
        pd.read_csv("pokemon.csv")

Out [2]

          Pokemon                Type

0       Bulbasaur      Grass / Poison
1         Ivysaur      Grass / Poison
2        Venusaur      Grass / Poison
3      Charmander                Fire
4      Charmeleon                Fire
…               …                   …
804     Stakataka        Rock / Steel
805   Blacephalon        Fire / Ghost
806       Zeraora            Electric
807        Meltan               Steel
808      Melmetal               Steel

809 rows × 2 columns
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Regardless of the number of columns in a data set, the read_csv function always
imports the data into a DataFrame, a two-dimensional pandas data structure that
supports multiple rows and columns. We’ll introduce this object in greater detail in
chapter 4. There’s nothing wrong with using the DataFrame, but we want to practice
a bit more with the Series, so let’s store the CSV’s data in the smaller data structure.

 Our first issue is that the data set has two columns (Pokemon and Type), but a
Series supports only one column of data. One simple solution is setting one of the
data set’s columns as the Series index. We can use the index_col parameter to set
the index column. Be mindful of case sensitivity: the string must match the header in
the data set. Let’s pass "Pokemon" as the argument to index_col:

In  [3] pd.read_csv("pokemon.csv", index_col = "Pokemon")

Out [3]

                       Type
Pokemon

Bulbasaur    Grass / Poison
Ivysaur      Grass / Poison
Venusaur     Grass / Poison
Charmander             Fire
Charmeleon             Fire
         …                …
Stakataka      Rock / Steel
Blacephalon    Fire / Ghost
Zeraora            Electric
Meltan                Steel
Melmetal              Steel

809 rows × 1 columns

We’ve successfully set the Pokemon column as the Series index, but pandas still
defaults to importing the data into a DataFrame. After all, a container capable of
holding multiple columns of data can technically hold one column of data. To force
pandas to use a Series, we need to add another parameter called squeeze and pass
it an argument of True. The squeeze parameter coerces a one-column DataFrame
into a Series:

In  [4] pd.read_csv("pokemon.csv", index_col = "Pokemon", squeeze = True)

Out [4] Pokemon
        Bulbasaur      Grass / Poison
        Ivysaur        Grass / Poison
        Venusaur       Grass / Poison
        Charmander               Fire
        Charmeleon               Fire
                            ...
        Stakataka        Rock / Steel
        Blacephalon      Fire / Ghost
        Zeraora              Electric
        Meltan                  Steel
        Melmetal                Steel
        Name: Type, Length: 809, dtype: object
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We officially have a Series. Hooray! The index labels are the Pokémon names, and
the values are the Pokémon types.

 The output below the values reveals some important details:

 Pandas has assigned the Series a name of Type, the column’s name from the
CSV file.

 The Series has 809 values.
 dtype: object tells us that it’s a Series of string values. object is pandas’

internal lingo for strings and more-complex data structures.

The final step is assigning the Series to a variable. pokemon feels suitable here:

In  [5] pokemon = pd.read_csv(
            "pokemon.csv", index_col = "Pokemon", squeeze = True
        )

The remaining two data sets carry some additional complexity. Let’s take a peek at
google_stock.csv:

In  [6] pd.read_csv("google_stocks.csv").head()

Out [6]

         Date  Close

0  2004-08-19  49.98
1  2004-08-20  53.95
2  2004-08-23  54.50
3  2004-08-24  52.24
4  2004-08-25  52.80

When importing a data set, pandas infers the most suitable data type for each column.
Sometimes, the library plays it safe and avoids making assumptions about our data.
google_stocks.csv, for example, includes a Date column with datetime values in YYYY-
MM-DD format (such as 2010-08-04). Unless we tell pandas to treat the values as date-
times, the library defaults to importing them as strings. A string is a more generic and
versatile data type; it can represent any value.

 Let’s explicitly tell pandas to convert the values in the Date column to datetimes.
Although we won’t cover datetimes until chapter 11, it’s considered to be a best prac-
tice to store each column’s data in the most accurate type. When pandas knows that it
has datetimes, it enables additional methods that are not available on plain strings,
such as calculating the weekday of a date.

 The read_csv function’s parse_dates parameter accepts a list of strings denot-
ing the columns whose text values pandas should convert to datetimes. The next
example passes a list containing "Date":

In  [7] pd.read_csv("google_stocks.csv", parse_dates = ["Date"]).head()

Out [7]

         Date  Close

0  2004-08-19  49.98
1  2004-08-20  53.95
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2  2004-08-23  54.50
3  2004-08-24  52.24
4  2004-08-25  52.80

There is no visual difference in the output, but pandas is storing a different data type
for the Date column under the hood. Let’s set the Date column as the Series index
with the index_col parameter; a Series works fine with datetime indexes. Finally,
let’s add the squeeze parameter to force a Series object instead of a DataFrame:

In  [8] pd.read_csv(
            "google_stocks.csv",
            parse_dates = ["Date"],
            index_col = "Date",
            squeeze = True
        ).head()

Out [8] Date
        2004-08-19    49.98
        2004-08-20    53.95
        2004-08-23    54.50
        2004-08-24    52.24
        2004-08-25    52.80
        Name: Close, dtype: float64

Looks good. We have a Series of datetime index labels and floating-point values.
Let’s save this Series to a google variable:

In  [9] google = pd.read_csv(
            "google_stocks.csv",
            parse_dates = ["Date"],
            index_col = "Date",
            squeeze = True
        )

We have one more data set to import: Revolutionary War battles. This time around,
let’s preview the last five rows on import. We’ll chain the tail method to the Data-
Frame returned by the read_csv function:

In  [10] pd.read_csv("revolutionary_war.csv").tail()

Out [10]

                         Battle  Start Date     State

227         Siege of Fort Henry   9/11/1782  Virginia
228  Grand Assault on Gibraltar   9/13/1782       NaN
229   Action of 18 October 1782  10/18/1782       NaN
230   Action of 6 December 1782   12/6/1782       NaN
231   Action of 22 January 1783   1/22/1783  Virginia

Take a look at the State column. Uh-oh—this data set has some missing values. As a
reminder, pandas uses the NaN (not a number) designation to mark absent values.
NaN is a NumPy object used to represent nothingness or the absence of a value. This
data set contains missing/absent values for battles without a definitive start date or
those fought outside U.S. territory.
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 Let’s set the Start Date column as the index. We’ll again use the index_col param-
eter to set the index and the parse_dates parameter to convert the Start Date strings
to datetime values. Pandas can recognize this data set’s date format (M/D/YYYY):

In  [11] pd.read_csv(
             "revolutionary_war.csv",
             index_col = "Start Date",
             parse_dates = ["Start Date"],
         ).tail()

Out [11]

                                Battle     State
Start Date

1782-09-11         Siege of Fort Henry  Virginia
1782-09-13  Grand Assault on Gibraltar       NaN
1782-10-18   Action of 18 October 1782       NaN
1782-12-06   Action of 6 December 1782       NaN
1783-01-22   Action of 22 January 1783  Virginia

By default, the read_csv function imports all columns from a CSV. We’ll have to limit
the import to two columns if we want a Series: one column for the index and the
other for the values. The squeeze parameter by itself is insufficient in this scenario;
pandas will ignore the parameter if there is more than one column of data.

 The read_csv function’s usecols parameter accepts a list of columns that pan-
das should import. Let’s include only Start Date and State:

In  [12] pd.read_csv(
             "revolutionary_war.csv",
             index_col = "Start Date",
             parse_dates = ["Start Date"],
             usecols = ["State", "Start Date"],
             squeeze = True
         ).tail()

Out [12] Start Date
         1782-09-11    Virginia
         1782-09-13         NaN
         1782-10-18         NaN
         1782-12-06         NaN
         1783-01-22    Virginia
         Name: State, dtype: object

Perfect! We have a Series consisting of a datetime index and string values. Let’s
assign this one to a battles variable:

In  [13] battles = pd.read_csv(
             "revolutionary_war.csv",
             index_col = "Start Date",
             parse_dates = ["Start Date"],
             usecols = ["State", "Start Date"],
             squeeze = True
         )
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Now that we’ve imported our data sets into Series objects, let’s see what we can do
with them.

3.2 Sorting a Series
We can sort a Series by its values or its index, in ascending or descending order.

3.2.1 Sorting by values with the sort_values method

Suppose that we’re curious about the lowest and highest stock prices that Google has
had. The sort_values method returns a new Series with the values sorted in
ascending order. Ascending means increasing in size—in other words, smallest to great-
est. The index labels move with their value counterparts:

In  [14] google.sort_values()

Out [14] Date
         2004-09-03      49.82
         2004-09-01      49.94
         2004-08-19      49.98
         2004-09-02      50.57
         2004-09-07      50.60
                        ...
         2019-04-23    1264.55
         2019-10-25    1265.13
         2018-07-26    1268.33
         2019-04-26    1272.18
         2019-04-29    1287.58
         Name: Close, Length: 3824, dtype: float64

Pandas sorts a Series of strings in alphabetical order. Ascending means from the start
of the alphabet to the end of the alphabet:

In  [15] pokemon.sort_values()

Out [15] Pokemon
         Illumise                Bug
         Silcoon                 Bug
         Pinsir                  Bug
         Burmy                   Bug
         Wurmple                 Bug
                           ...
         Tirtouga       Water / Rock
         Relicanth      Water / Rock
         Corsola        Water / Rock
         Carracosta     Water / Rock
         Empoleon      Water / Steel
         Name: Type, Length: 809, dtype: object

Pandas sorts uppercase characters before lowercase characters. Thus, a capital "Z"
comes before a lowercase "a". In the next example, notice that the string "adam"
appears after "Ben":
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In  [16] pd.Series(data = ["Adam", "adam", "Ben"]).sort_values()

Out [16] 0    Adam
         2     Ben
         1    adam
         dtype: object

The ascending parameter sets the sort order, and it has a default argument of True.
To sort Series values in descending order (largest to smallest), pass the parameter
an argument of False:

In  [17] google.sort_values(ascending = False).head()

Out [17] Date
         2019-04-29    1287.58
         2019-04-26    1272.18
         2018-07-26    1268.33
         2019-10-25    1265.13
         2019-04-23    1264.55
         Name: Close, dtype: float64

A descending sort will arrange a Series of strings in reverse alphabetical order.
Descending means from the end of the alphabet to the start of the alphabet:

In  [18] pokemon.sort_values(ascending = False).head()

Out [18] Pokemon
         Empoleon      Water / Steel
         Carracosta     Water / Rock
         Corsola        Water / Rock
         Relicanth      Water / Rock
         Tirtouga       Water / Rock
         Name: Type, dtype: object

The na_position parameter configures the placement of NaN values in the returned
Series and has a default argument of "last". By default, pandas places missing val-
ues at the end of a sorted Series:

In  [19] # The two lines below are equivalent
         battles.sort_values()
         battles.sort_values(na_position = "last")

Out [19] Start Date
         1781-09-06    Connecticut
         1779-07-05    Connecticut
         1777-04-27    Connecticut
         1777-09-03       Delaware
         1777-05-17        Florida
                          ...
         1782-08-08            NaN
         1782-08-25            NaN
         1782-09-13            NaN
         1782-10-18            NaN
         1782-12-06            NaN
         Name: State, Length: 232, dtype: object
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To display the missing values first, pass the na_position parameter an argument of
"first". The resulting Series shows all NaNs first, followed by the sorted values:

In  [20] battles.sort_values(na_position = "first")

Out [20] Start Date
         1775-09-17         NaN
         1775-12-31         NaN
         1776-03-03         NaN
         1776-03-25         NaN
         1776-05-18         NaN
                         ...
         1781-07-06    Virginia
         1781-07-01    Virginia
         1781-06-26    Virginia
         1781-04-25    Virginia
         1783-01-22    Virginia
         Name: State, Length: 232, dtype: object

What if we wanted to remove NaN values? The dropna method returns a Series with
all missing values removed. Note that the method targets only NaNs in the Series’ val-
ues, not the index. The next example filters our battles to those with a present location:

In  [21] battles.dropna().sort_values()

Out [21] Start Date
         1781-09-06    Connecticut
         1779-07-05    Connecticut
         1777-04-27    Connecticut
         1777-09-03       Delaware
         1777-05-17        Florida
                             ...
         1782-08-19       Virginia
         1781-03-16       Virginia
         1781-04-25       Virginia
         1778-09-07       Virginia
         1783-01-22       Virginia
         Name: State, Length: 162, dtype: object

The previous Series is predictably shorter than battles. Pandas has removed 70
NaN values from battles.

3.2.2 Sorting by index with the sort_index method

Sometimes, our area of focus may lie in the index rather than the values. Luckily, we
can sort a Series by index as well with the sort_index method. With this option,
the values move alongside their index counterparts. Like sort_values, sort_index
accepts an ascending parameter, and its default argument is also True:

In  [22] # The two lines below are equivalent
         pokemon.sort_index()
         pokemon.sort_index(ascending = True)
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Out [22] Pokemon
         Abomasnow        Grass / Ice
         Abra                 Psychic
         Absol                   Dark
         Accelgor                 Bug
         Aegislash      Steel / Ghost
                           ...
         Zoroark                 Dark
         Zorua                   Dark
         Zubat        Poison / Flying
         Zweilous       Dark / Dragon
         Zygarde      Dragon / Ground
         Name: Type, Length: 809, dtype: object

When sorting a collection of datetimes in ascending order, pandas sorts from the ear-
liest date to the latest. The battles Series offers a great opportunity to see this sort
in action:

In  [23] battles.sort_index()

Out [23] Start Date
         1774-09-01    Massachusetts
         1774-12-14    New Hampshire
         1775-04-19    Massachusetts
         1775-04-19    Massachusetts
         1775-04-20         Virginia
                           ...
         1783-01-22         Virginia
         NaT              New Jersey
         NaT                Virginia
         NaT                     NaN
         NaT                     NaN
         Name: State, Length: 232, dtype: object

We see a new type of value toward the end of the sorted Series. Pandas uses another
NumPy object, NaT, in place of missing date values (NaT stands for not a time). The
NaT object maintains data integrity with the index’s datetime type.

 The sort_index method also includes the na_position parameter for altering
the placement of NaN values. The next example displays the missing values first, fol-
lowed by the sorted datetimes:

In  [24] battles.sort_index(na_position = "first").head()

Out [24] Start Date
         NaT              New Jersey
         NaT                Virginia
         NaT                     NaN
         NaT                     NaN
         1774-09-01    Massachusetts
         Name: State, dtype: object
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To sort in descending order, we can pass the ascending parameter an argument of
False. A descending sort displays dates from latest to earliest:

In  [25] battles.sort_index(ascending = False).head()

Out [25] Start Date
         1783-01-22    Virginia
         1782-12-06         NaN
         1782-10-18         NaN
         1782-09-13         NaN
         1782-09-11    Virginia
         Name: State, dtype: object

The data set’s earliest battle took place on January 22, 1783, in Virginia.

3.2.3 Retrieving the smallest and largest values with the nsmallest and 
nlargest methods

Suppose that we wanted to find the five dates on which Google’s stock performed
best. One option is to sort the Series in descending order and then limit the results
to the first five rows:

In  [26] google.sort_values(ascending = False).head()

Out [26] Date
         2019-04-29    1287.58
         2019-04-26    1272.18
         2018-07-26    1268.33
         2019-10-25    1265.13
         2019-04-23    1264.55
         Name: Close, dtype: float64

The operation is fairly common, so pandas offers a helper method to save us a few
characters. The nlargest method returns the largest values from a Series. Its first
parameter, n, sets the number of records to return. The n parameter has a default
argument of 5. Pandas sorts the values in descending order in the returned Series:

In  [27] # The two lines below are equivalent
         google.nlargest(n = 5)
         google.nlargest()

Out [27] Date
         2019-04-29    1287.58
         2019-04-26    1272.18
         2018-07-26    1268.33
         2019-10-25    1265.13
         2019-04-23    1264.55
         Name: Close, dtype: float64

The complementary nsmallest method returns the smallest values from a Series,
sorted in ascending order. Its n parameter also has a default argument of 5:

In  [28] # The two lines below are equivalent
         google.nsmallest(n = 5)
         google.nsmallest(5)
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Out [28] Date
         2004-09-03    49.82
         2004-09-01    49.94
         2004-08-19    49.98
         2004-09-02    50.57
         2004-09-07    50.60
         2004-08-30    50.81
         Name: Close, dtype: float64

Note that neither of these methods works on Series of strings.

3.3 Overwriting a Series with the inplace parameter
All the methods that we’ve invoked in this chapter return new Series objects. The
original Series objects referenced by our pokemon, google, and battles variables
have remained unaffected throughout our operations thus far. As an example, let’s
observe battles before and after a method call; the Series does not change:

In  [29] battles.head(3)

Out [29] Start Date
         1774-09-01    Massachusetts
         1774-12-14    New Hampshire
         1775-04-19    Massachusetts
         Name: State, dtype: object

In  [30] battles.sort_values().head(3)

Out [30] Start Date
         1781-09-06    Connecticut
         1779-07-05    Connecticut
         1777-04-27    Connecticut
         Name: State, dtype: object

In  [31] battles.head(3)

Out [31] Start Date
         1774-09-01    Massachusetts
         1774-12-14    New Hampshire
         1775-04-19    Massachusetts
         Name: State, dtype: object

What if we wanted to modify the battles Series? Many methods in pandas include
an inplace parameter that, when passed an argument of True, appears to modify
the object on which the method is invoked.

 Compare the previous example with the next one. Here, we once again invoke the
sort_values method, but this time around, we pass an argument of True to the
inplace parameter. If we use inplace, the method returns None, leading to no out-
put in Jupyter Notebook. When we output battles, we can see that it has changed:

In  [32] battles.head(3)

Out [32] Start Date
         1774-09-01    Massachusetts
         1774-12-14    New Hampshire
         1775-04-19    Massachusetts
         Name: State, dtype: object
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In  [33] battles.sort_values(inplace = True)

In  [34] battles.head(3)

Out [34] Start Date
         1781-09-06    Connecticut
         1779-07-05    Connecticut
         1777-04-27    Connecticut
         Name: State, dtype: object

The inplace parameter is a frequent point of confusion. Its name suggests that it
modifies or mutates the existing object rather than creating a copy. Developers are
tempted to use inplace because reducing the number of copies we create decreases
memory use. But even with the inplace parameter, pandas creates a copy of an
object whenever we invoke a method. The library always creates a duplicate; the
inplace parameter reassigns our existing variable to the new object. Thus, contrary
to popular belief, the inplace parameter does not offer any performance benefits.
These two lines are technically equivalent:

battles.sort_values(inplace = True)
battles = battles.sort_values()

Why did the pandas developers choose this implementation? What advantage do we
gain from always creating copies? You can find more detailed explanations online, but
the short answer is that immutable data structures tend to lead to fewer bugs. Remem-
ber that an immutable object is incapable of change. We can copy an immutable
object and manipulate the copy, but we can’t alter the original object. A Python string
is an example. An immutable object is less likely to enter a corrupted or invalid state;
it is also easier to test.

 The pandas development team has discussed removing the inplace parameter
from the library in future versions. My recommendation is to avoid using it if possible.
The alternative solution is to reassign a method’s return value to the same variable or
create a separate, more descriptive variable. We can assign the sort_values method
return value to a variable such as sorted_battles, for example.

3.4 Counting values with the value_counts method
Here’s a reminder of what the pokemon Series looks like:

In  [35] pokemon.head()

Out [35] Pokemon
         Bulbasaur     Grass / Poison
         Ivysaur       Grass / Poison
         Venusaur      Grass / Poison
         Charmander              Fire
         Charmeleon              Fire
         Name: Type, dtype: object

How can we find out the most common types of Pokémon? We need to group the val-
ues into buckets and count the number of elements in each bucket. The
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value_counts method, which counts the number of occurrences of each Series
value, solves the problem perfectly:

In  [36] pokemon.value_counts()

Out [36] Normal            65
         Water             61
         Grass             38
         Psychic           35
         Fire              30
                   ..
         Fire / Dragon      1
         Dark / Ghost       1
         Steel / Ground     1
         Fire / Psychic     1
         Dragon / Ice       1
         Name: Type, Length: 159, dtype: int64

The value_counts method returns a new Series object. The index labels are the
pokemon Series’ values, and the values are their respective counts. Sixty-five of the
Pokémon are classified as Normal, 61 are classified as Water, and so on. For those who
are curious, “Normal” Pokémon are those that excel in physical attacks.

 The length of the value_counts Series is equal to the number of unique values
in the pokemon Series. As a reminder, the nunique method returns this piece of
information:

In  [37] len(pokemon.value_counts())

Out [37] 159

In  [38] pokemon.nunique()

Out [38] 159

Data integrity is paramount in situations like these. The presence of an extra space or
the different casing of a character will cause pandas to deem two values unequal and
count them separately. We’ll discuss data cleanup in chapter 6.

 The value_counts method’s ascending parameter has a default argument of
False. Pandas sorts the values in descending order, from most occurrences to least
occurrences. To sort the values in ascending order, pass the ascending parameter a
value of True:

In  [39] pokemon.value_counts(ascending = True)

Out [39] Rock / Poison        1
         Ghost / Dark         1
         Ghost / Dragon       1
         Fighting / Steel     1
         Rock / Fighting      1
                             ..
         Fire                30
         Psychic             35
         Grass               38
         Water               61
         Normal              65
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We may be more interested in the ratio of a Pokémon type relative to all the types. Set
the value_counts method’s normalize parameter to True to return the frequen-
cies of each unique value. A value’s frequency is the portion of the data set that the
value makes up:

In  [40] pokemon.value_counts(normalize = True).head()

Out [40] Normal            0.080346
         Water             0.075402
         Grass             0.046972
         Psychic           0.043263
         Fire              0.037083

We can multiply the values in the frequency Series by 100 to get the percentage each
Pokémon type contributes to the whole. Do you recall the syntax from chapter 2? We
can use a plain mathematical operator like a multiplication symbol with a Series.
Pandas will apply the operation to each value:

In  [41] pokemon.value_counts(normalize = True).head() * 100

Out [41] Normal            8.034611
         Water             7.540173
         Grass             4.697157
         Psychic           4.326329
         Fire              3.708282

Normal Pokémon make up 8.034611% of the data set, Water Pokémon make up
7.540173%, and so on. Interesting!

 Let’s say we wanted to limit the precision of the percentages. We can round a
Series’ values with the round method. The method’s first parameter, decimals,
sets the number of digits to leave after the decimal point. The next example rounds
the values to two digits; it wraps code from the previous example in parentheses to
avoid a syntactical error. We want to make sure that pandas first multiplies each value
by 100 and then invokes round on the resulting Series:

In  [42] (pokemon.value_counts(normalize = True) * 100).round(2)

Out [42] Normal              8.03
         Water               7.54
         Grass               4.70
         Psychic             4.33
         Fire                3.71
                             ...
         Rock / Fighting     0.12
         Fighting / Steel    0.12
         Ghost / Dragon      0.12
         Ghost / Dark        0.12
         Rock / Poison       0.12
         Name: Type, Length: 159, dtype: float64

The value_counts method operates identically on a numeric Series. The next
example counts the occurrences of each unique stock price in the google Series. It
turns out that no stock price appears more than three times in the data set:
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In  [43] google.value_counts().head()

Out [43] 237.04     3
         288.92     3
         287.68     3
         290.41     3
         194.27     3

To identify trends in numeric data sets, it can be more beneficial to group values into
predefined intervals rather than count distinct values. Let’s begin by determining the
difference between the smallest and largest values within the google Series. The
Series’ max and min methods work well here. An alternative option is passing the
Series into Python’s built-in max and min functions:

In  [44] google.max()

Out [44] 1287.58

In  [45] google.min()

Out [45] 49.82

We have a range of ~1,250 between the smallest and largest values. Let’s group the
stock prices into buckets of 200, starting at 0 and working up to 1,400. We can define
these intervals as values in a list and pass the list to the value_counts method’s bins
parameter. Pandas will use every two subsequent list values as the lower and upper
ends of an interval:

In  [46] buckets = [0, 200, 400, 600, 800, 1000, 1200, 1400]
         google.value_counts(bins = buckets)

Out [46] (200.0, 400.0]      1568
         (-0.001, 200.0]      595
         (400.0, 600.0]       575
         (1000.0, 1200.0]     406
         (600.0, 800.0]       380
         (800.0, 1000.0]      207
         (1200.0, 1400.0]      93
         Name: Close, dtype: int64

The output tells us that Google’s stock price was between $200 and $400 for 1,568 val-
ues in the data set.

 Note that pandas sorted the previous Series in descending order by the number
of values in each bucket. What if we wanted to sort the results by the intervals instead?
We simply have to mix and match a few pandas methods. The intervals are the index
labels in the returned Series, so we can use the sort_index method to sort them.
This technique of invoking multiple methods in sequence is called method chaining :

In  [47] google.value_counts(bins = buckets).sort_index()

Out [47] (-0.001, 200.0]      595
         (200.0, 400.0]      1568
         (400.0, 600.0]       575
         (600.0, 800.0]       380
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         (800.0, 1000.0]      207
         (1000.0, 1200.0]     406
         (1200.0, 1400.0]      93
         Name: Close, dtype: int64

We can achieve an identical result by passing a value of False to the sort parameter
of the value_counts method:

In  [48] google.value_counts(bins = buckets, sort = False)

Out [48] (-0.001, 200.0]      595
         (200.0, 400.0]      1568
         (400.0, 600.0]       575
         (600.0, 800.0]       380
         (800.0, 1000.0]      207
         (1000.0, 1200.0]     406
         (1200.0, 1400.0]      93
         Name: Close, dtype: int64

Notice that the first interval includes the value -0.001 instead of 0. When pandas orga-
nizes the Series’ values into buckets, it may extend any bin’s range up to .1% in
either direction. The symbols around intervals have significance:

 A parenthesis marks a value as excluded from the interval.
 A square bracket marks a value as included in the interval.

Consider the interval (-0.001, 200.0]. -0.001 is excluded, and 200 is included.
Thus, the interval captures all values greater than -0.001 and less than or equal to
200.0.

 A closed interval includes both endpoints. An example is [5, 10] (greater than or
equal to 5, less than or equal to 10).

 An open interval excludes both endpoints. An example is (5, 10) (greater than 5,
less than 10).

 The value_counts method with a bin parameter returns half-open intervals. Pan-
das will include one of the endpoints and exclude the other.

 The value_counts method’s bins parameter also accepts an integer argument.
Pandas will automatically calculate the difference between the maximum and mini-
mum values in the Series and divide the range into the specified number of bins.
The next example splits the stock prices in google into six bins. Note that the bins/
buckets may not be perfectly equal in size (due to the possible .1% extension of any
interval in any direction) but will be reasonably close:

In  [49] google.value_counts(bins = 6, sort = False)

Out [49] (48.581, 256.113]      1204
         (256.113, 462.407]     1104
         (462.407, 668.7]        507
         (668.7, 874.993]        380
         (874.993, 1081.287]     292
         (1081.287, 1287.58]     337
         Name: Close, dtype: int64
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What about our battles data set? We haven’t seen it for a while:

In  [50] battles.head()

Out [50] Start Date
         1781-09-06    Connecticut
         1779-07-05    Connecticut
         1777-04-27    Connecticut
         1777-09-03       Delaware
         1777-05-17        Florida
         Name: State, dtype: object

We can use the value_counts method to see which states had the most battles in the
Revolutionary War:

In  [51] battles.value_counts().head()

Out [51] South Carolina    31
         New York          28
         New Jersey        24
         Virginia          21
         Massachusetts     11
         Name: State, dtype: int64

Pandas will exclude NaN values from the value_counts Series by default. Pass the
dropna parameter an argument of False to count null values as a distinct category:

In  [52] battles.value_counts(dropna = False).head()

Out [52] NaN               70
         South Carolina    31
         New York          28
         New Jersey        24
         Virginia          21
         Name: State, dtype: int64

A Series index also supports the value_counts method. We have to access the
index object via the index attribute before invoking the method. Let’s find out which
dates had the most battles during the Revolutionary War:

In  [53] battles.index

Out [53]

DatetimeIndex(['1774-09-01', '1774-12-14', '1775-04-19', '1775-04-19',
               '1775-04-20', '1775-05-10', '1775-05-27', '1775-06-11',
               '1775-06-17', '1775-08-08',
               ...
               '1782-08-08', '1782-08-15', '1782-08-19', '1782-08-26',
               '1782-08-25', '1782-09-11', '1782-09-13', '1782-10-18',
               '1782-12-06', '1783-01-22'],
              dtype='datetime64[ns]', name='Start Date', length=232,
              freq=None)
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In  [54] battles.index.value_counts()

Out [54] 1775-04-19    2
         1781-05-22    2
         1781-04-15    2
         1782-01-11    2
         1780-05-25    2
                      ..
         1778-05-20    1
         1776-06-28    1
         1777-09-19    1
         1778-08-29    1
         1777-05-17    1
         Name: Start Date, Length: 217, dtype: int64

It looks as though no date saw more than two battles.

3.5 Invoking a function on every Series value with the 
apply method
A function is a first-class object in Python, which means that the language treats it like
any other data type. A function may feel like a more abstract entity, but it’s as valid a
data structure as any other.

 Here’s the simplest way to think about first-class objects. Anything that you can do
with a number, you can do with a function. You can do all the following things, for
example:

 Store a function in a list.
 Assign a function as a value for a dictionary key.
 Pass a function into another function as an argument.
 Return a function from another function.

It’s important to distinguish between a function and a function invocation. A function
is a sequence of instructions that produces an output; it is a “recipe” that has not been
cooked yet. By comparison, a function invocation is the actual execution of the instruc-
tions; it is the cooking of the recipe.

 The next example declares a funcs list that stores three Python built-in functions.
The len, max, and min functions are not invoked within the list. The list stores refer-
ences to the functions themselves:

In  [55] funcs = [len, max, min]

The next example iterates over the funcs list with a for loop. Over three iterations,
the current_func iterator variable represents the uninvoked len, max, and min
functions. During each iteration, the loop invokes the dynamic current_func func-
tion, passes in the google Series, and prints the return value:

In  [56] for current_func in funcs:
             print(current_func(google))

Out [56] 3824
         1287.58
         49.82
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The output includes the sequential return values of the three functions: the length of
the Series, the maximum value in the Series, and the minimum value in the
Series.

 The key takeaway here is that we can treat a function like any other object in
Python. So how does this fact apply to pandas? Suppose that we want to round each
floating-point value in our google Series up or down to the closest integer. Python
has a convenient round function for this purpose. The function rounds a value above
0.5 up and any value below 0.5 down:

In  [57] round(99.2)

Out [57] 99

In  [58] round(99.49)

Out [58] 99

In  [59] round(99.5)

Out [59] 100

Wouldn’t it be great if we could apply this round function to every value in our
Series? We’re in luck. The Series has a method called apply that invokes a func-
tion once for each Series value and returns a new Series consisting of the return
values of the function invocations. The apply method expects the function it will
invoke as its first parameter, func. The next example passes Python’s built-in round
function:

In  [60] # The two lines below are equivalent
         google.apply(func = round)
         google.apply(round)

Out [60] Date
         2004-08-19      50
         2004-08-20      54
         2004-08-23      54
         2004-08-24      52
         2004-08-25      53
                       ...
         2019-10-21    1246
         2019-10-22    1243
         2019-10-23    1259
         2019-10-24    1261
         2019-10-25    1265
         Name: Close, Length: 3824, dtype: int64

We’ve rounded every Series value!
 Again, please take a moment to notice that we’re passing the apply method the

uninvoked round function. We’re passing in the recipe. Somewhere in the internals
of pandas, the apply method knows to invoke our function on every Series value.
Pandas abstracts away the complexity of the operation.
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 The apply method also accepts custom functions. Define the function to accept a
single parameter and have it return the value that you’d like pandas to store in the
aggregated Series.

 Let’s say we wanted to find out how many of our Pokémon have one type (such as
Fire) and how many have two or more types. We need to apply the same logic, the cat-
egorization of a Pokémon, to each Series value. A function is an ideal container for
encapsulating that logic. Let’s define a utility function called single_or_multi that
accepts a single Pokémon type and determines whether it has one or several types. If a
Pokémon has multiple types, the string separates them with a slash ("Fire /
Ghost"). We can use Python’s in operator to check for the inclusion of a forward
slash in the argument string. The if statement executes a block only if its condition
evaluates to True. In our case, if a / is present, the function will return the string
"Multi"; otherwise, it’ll return "Single":

In  [61] def single_or_multi(pokemon_type):
             if "/" in pokemon_type:
                 return "Multi"

             return "Single"

Now we can pass the single_or_multi function to the apply method. Here’s a
quick refresher on what pokemon looks like:

In  [62] pokemon.head(4)

Out [62] Pokemon
         Bulbasaur     Grass / Poison
         Ivysaur       Grass / Poison
         Venusaur      Grass / Poison
         Charmander              Fire
         Name: Type, dtype: object

The next example calls the apply method with the single_or_multi function as its
argument. Pandas invokes the single_or_multi function for every Series value:

In  [63] pokemon.apply(single_or_multi)

Out [63] Pokemon
         Bulbasaur       Multi
         Ivysaur         Multi
         Venusaur        Multi
         Charmander     Single
         Charmeleon     Single
                         ...
         Stakataka       Multi
         Blacephalon     Multi
         Zeraora        Single
         Meltan         Single
         Melmetal       Single
         Name: Type, Length: 809, dtype: object
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Our first specimen, Bulbasaur, is classified as a Grass / Poison Pokémon, so the
single_or_multi function returns "Multi". By comparison, our fourth specimen,
Charmander, is classified as a Fire Pokémon, so the function returns "Single". The
same logic repeats for the remaining pokemon values.

 We have a new Series object! Let’s find out how many Pokémon fall into each
classification by invoking value_counts:

In  [64] pokemon.apply(single_or_multi).value_counts()

Out [64] Multi     405
         Single    404
         Name: Type, dtype: int64

It turns out that there’s a fairly even split of single-power and multipower Pokémon. I
hope that this knowledge will prove to be useful at some point in your life.

3.6 Coding challenge
Let’s tackle a challenge that combines several ideas introduced in this chapter and
chapter 2.

3.6.1 Problems

Suppose that a historian reaches out to us and asks us to determine which day of the
week saw the most battles during the Revolutionary War. The final output should be a
Series with the days (Sunday, Monday, and so on) as index labels and a count of bat-
tles on each day as the values. Starting from scratch, import the revolutionary_war.csv
data set, and perform the necessary operations to arrive at the following data:

Saturday     39
Friday       39
Wednesday    32
Thursday     31
Sunday       31
Tuesday      29
Monday       27

You’ll need one additional piece of Python knowledge to solve this problem. If you have
a single datetime object, you can invoke the strftime method on it with an argument
of "%A" to return the day of a week a date falls on (such as "Sunday"). See the follow-
ing example and appendix B for a more-extensive overview of a datetime object:

In  [65] import datetime as dt
         today = dt.datetime(2020, 12, 26)
         today.strftime("%A")

Out [65] 'Saturday'

HINT Declaring a custom function to calculate a date’s day of the week may
prove to be helpful.

Good luck!
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3.6.2 Solutions

Let’s reimport the revolutionary_war.csv data set and remind ourselves of its original
shape:

In  [66] pd.read_csv("revolutionary_war.csv").head()

Out [66]
                              Battle  Start Date          State

0                       Powder Alarm    9/1/1774  Massachusetts
1  Storming of Fort William and Mary  12/14/1774  New Hampshire
2   Battles of Lexington and Concord   4/19/1775  Massachusetts
3                    Siege of Boston   4/19/1775  Massachusetts
4                 Gunpowder Incident   4/20/1775       Virginia

We do not need the Battle and State columns for this analysis. You’re welcome to use
either column as the index or stick with the default numeric one.

 The critical step is coercing the string values in the Start Date column to datetimes.
If we’re working with dates, we can invoke date-related methods such as strftime.
We do not have the same power with plain strings. Let’s select the Start Date column
with the usecols parameter and convert its values to datetimes with the parse_
dates parameter. Finally, remember to pass True to the squeeze parameter to cre-
ate a Series instead of a DataFrame:

In  [67] days_of_war = pd.read_csv(
             "revolutionary_war.csv",
             usecols = ["Start Date"],
             parse_dates = ["Start Date"],
             squeeze = True,
         )

         days_of_war.head()

Out [67] 0   1774-09-01
         1   1774-12-14
         2   1775-04-19
         3   1775-04-19
         4   1775-04-20
         Name: Start Date, dtype: datetime64[ns]

Our next challenge is extracting the day of the week for each date. One solution
(using only the tools we know now) is to pass each Series value to a function that will
return that date’s day of the week. Let’s declare that function now:

In  [68] def day_of_week(date):
             return date.strftime("%A")

How can we invoke the day_of_week function once for each Series value? We can
pass the day_of_week function as the argument to the apply method. We expect to
get the days of the week, except that...
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In  [69] days_of_war.apply(day_of_week)

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-411-c133befd2940> in <module>
----> 1 days_of_war.apply(day_of_week)

ValueError: NaTType does not support strftime

Uh-oh—our Start Date column has missing values. Unlike a datetime object, a NaT
object does not have a strftime method, so pandas runs into trouble when passing it
into the day_of_week function. The simple solution is to drop all missing datetime
values from the Series before we call the apply method. We can do so with the
dropna method:

In  [70] days_of_war.dropna().apply(day_of_week)

Out [70] 0       Thursday
         1      Wednesday
         2      Wednesday
         3      Wednesday
         4       Thursday
                  ...
         227    Wednesday
         228       Friday
         229       Friday
         230       Friday
         231    Wednesday
         Name: Start Date, Length: 228, dtype: object

Now we’re getting somewhere! We need a way to count the number of occurrences for
each weekday. The value_counts method does the trick:

In  [71] days_of_war.dropna().apply(day_of_week).value_counts()

Out [71] Saturday     39
         Friday       39
         Wednesday    32
         Thursday     31
         Sunday       31
         Tuesday      29
         Monday       27
         Name: Start Date, dtype: int64

Perfect! The result is a tie between Friday and Saturday. Congratulations on complet-
ing the coding challenge!

Summary
 The read_csv function imports a CSV’s contents into a pandas data structure.
 The read_csv function’s parameters can customize the imported columns, the

index, the data types, and more.
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 The sort_values method sorts a Series’ values in ascending or descending
order.

 The sort_index method sorts a Series’ index in ascending or descending
order.

 We can use the inplace parameter to reassign the copy returned from a
method to the original variable holding an object. There are no performance
benefits to using inplace.

 The value_counts method counts the occurrences of each unique value in a
Series.

 The apply method invokes a function on each Series value and returns the
results in a new Series.



The DataFrame object
The pandas DataFrame is a two-dimensional table of data with rows and columns.
As with a Series, pandas assigns an index label and an index position to each
DataFrame row. Pandas also assigns a label and a position to each column. The
DataFrame is two-dimensional because it requires two points of reference—a row
and a column—to isolate a value from the data set. Figure 4.1 displays a visual
example of a pandas DataFrame.

This chapter covers
 Instantiating DataFrame objects from 

dictionaries and NumPy ndarrays

 Importing DataFrames from CSV files with the 
read_csv function

 Sorting DataFrame columns

 Accessing rows and columns in a DataFrame

 Setting and resetting a DataFrame index

 Renaming columns and index labels in a 
DataFrame
79
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The DataFrame is the workhorse of the pandas library and the data structure you’ll
be working with most on a daily basis, so we’ll be spending the remainder of this book
exploring its vast features.

4.1 Overview of a DataFrame
As always, let’s spin up a new Jupyter Notebook and import pandas. We also need the
NumPy library, which we’ll use in section 4.1.2 to generate random data. NumPy is
usually assigned the alias np:

In  [1] import pandas as pd
        import numpy as np

The DataFrame class constructor is available at the top level of pandas. The syntax for
instantiating a DataFrame object is identical to the one for instantiating a Series.
We access the DataFrame class and instantiate with a pair of parentheses: pd.Data-
Frame().

4.1.1 Creating a DataFrame from a dictionary

The constructor’s first parameter, data, expects the data that will populate the Data-
Frame. One suitable input is a Python dictionary in which the keys are column names
and the values are column values. The next example passes a dictionary of string keys
and list values. Pandas returns a DataFrame with three columns. Each list element
becomes a value in its respective column:

In  [2] city_data = {
            "City": ["New York City", "Paris", "Barcelona", "Rome"],
            "Country": ["United States", "France", "Spain", "Italy"],
            "Population": [8600000, 2141000, 5515000, 2873000]
        }

        cities = pd.DataFrame(city_data)
        cities

Out [2]

            City         Country   Population

0  New York City   United States      8600000
1          Paris          France      2141000
2      Barcelona           Spain      5515000
3           Rome           Italy      2873000

Figure 4.1 A visual representation 
of a pandas DataFrame with five 
rows and two columns
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We officially have a DataFrame! Notice that the data structure is rendered differently
from a Series.

 A DataFrame holds an index of row labels. We did not provide the constructor a
custom index, so pandas generated a numeric one starting at 0. The logic operates the
same way it does on a Series.

 A DataFrame can hold multiple columns of data. It’s helpful to think of the col-
umn headers as a second index. City, Country, and Population are three index labels
on the column axis; pandas assigns them the index positions 0, 1, and 2, respectively.

 What if we wanted to swap the column headers with the index labels? Two options
are available here. We can invoke the transpose method on the DataFrame or
access its T attribute:

In  [3] # The two lines below are equivalent
        cities.transpose()
        cities.T

Out [3]

                        0        1          2        3

City        New York City    Paris  Barcelona     Rome
Country     United States   France      Spain    Italy
Population        8600000  2141000    5515000  2873000

The previous example serves as a reminder that pandas can store index labels of dif-
ferent data types. In the previous output, the columns use the same value for index
labels and index positions. The rows have different labels (City, Country, Population)
and positions (0, 1, and 2).

4.1.2 Creating a DataFrame from a NumPy ndarray

Let’s try one more example. The DataFrame constructor’s data parameter also
accepts a NumPy ndarray. We can generate an ndarray of any size with the rand-
int function in NumPy’s random module. The next example creates a 3 x 5 ndarray
of integers between 1 and 101 (exclusive):

In  [4] random_data = np.random.randint(1, 101, [3, 5])
        random_data

Out [4] array([[25, 22, 80, 43, 42],
              [40, 89,  7, 21, 25],
              [89, 71, 32, 28, 39]])

If you’d like more information on random data generation in NumPy, see appen-
dix C.

 Next, let’s pass our ndarray into the DataFrame constructor. The ndarray has
neither row labels nor column labels. Thus, pandas uses a numeric index for both the
row axis and column axis:
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In  [5] pd.DataFrame(data = random_data)

Out [5]

    0   1   2   3   4

0  25  22  80  43  42
1  40  89   7  21  25
2  89  71  32  28  39

We can manually set the row labels with the DataFrame constructor’s index parame-
ter, which accepts any iterable object, including a list, tuple, or ndarray. Note that
the iterable’s length must be equal to the data set’s number of rows. We’re passing a
3 x 5 ndarray, so we must provide three row labels:

In  [6] row_labels = ["Morning", "Afternoon", "Evening"]
        temperatures = pd.DataFrame(
            data = random_data, index = row_labels
        )
        temperatures

Out [6]

            0   1   2   3   4

Morning    25  22  80  43  42
Afternoon  40  89   7  21  25
Evening    89  71  32  28  39

We can set the column names with the constructor’s columns parameter. The ndar-
ray includes five columns, so we must pass an iterable with five items. The next exam-
ple passes the column names in a tuple:

In  [7] row_labels = ["Morning", "Afternoon", "Evening"]
        column_labels = (
            "Monday",
            "Tuesday",
            "Wednesday",
            "Thursday",
            "Friday",
        )

        pd.DataFrame(
            data = random_data,
            index = row_labels,
            columns = column_labels,
        )

Out [7]

           Monday  Tuesday  Wednesday  Thursday  Friday

Morning        25       22         80        43      42
Afternoon      40       89          7        21      25
Evening        89       71         32        28      39

Pandas permits duplicates in the row and column indices. In the next example,
"Morning" appears twice in the rows’ index labels, and "Tuesday" appears twice in
the columns’ index labels:
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In  [8] row_labels = ["Morning", "Afternoon", "Morning"]
        column_labels = [
            "Monday",
            "Tuesday",
            "Wednesday",
            "Tuesday",
            "Friday"
        ]

        pd.DataFrame(
            data = random_data,
            index = row_labels,
            columns = column_labels,
        )

Out [8]

           Monday  Tuesday  Wednesday  Tuesday  Friday

Morning        25       22         80       43      42
Afternoon      40       89          7       21      25
Evening        89       71         32       28      39

As we mentioned in earlier chapters, it’s ideal to have unique indices when possible. If
there are no duplicates, it is easier for pandas to extract a specific row or column.

4.2 Similarities between Series and DataFrames
Many Series attributes and methods are also available on DataFrames. Their imple-
mentations can vary; pandas must account for multiple columns and two separate axes
now.

4.2.1 Importing a DataFrame with the read_csv function

The nba.csv data set is a list of professional basketball players in the National Basket-
ball Association (NBA) during the 2019–20 season. Each row includes a player’s
name, team, position, birthday, and salary. A good mix of data types is scattered
throughout, making this data set excellent for exploring the basics of DataFrames.

 Let’s use the read_csv function at the top level of pandas to import the file (we
introduced this function in chapter 3). The function accepts a filename as its first argu-
ment and returns a DataFrame by default. Before you execute the following code,
please make sure that the data set is in the same directory as your Jupyter Notebook:

In  [9] pd.read_csv("nba.csv")

Out [9]

               Name                 Team    Position  Birthday     Salary

0      Shake Milton   Philadelphia 76ers          SG   9/26/96    1445697
1    Christian Wood      Detroit Pistons          PF   9/27/95    1645357
2     PJ Washington    Charlotte Hornets          PF   8/23/98    3831840
3      Derrick Rose      Detroit Pistons          PG   10/4/88    7317074
4     Marial Shayok   Philadelphia 76ers           G   7/26/95      79568
  …               …                    …           …         …          …
445   Austin Rivers      Houston Rockets          PG    8/1/92    2174310
446     Harry Giles     Sacramento Kings          PF   4/22/98    2578800
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447     Robin Lopez      Milwaukee Bucks           C    4/1/88    4767000
448   Collin Sexton  Cleveland Cavaliers          PG    1/4/99    4764960
449     Ricky Rubio         Phoenix Suns          PG  10/21/90   16200000

450 rows × 5 columns

At the bottom of the output, pandas informs us that the data has 450 rows and 5
columns.

 Before we assign the DataFrame to a variable, let’s make one optimization. Pandas
imports the Birthday column values as strings rather than as datetimes, limiting the
number of operations we can perform on them. We can use the parse_dates param-
eter to coerce the values into datetimes:

In  [10] pd.read_csv("nba.csv", parse_dates = ["Birthday"])

Out [10]

               Name                 Team Position   Birthday    Salary

0      Shake Milton   Philadelphia 76ers       SG 1996-09-26   1445697
1    Christian Wood      Detroit Pistons       PF 1995-09-27   1645357
2     PJ Washington    Charlotte Hornets       PF 1998-08-23   3831840
3      Derrick Rose      Detroit Pistons       PG 1988-10-04   7317074
4     Marial Shayok   Philadelphia 76ers        G 1995-07-26     79568
  …               …                    …        …          …         …
445   Austin Rivers      Houston Rockets       PG 1992-08-01   2174310
446     Harry Giles     Sacramento Kings       PF 1998-04-22   2578800
447     Robin Lopez      Milwaukee Bucks        C 1988-04-01   4767000
448   Collin Sexton  Cleveland Cavaliers       PG 1999-01-04   4764960
449     Ricky Rubio         Phoenix Suns       PG 1990-10-21  16200000

450 rows × 5 columns

Much better! Now we have a column of datetimes. Pandas displays the datetime values
in conventional YYYY-MM-DD format. I’m happy with the import, so we can assign the
DataFrame to a variable like nba:

In  [11] nba = pd.read_csv("nba.csv", parse_dates = ["Birthday"])

It’s helpful to think of a DataFrame as being a collection of Series objects with a
common index. In this example, the five columns in nba (Name, Team, Position,
Birthday, and Salary) share the same row index. Let’s get to work exploring the Data-
Frame.

4.2.2 Shared and exclusive attributes of Series and DataFrames

Attributes and methods may differ between Series and DataFrames, both in name
and implementation. Here’s an example. A Series has a dtype attribute that reveals
the data type of its values (see chapter 2). Notice that the dtype attribute is singular
because a Series can store only one data type:

In  [12] pd.Series([1, 2, 3]).dtype

Out [12] dtype('int64')
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By comparison, a DataFrame can hold heterogeneous data. Heterogeneous means
mixed or varied. One column can hold integers, and another can hold strings. A
DataFrame has a unique dtypes attribute. (Notice that the name is plural.) The
attribute returns a Series with the DataFrame’s columns as the index labels and the
columns’ data types as the values:

In  [13] nba.dtypes

Out [13] Name                object
         Team                object
         Position            object
         Birthday    datetime64[ns]
         Salary               int64
         dtype: object

The Name, Team, and Position columns list object as their data type. The object
data type is pandas’ lingo for complex objects including strings. Thus, the nba Data-
Frame has three string columns, one datetime column, and one integer column.

 We can invoke the value_counts method on the Series to count the number of
columns storing each data type:

In  [14] nba.dtypes.value_counts()

Out [14] object            3
         datetime64[ns]    1
         int64             1
         dtype: int64

dtype versus dtypes is one example of the different attributes between Series and
DataFrames. But the two data structures also have many attributes and methods in
common.

 A DataFrame consists of several smaller objects: an index that holds the row
labels, an index that holds the column labels, and a data container that holds the val-
ues. The index attribute exposes the index of the DataFrame:

In  [15] nba.index

Out [15] RangeIndex(start=0, stop=450, step=1)

Here, we have a RangeIndex, an index optimized for storing a sequence of numeric
values. A RangeIndex object includes three attributes: start (the inclusive lower
bound), stop (the exclusive upper bound), and step (the interval or step sequence
between every two values). The output above tells us that nba’s index starts counting
at 0 and proceeds to 450 in increments of 1.

 Pandas uses a separate index object to store a DataFrame’s columns. We can
access it via the columns attribute:

In  [16] nba.columns

Out [16] Index(['Name', 'Team', 'Position', 'Birthday', 'Salary'],
         dtype='object'
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This object is another type of index object: Index. Pandas uses this option when an
index consists of text values.

 The index attribute is an example of an attribute that a DataFrame shares with a
Series. The columns attribute is an example of an attribute that is exclusive to a
DataFrame. A Series has no concept of columns.

 The ndim attribute returns the number of dimensions in a pandas object. A Data-
Frame has two:

In  [17] nba.ndim

Out [17] 2

The shape attribute returns the DataFrame’s dimensions in a tuple. The nba data set
has 450 rows and 5 columns:

In  [18] nba.shape

Out [18] (450, 5)

The size attribute calculates the total number of values in the data set. Missing values
(such as  NaNs) are included in the count:

In  [19] nba.size

Out [19] 2250

If we want to exclude missing values, the count method returns a Series with the
counts of present values per column:

In  [20] nba.count()

Out [20] Name        450
         Team        450
         Position    450
         Birthday    450
         Salary      450
         dtype: int64

We can add all these Series values with the sum method to arrive at the number of
non-null values in the DataFrame. The nba DataFrame data set holds no missing val-
ues, so the size attribute and the sum method return the same result:

In  [21] nba.count().sum()

Out [21] 2250

Here’s an example illustrating the differences between the size attribute and the
count method. Let’s create a DataFrame with a missing value. We can access nan as a
top-level attribute on the NumPy package:

In  [22] data = {
             "A": [1, np.nan],
             "B": [2, 3]
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         }

         df = pd.DataFrame(data)
         df

Out [22]

     A  B

0  1.0  2
1  NaN  3

The size attribute returns 4 because the DataFrame has four cells:

In  [23] df.size

Out [23] 4

By comparison, the sum method returns 3 because the DataFrame has three non-null
values:

In  [24] df.count()

Out [24] A    1
         B    2
         dtype: int64

In  [25] df.count().sum()

Out [25] 3

The A column has one present value, and the B column has two present values.

4.2.3 Shared methods of Series and DataFrames

DataFrames and Series have methods in common too. We can use the head
method to extract rows from the top of a DataFrame, for example:

In  [26] nba.head(2)

Out [26]

             Name                Team Position   Birthday   Salary

0    Shake Milton  Philadelphia 76ers       SG 1996-09-26  1445697
1  Christian Wood     Detroit Pistons       PF 1995-09-27  1645357

The tail method returns rows from the bottom of the DataFrame:

In  [27] nba.tail(n = 3)

Out [27]

              Name                 Team Position   Birthday    Salary

447    Robin Lopez      Milwaukee Bucks        C 1988-04-01   4767000
448  Collin Sexton  Cleveland Cavaliers       PG 1999-01-04   4764960
449    Ricky Rubio         Phoenix Suns       PG 1990-10-21  16200000
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The two methods default to returning five rows when invoked without an argument:

In  [28] nba.tail()

Out [28]

              Name                 Team Position   Birthday    Salary

445  Austin Rivers      Houston Rockets       PG 1992-08-01   2174310
446    Harry Giles     Sacramento Kings       PF 1998-04-22   2578800
447    Robin Lopez      Milwaukee Bucks        C 1988-04-01   4767000
448  Collin Sexton  Cleveland Cavaliers       PG 1999-01-04   4764960
449    Ricky Rubio         Phoenix Suns       PG 1990-10-21  16200000

The sample method extracts random rows from the DataFrame. Its first parameter
specifies the number of rows:

In  [29] nba.sample(3)

Out [29]

                    Name                 Team Position    Birthday    Salary

225     Tomas Satoransky        Chicago Bulls       PG  1991-10-30  10000000
201        Javonte Green       Boston Celtics       SF  1993-07-23    898310
310  Matthew Dellavedova  Cleveland Cavaliers       PG  1990-09-08   9607500

Suppose that we want to find out how many teams, salaries, and positions exist in this
data set. In chapter 2, we used the nunique method to count the number of unique
values in a Series. When we invoke the same method on a DataFrame, it returns a
Series object with counts of unique values per column:

In  [30] nba.nunique()

Out [30] Name        450
         Team         30
         Position      9
         Birthday    430
         Salary      269
         dtype: int64

There are 30 unique teams, 269 unique salaries, and 9 unique positions in nba.
 You may also recall the max and min methods. On a DataFrame, the max method

returns a Series with the maximum value from each column. The maximum value in
a text column is the string closest to the end of the alphabet. The maximum value in a
datetime column is the latest date in chronological order:

In  [31] nba.max()

Out [31] Name             Zylan Cheatham
         Team         Washington Wizards
         Position                     SG
         Birthday    2000-12-23 00:00:00
         Salary                 40231758
         dtype: object
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The min method returns a Series with the minimum value from each column (the small-
est number, the string closest to the start of the alphabet, the earliest date, and so on):

In  [32] nba.min()

Out [32] Name               Aaron Gordon
         Team              Atlanta Hawks
         Position                      C
         Birthday    1977-01-26 00:00:00
         Salary                    79568
         dtype: object

What if we want to identify multiple max values, such as the four highest-paid players in
the data set? The nlargest method retrieves a subset of rows in which a given column
has the largest values in the DataFrame. We pass the number of rows to extract to its n
parameter and the column to use for sorting to its columns parameter. The next exam-
ple extracts the DataFrame rows that have the four largest values in the Salary column:

In  [33] nba.nlargest(n = 4, columns = "Salary")

Out [33]

                  Name                   Team Position   Birthday    Salary

205      Stephen Curry  Golden State Warriors       PG 1988-03-14  40231758
38          Chris Paul  Oklahoma City Thunder       PG 1985-05-06  38506482
219  Russell Westbrook        Houston Rockets       PG 1988-11-12  38506482
251          John Wall     Washington Wizards       PG 1990-09-06  38199000

Our next challenge is finding the three oldest players in the league. We can accom-
plish this task by getting the three earliest dates in the Birthday column. The nsmall-
est method can help us; it returns a subset of rows in which a given column has the
smallest values in the data set. The smallest datetime values are those that occur earli-
est in chronological order. Note that the nlargest and nsmallest methods can be
invoked only on numeric or datetime columns:

In  [34] nba.nsmallest(n = 3, columns = ["Birthday"])

Out [34]

              Name             Team Position   Birthday   Salary

98    Vince Carter    Atlanta Hawks       PF 1977-01-26  2564753
196  Udonis Haslem       Miami Heat        C 1980-06-09  2564753
262    Kyle Korver  Milwaukee Bucks       PF 1981-03-17  6004753

What if we want to calculate the sum of all NBA salaries? The DataFrame includes a
sum method for this purpose:

In  [35] nba.sum()

Out [35] Name        Shake MiltonChristian WoodPJ WashingtonDerrick...
         Team        Philadelphia 76ersDetroit PistonsCharlotte Hor...
         Position    SGPFPFPGGPFSGSFCSFPGPGFCPGSGPFCCPFPFSGPFPGSGSF...
         Salary                                             3444112694
         dtype: object
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We do get the answer we want, but the output is a bit messy. By default, pandas adds
the values in each column. For text columns, the library concatenates all strings into
one. To limit the addition to numeric volumes, we can pass True to the sum method’s
numeric_only parameter:

In  [36] nba.sum(numeric_only = True)

Out [36] Salary    3444112694
         dtype: int64

The total combined salaries of these 450 NBA players is a whopping $3.4 billion. We
can calculate the average salary with the mean method. The method accepts the same
numeric_only parameter to target only numeric columns:

In  [37] nba.mean(numeric_only = True)

Out [37] Salary    7.653584e+06
         dtype: float64

A DataFrame also includes methods for statistical calculations such as median, mode,
and standard deviation:

In  [38] nba.median(numeric_only = True)

Out [38] Salary    3303074.5
         dtype: float64

In  [39] nba.mode(numeric_only = True)

Out [39]

   Salary

0   79568

In  [40] nba.std(numeric_only = True)

Out [40] Salary    9.288810e+06
         dtype: float64

For advanced statistical methods, check out the official Series documentation
(http://mng.bz/myDa).

4.3 Sorting a DataFrame
Our data set’s rows arrived in jumbled, random order, but that’s no problem! We can
sort a DataFrame by one or more columns by using the sort_values method.

4.3.1 Sorting by a single column

Let’s first sort our players in alphabetical order by name. The sort_values method’s
first parameter, by, accepts the column that pandas should use to sort the DataFrame.
Let’s pass in the Name column as a string:

http://mng.bz/myDa
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In  [41] # The two lines below are equivalent
         nba.sort_values("Name")
         nba.sort_values(by = "Name")

Out [41]

                  Name                   Team Position   Birthday    Salary

52        Aaron Gordon          Orlando Magic       PF 1995-09-16  19863636
101      Aaron Holiday         Indiana Pacers       PG 1996-09-30   2239200
437        Abdel Nader  Oklahoma City Thunder       SF 1993-09-25   1618520
81         Adam Mokoka          Chicago Bulls        G 1998-07-18     79568
399  Admiral Schofield     Washington Wizards       SF 1997-03-30   1000000
…                    …                      …        …          …         …
159        Zach LaVine          Chicago Bulls       PG 1995-03-10  19500000
302       Zach Norvell     Los Angeles Lakers       SG 1997-12-09     79568
312       Zhaire Smith     Philadelphia 76ers       SG 1999-06-04   3058800
137    Zion Williamson   New Orleans Pelicans        F 2000-07-06   9757440
248     Zylan Cheatham   New Orleans Pelicans       SF 1995-11-17     79568

450 rows × 5 columns

The sort_values method’s ascending parameter determines the sort order; it has
a default argument of True. By default, pandas will sort a column of numbers in
increasing order, a column of strings in alphabetical order, and a column of datetimes
in chronological order.

 If we wanted to sort the names in reverse alphabetical order, we could pass the
ascending parameter a False instead:

In  [42] nba.sort_values("Name", ascending = False).head()

Out [42]

                Name                  Team Position   Birthday    Salary

248   Zylan Cheatham  New Orleans Pelicans       SF 1995-11-17     79568
137  Zion Williamson  New Orleans Pelicans        F 2000-07-06   9757440
312     Zhaire Smith    Philadelphia 76ers       SG 1999-06-04   3058800
302     Zach Norvell    Los Angeles Lakers       SG 1997-12-09     79568
159      Zach LaVine         Chicago Bulls       PG 1995-03-10  19500000

Here’s another example: what if we want to find the five youngest players in nba with-
out using the nsmallest method? We could sort the Birthday column in reverse
chronological order by using the sort_values method with ascending set to
False and then take five rows off the top with the head method:

In  [43] nba.sort_values("Birthday", ascending = False).head()

Out [43]

                    Name                  Team Position   Birthday   Salary

136      Sekou Doumbouya       Detroit Pistons       SF 2000-12-23  3285120
432  Talen Horton-Tucker    Los Angeles Lakers       GF 2000-11-25   898310
137      Zion Williamson  New Orleans Pelicans        F 2000-07-06  9757440
313           RJ Barrett       New York Knicks       SG 2000-06-14  7839960
392         Jalen Lecque          Phoenix Suns        G 2000-06-13   898310
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The youngest player in nba appears first in the output. That player is Sekou Doum-
bouya, who was born December 23, 2000.

4.3.2 Sorting by multiple columns

We can sort multiple columns in a DataFrame by passing a list to the sort_values
method’s by parameter. Pandas will sort the DataFrame’s columns consecutively in
the order in which they appear in the list. The next example sorts the nba DataFrame
first by the Team column and then by the Name column. Pandas defaults to ascending
sorts for all columns:

In  [44] nba.sort_values(by = ["Team", "Name"])

Out [44]

                Name                Team Position   Birthday    Salary

359         Alex Len       Atlanta Hawks        C 1993-06-16   4160000
167     Allen Crabbe       Atlanta Hawks       SG 1992-04-09  18500000
276  Brandon Goodwin       Atlanta Hawks       PG 1995-10-02     79568
438   Bruno Fernando       Atlanta Hawks        C 1998-08-15   1400000
194      Cam Reddish       Atlanta Hawks       SF 1999-09-01   4245720
  …                …                   …        …          …         …
418     Jordan McRae  Washington Wizards       PG 1991-03-28   1645357
273  Justin Robinson  Washington Wizards       PG 1997-10-12    898310
428    Moritz Wagner  Washington Wizards        C 1997-04-26   2063520
21     Rui Hachimura  Washington Wizards       PF 1998-02-08   4469160
36     Thomas Bryant  Washington Wizards        C 1997-07-31   8000000

450 rows × 5 columns

Here’s how you read the output. The Atlanta Hawks are the first team in the data set
when we sort teams by alphabetical order. Within the Atlanta Hawks, Alex Len’s name
comes first, followed by Allen Crabbe and Brandon Goodwin. Pandas repeats this sort-
ing logic for the remaining teams and names.

 We can pass a single Boolean to the ascending parameter to apply the same sort
order to each column. The next example passes False, so pandas first sorts the Team
column in descending order and then the Name column in descending order:

In  [45] nba.sort_values(["Team", "Name"], ascending = False)

Out [45]

                Name                Team Position   Birthday    Salary

36     Thomas Bryant  Washington Wizards        C 1997-07-31   8000000
21     Rui Hachimura  Washington Wizards       PF 1998-02-08   4469160
428    Moritz Wagner  Washington Wizards        C 1997-04-26   2063520
273  Justin Robinson  Washington Wizards       PG 1997-10-12    898310
418     Jordan McRae  Washington Wizards       PG 1991-03-28   1645357
  …                …                   …        …          …         …
194      Cam Reddish       Atlanta Hawks       SF 1999-09-01   4245720
438   Bruno Fernando       Atlanta Hawks        C 1998-08-15   1400000
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276  Brandon Goodwin       Atlanta Hawks       PG 1995-10-02     79568
167     Allen Crabbe       Atlanta Hawks       SG 1992-04-09  18500000
359         Alex Len       Atlanta Hawks        C 1993-06-16   4160000

450 rows × 5 columns

What if we want to sort each column in a different order? We might want to sort the
teams in ascending order and then sort the salaries within those teams in descending
order, for example. To accomplish this task, we can pass the ascending parameter a
list of Boolean values. The lists passed to the by and ascending parameters must be
equal in length. Pandas will use shared index positions between the two lists to match
each column with its associated sort order. In the next example, the Team column
occupies index position 0 in the by list; pandas matches it with the True at index posi-
tion 0 in the ascending list, so it sorts the column in ascending order. Pandas applies
the same logic to the Salary column and sorts it in descending order:

In  [46] nba.sort_values(
             by = ["Team", "Salary"], ascending = [True, False]
         )

Out [46]

                  Name                Team Position   Birthday    Salary

111   Chandler Parsons       Atlanta Hawks       SF 1988-10-25  25102512
28         Evan Turner       Atlanta Hawks       PG 1988-10-27  18606556
167       Allen Crabbe       Atlanta Hawks       SG 1992-04-09  18500000
213    De'Andre Hunter       Atlanta Hawks       SF 1997-12-02   7068360
339      Jabari Parker       Atlanta Hawks       PF 1995-03-15   6500000
  …                  …                   …        …          …         …
80         Isaac Bonga  Washington Wizards       PG 1999-11-08   1416852
399  Admiral Schofield  Washington Wizards       SF 1997-03-30   1000000
273    Justin Robinson  Washington Wizards       PG 1997-10-12    898310
283   Garrison Mathews  Washington Wizards       SG 1996-10-24     79568
353      Chris Chiozza  Washington Wizards       PG 1995-11-21     79568

450 rows × 5 columns

The data looks good, so let’s make our sort permanent. The sort_values method
supports the inplace parameter, but we’ll be explicit and reassign the returned
DataFrame to the nba variable (see chapter 3 for a discussion of the imperfections of
the inplace parameter):

In  [47] nba = nba.sort_values(
             by = ["Team", "Salary"],
             ascending = [True, False]
         )

Hooray—we’ve sorted our DataFrame by the values in the Team and Salary columns.
Now we can figure out which players on each team get paid the most.
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4.4 Sorting by index
With our permanent sort, our DataFrame is in a different order from when it arrived:

In  [48] nba.head()

Out [48]

                 Name           Team Position   Birthday    Salary

111  Chandler Parsons  Atlanta Hawks       SF 1988-10-25  25102512
28        Evan Turner  Atlanta Hawks       PG 1988-10-27  18606556
167      Allen Crabbe  Atlanta Hawks       SG 1992-04-09  18500000
213   De'Andre Hunter  Atlanta Hawks       SF 1997-12-02   7068360
339     Jabari Parker  Atlanta Hawks       PF 1995-03-15   6500000

How can we return it to its original form?

4.4.1 Sorting by row index

Our nba DataFrame still has its numeric index. If we could sort the data set by index
positions rather than by column values, we could return it to its original shape. The
sort_index method does just that:

In  [49] # The two lines below are equivalent
         nba.sort_index().head()
         nba.sort_index(ascending = True).head()

Out [49]

             Name                Team Position   Birthday   Salary

0    Shake Milton  Philadelphia 76ers       SG 1996-09-26  1445697
1  Christian Wood     Detroit Pistons       PF 1995-09-27  1645357
2   PJ Washington   Charlotte Hornets       PF 1998-08-23  3831840
3    Derrick Rose     Detroit Pistons       PG 1988-10-04  7317074
4   Marial Shayok  Philadelphia 76ers        G 1995-07-26    79568

We can also reverse the sort order by passing False to the method’s ascending
parameter. The next example shows the greatest index positions first:

In  [50] nba.sort_index(ascending = False).head()

Out [50]

              Name                 Team Position   Birthday    Salary

449    Ricky Rubio         Phoenix Suns       PG 1990-10-21  16200000
448  Collin Sexton  Cleveland Cavaliers       PG 1999-01-04   4764960
447    Robin Lopez      Milwaukee Bucks        C 1988-04-01   4767000
446    Harry Giles     Sacramento Kings       PF 1998-04-22   2578800
445  Austin Rivers      Houston Rockets       PG 1992-08-01   2174310

We’re back where we started, with the DataFrame sorted by index position. Let’s
assign this DataFrame back to the nba variable:

In  [51] nba = nba.sort_index()

Next up, let’s explore how we can sort our nba on its other axis.
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4.4.2 Sorting by column index

A DataFrame is a two-dimensional data structure. We can sort an additional axis: the
vertical axis.

 To sort the DataFrame columns in order, we’ll again rely on the sort_index
method. This time, however, we’ll need to add an axis parameter and pass it an argu-
ment of "columns" or 1. The next example sorts the columns in ascending order:

In  [52] # The two lines below are equivalent
         nba.sort_index(axis = "columns").head()
         nba.sort_index(axis = 1).head()

Out [52]

    Birthday            Name Position   Salary                Team

0 1996-09-26    Shake Milton       SG  1445697  Philadelphia 76ers
1 1995-09-27  Christian Wood       PF  1645357     Detroit Pistons
2 1998-08-23   PJ Washington       PF  3831840   Charlotte Hornets
3 1988-10-04    Derrick Rose       PG  7317074     Detroit Pistons
4 1995-07-26   Marial Shayok        G    79568  Philadelphia 76ers

How about sorting the columns in reverse alphabetical order? That task is a simple
one: we can pass the ascending parameter an argument of False. The next exam-
ple invokes the sort_index method, targets the columns with the axis parameter,
and sorts in descending order with the ascending parameter:

In  [53] nba.sort_index(axis = "columns", ascending = False).head()

Out [53]

                 Team   Salary Position            Name   Birthday

0  Philadelphia 76ers  1445697       SG    Shake Milton 1996-09-26
1     Detroit Pistons  1645357       PF  Christian Wood 1995-09-27
2   Charlotte Hornets  3831840       PF   PJ Washington 1998-08-23
3     Detroit Pistons  7317074       PG    Derrick Rose 1988-10-04
4  Philadelphia 76ers    79568        G   Marial Shayok 1995-07-26

Let’s take a second to reflect on the power of pandas. With two methods and a few
parameters, we were able to sort the DataFrame on both axes, by one column, by
multiple columns, in ascending order, in descending order, or in multiple orders.
Pandas is remarkably flexible. We only have to combine the right method with the
right arguments.

4.5 Setting a new index
At its core, our data set is a collection of players. Therefore, it seems fitting to use the
Name column’s values as the DataFrame’s index labels. Name also has the benefit of
being the only column with unique values.

 The set_index method returns a new DataFrame with a given column set as the
index. Its first parameter, keys, accepts the column name as a string:
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In  [54] # The two lines below are equivalent
         nba.set_index(keys = "Name")
         nba.set_index("Name")

Out [54]

                               Team Position   Birthday    Salary
Name

Shake Milton     Philadelphia 76ers       SG 1996-09-26   1445697
Christian Wood      Detroit Pistons       PF 1995-09-27   1645357
PJ Washington     Charlotte Hornets       PF 1998-08-23   3831840
Derrick Rose        Detroit Pistons       PG 1988-10-04   7317074
Marial Shayok    Philadelphia 76ers        G 1995-07-26     79568
             …                    …        …          …         …
Austin Rivers       Houston Rockets       PG 1992-08-01   2174310
Harry Giles        Sacramento Kings       PF 1998-04-22   2578800
Robin Lopez         Milwaukee Bucks        C 1988-04-01   4767000
Collin Sexton   Cleveland Cavaliers       PG 1999-01-04   4764960
Ricky Rubio            Phoenix Suns       PG 1990-10-21  16200000

450 rows × 4 columns

Looks good! Let’s overwrite our nba variable:

In  [55] nba = nba.set_index(keys = "Name")

As a side note, we can set the index when importing a data set. Pass the column name
as a string to the read_csv function’s index_col parameter. The following code
leads to the same DataFrame:

In  [56] nba = pd.read_csv(
             "nba.csv", parse_dates = ["Birthday"], index_col = "Name"
         )

Next, we’ll talk about selecting rows and columns from our DataFrame.

4.6 Selecting columns and rows from a DataFrame
A DataFrame is a collection of Series objects with a common index. Multiple syntax
options are available to extract one or more of these Series from the DataFrame.

4.6.1 Selecting a single column from a DataFrame

Each Series column is available as an attribute on the DataFrame. We use dot syntax
to access object attributes. We can extract the Salary column with nba.Salary, for
example. Notice that the index carries over from the DataFrame to the Series:

In  [57] nba.Salary

Out [57] Name
         Shake Milton       1445697
         Christian Wood     1645357
         PJ Washington      3831840
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         Derrick Rose       7317074
         Marial Shayok        79568
                             ...
         Austin Rivers      2174310
         Harry Giles        2578800
         Robin Lopez        4767000
         Collin Sexton      4764960
         Ricky Rubio       16200000
         Name: Salary, Length: 450, dtype: int64

We can also extract a column by passing its name in square brackets after the Data-
Frame:

In  [58] nba["Position"]

Out [58] Name
         Shake Milton      SG
         Christian Wood    PF
         PJ Washington     PF
         Derrick Rose      PG
         Marial Shayok      G
                           ..
         Austin Rivers     PG
         Harry Giles       PF
         Robin Lopez        C
         Collin Sexton     PG
         Ricky Rubio       PG
         Name: Position, Length: 450, dtype: object

The advantage of the square-bracket syntax is that it supports column names with
spaces. If our column was named "Player Position", we could extract it only via
square brackets:

nba["Player Position"]

The attribute syntax would raise an exception. Python has no way of knowing the sig-
nificance of the space and would assume that we’re trying to access a Player column:

nba.Player Position

Although opinions differ, I recommend using the square-bracket syntax for
extraction. I like solutions that work 100% of the time, even if they require typing a
few extra characters.

4.6.2 Selecting multiple columns from a DataFrame

To extract multiple DataFrame columns, declare a pair of opening and closing
square brackets; then pass the column names in a list. The result will be a new Data-
Frame whose columns are in the same order as the list elements. The next example
targets the Salary and Birthday columns:
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In  [59] nba[["Salary", "Birthday"]]

Out [59]

                  Salary   Birthday
Name

Shake Milton     1445697 1996-09-26
Christian Wood   1645357 1995-09-27
PJ Washington    3831840 1998-08-23
Derrick Rose     7317074 1988-10-04
Marial Shayok      79568 1995-07-26

Pandas will extract the columns based on their order in the list:

In  [60] nba[["Birthday", "Salary"]].head()

Out [60]

                 Birthday   Salary
Name

Shake Milton   1996-09-26  1445697
Christian Wood 1995-09-27  1645357
PJ Washington  1998-08-23  3831840
Derrick Rose   1988-10-04  7317074
Marial Shayok  1995-07-26    79568

We can use the select_dtypes method to select columns based on their data types.
The method accepts two parameters, include and exclude. The parameters accept
a single string or a list, representing the column type(s) that pandas should keep or
discard. As a reminder, you can access the dtypes attribute if you’d like to see each
column’s datatype. The next example selects only string columns from nba:

In  [61] nba.select_dtypes(include = "object")

Out [61]

                               Team Position
Name

Shake Milton     Philadelphia 76ers       SG
Christian Wood      Detroit Pistons       PF
PJ Washington     Charlotte Hornets       PF
Derrick Rose        Detroit Pistons       PG
Marial Shayok    Philadelphia 76ers        G
             …                    …        …
Austin Rivers       Houston Rockets       PG
Harry Giles        Sacramento Kings       PF
Robin Lopez         Milwaukee Bucks        C
Collin Sexton   Cleveland Cavaliers       PG
Ricky Rubio            Phoenix Suns       PG

450 rows × 2 columns
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The next example selects all columns except string and integer columns:

In  [62] nba.select_dtypes(exclude = ["object", "int"])

Out [62]

                 Birthday
Name

Shake Milton   1996-09-26
Christian Wood 1995-09-27
PJ Washington  1998-08-23
Derrick Rose   1988-10-04
Marial Shayok  1995-07-26
             …          …
Austin Rivers  1992-08-01
Harry Giles    1998-04-22
Robin Lopez    1988-04-01
Collin Sexton  1999-01-04
Ricky Rubio    1990-10-21

450 rows × 1 columns

The Birthday column is the only column in nba that holds neither string nor integer
values. To include or exclude datetime columns, we can pass an argument of "date-
time" to the correct parameter.

4.7 Selecting rows from a DataFrame
Now that we’ve practiced extracting columns, let’s learn how to extract DataFrame
rows by index label or position.

4.7.1 Extracting rows by index label

The loc attribute extracts a row by label. We call attributes such as loc accessors
because they access a piece of data. Type a pair of square brackets immediately after
loc and pass in the target index label. The next example extracts the nba row with an
index label of "LeBron James". Pandas returns the row’s values in a Series. As
always, be mindful of case sensitivity:

In  [63] nba.loc["LeBron James"]

Out [63] Team         Los Angeles Lakers
         Position                     PF
         Birthday    1984-12-30 00:00:00
         Salary                 37436858
         Name: LeBron James, dtype: object

We can pass a list in between the square brackets to extract multiple rows. When the
results set includes multiple records, pandas stores the results in a DataFrame:
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In  [64] nba.loc[["Kawhi Leonard", "Paul George"]]

Out [64]

                               Team Position   Birthday    Salary
Name

Kawhi Leonard  Los Angeles Clippers       SF 1991-06-29  32742000
Paul George    Los Angeles Clippers       SF 1990-05-02  33005556

Pandas organizes the rows in the order in which their index labels appear in the list.
The next example swaps the string order from the previous example:

In  [65] nba.loc[["Paul George", "Kawhi Leonard"]]

Out [65]

                               Team Position   Birthday    Salary
Name

Paul George    Los Angeles Clippers       SF 1990-05-02  33005556
Kawhi Leonard  Los Angeles Clippers       SF 1991-06-29  32742000

We can use loc to extract a sequence of index labels. The syntax mirrors Python’s list
slicing syntax. We provide the starting value, a colon, and the ending value. For
extractions like this one, I strongly recommended sorting the index first, as it acceler-
ates the speed with which pandas finds the value.

 Let’s say we wanted to target all players between Otto Porter and Patrick Beverley.
We can sort the DataFrame index to get the player names in alphabetical order and
then provide the two player names to the loc accessor. "Otto Porter" represents
our lower bound, and "Patrick Beverley" represents the upper bound:

In  [66] nba.sort_index().loc["Otto Porter":"Patrick Beverley"]

Out [66]

                                  Team Position   Birthday    Salary
Name

Otto Porter              Chicago Bulls       SF 1993-06-03  27250576
PJ Dozier               Denver Nuggets       PG 1996-10-25     79568
PJ Washington        Charlotte Hornets       PF 1998-08-23   3831840
Pascal Siakam          Toronto Raptors       PF 1994-04-02   2351838
Pat Connaughton        Milwaukee Bucks       SG 1993-01-06   1723050
Patrick Beverley  Los Angeles Clippers       PG 1988-07-12  12345680

Note that pandas’ loc accessor has some differences with Python’s list-slicing syntax.
For one, the loc accessor includes the label at the upper bound, whereas Python’s list
slicing syntax excludes the value at the upper bound.

 Here’s a quick example to remind you. The next example uses list-slicing syntax to
extract the elements from index 0 to index 2 in a list of three elements. Index 2 ("PJ
Washington") is exclusive, so Python leaves it out:

In  [67] players = ["Otto Porter", "PJ Dozier", "PJ Washington"]
         players[0:2]

Out [67] ['Otto Porter', 'PJ Dozier']
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We can use loc to pull rows from the middle of the DataFrame to its end. Pass the
square brackets the starting index label and a colon:

In  [68] nba.sort_index().loc["Zach Collins":]

Out [68]

                                   Team Position   Birthday    Salary
Name

Zach Collins     Portland Trail Blazers        C 1997-11-19   4240200
Zach LaVine               Chicago Bulls       PG 1995-03-10  19500000
Zach Norvell         Los Angeles Lakers       SG 1997-12-09     79568
Zhaire Smith         Philadelphia 76ers       SG 1999-06-04   3058800
Zion Williamson    New Orleans Pelicans        F 2000-07-06   9757440
Zylan Cheatham     New Orleans Pelicans       SF 1995-11-17     79568

Turning in the other direction, we can use loc slicing to pull rows from the beginning
of the DataFrame to a specific index label. Start with a colon and then enter the
index label to extract to. The next example returns all players from the start to the
data set up to Al Horford:

In  [69] nba.sort_index().loc[:"Al Horford"]

Out [69]

                                    Team Position   Birthday    Salary
Name

Aaron Gordon               Orlando Magic       PF 1995-09-16  19863636
Aaron Holiday             Indiana Pacers       PG 1996-09-30   2239200
Abdel Nader        Oklahoma City Thunder       SF 1993-09-25   1618520
Adam Mokoka                Chicago Bulls        G 1998-07-18     79568
Admiral Schofield     Washington Wizards       SF 1997-03-30   1000000
Al Horford            Philadelphia 76ers        C 1986-06-03  28000000

Pandas will raise an exception if the index label does not exist in the DataFrame:

In  [70] nba.loc["Bugs Bunny"]

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)

KeyError: 'Bugs Bunny'

As its name suggests, the KeyError exception communicates that a key does not exist
in a given data structure.

4.7.2 Extracting rows by index position

The iloc (index location) accessor extracts rows by index position, which is helpful
when the position of our rows has significance in our data set. The syntax is similar to
the one we used for loc. Enter a pair of square brackets after iloc, and pass in an
integer. Pandas will extract the row at that index:
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In  [71] nba.iloc[300]

Out [71] Team             Denver Nuggets
         Position                     PF
         Birthday    1999-04-03 00:00:00
         Salary                  1416852
         Name: Jarred Vanderbilt, dtype: object

The iloc accessor also accepts a list of index positions to target multiple records. The
next example pulls out the players at index positions 100, 200, 300, and 400:

In  [72] nba.iloc[[100, 200, 300, 400]]

Out [72]

                                Team Position   Birthday   Salary
Name

Brian Bowen           Indiana Pacers       SG 1998-10-02    79568
Marco Belinelli    San Antonio Spurs       SF 1986-03-25  5846154
Jarred Vanderbilt     Denver Nuggets       PF 1999-04-03  1416852
Louis King           Detroit Pistons        F 1999-04-06    79568

We can use list-slicing syntax with the iloc accessor as well. Note, however, that pan-
das excludes the index position after the colon. The next example passes a slice of
400:404. Pandas includes the rows at index positions 400, 401, 402, and 403, and
excludes the row at index 404:

In  [73] nba.iloc[400:404]

Out [73]

                                    Team Position   Birthday    Salary
Name

Louis King               Detroit Pistons        F 1999-04-06     79568
Kostas Antetokounmpo  Los Angeles Lakers       PF 1997-11-20     79568
Rodions Kurucs             Brooklyn Nets       PF 1998-02-05   1699236
Spencer Dinwiddie          Brooklyn Nets       PG 1993-04-06  10605600

We can leave out the number before the colon to pull from the start of the Data-
Frame. Here, we target rows from the beginning of nba up to (but not including)
index position 2:

In  [74] nba.iloc[:2]

Out [74]

                              Team Position   Birthday   Salary
Name

Shake Milton    Philadelphia 76ers       SG 1996-09-26  1445697
Christian Wood     Detroit Pistons       PF 1995-09-27  1645357

Similarly, we can remove the number after the colon to pull to the end of the Data-
Frame. Here, we target the rows from index position 447 to the end of nba:
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In  [75] nba.iloc[447:]

Out [75]

                              Team Position   Birthday    Salary
Name

Robin Lopez        Milwaukee Bucks        C 1988-04-01   4767000
Collin Sexton  Cleveland Cavaliers       PG 1999-01-04   4764960
Ricky Rubio           Phoenix Suns       PG 1990-10-21  16200000

We can also pass negative numbers for either value or both values. The next example
extracts rows from the 10th-to-last row up to (but not including) the sixth-to-last row:

In  [76] nba.iloc[-10:-6]

Out [76]

                                    Team Position   Birthday   Salary
Name

Jared Dudley          Los Angeles Lakers       PF 1985-07-10  2564753
Max Strus                  Chicago Bulls       SG 1996-03-28    79568
Kevon Looney       Golden State Warriors        C 1996-02-06  4464286
Willy Hernangomez      Charlotte Hornets        C 1994-05-27  1557250

We can provide a third number inside the square brackets to create the step sequence,
a gap between every two index positions. The next example pulls the first 10 nba rows
in increments of 2. The resulting DataFrame includes the rows with index positions 0,
2, 4, 6, and 8:

In  [77] nba.iloc[0:10:2]

Out [77]

                             Team Position   Birthday    Salary
Name

Shake Milton   Philadelphia 76ers       SG 1996-09-26   1445697
PJ Washington   Charlotte Hornets       PF 1998-08-23   3831840
Marial Shayok  Philadelphia 76ers        G 1995-07-26     79568
Kendrick Nunn          Miami Heat       SG 1995-08-03   1416852
Brook Lopez       Milwaukee Bucks        C 1988-04-01  12093024

This slicing technique is particularly effective when we want to pull out every other row.

4.7.3 Extracting values from specific columns

Both the loc and iloc attributes accept a second argument representing the col-
umn(s) to extract. If we’re using loc, we have to provide the column name. If we’re
using iloc, we have to provide the column position. The next example uses loc to
pull the value at the intersection of the "Giannis Antetokounmpo" row and the
Team column:

In  [78] nba.loc["Giannis Antetokounmpo", "Team"]

Out [78] 'Milwaukee Bucks'
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To specify multiple values, we can pass a list for one or both of the arguments to the
loc accessor. The next example extracts the row with a "James Harden" index label
and the values from the Position and Birthday columns. Pandas returns a Series:

In  [79] nba.loc["James Harden", ["Position", "Birthday"]]

Out [79] Position                     PG
         Birthday    1989-08-26 00:00:00
         Name: James Harden, dtype: object

The next example provides multiple row labels and multiple columns:

In  [80] nba.loc[
             ["Russell Westbrook", "Anthony Davis"],
             ["Team", "Salary"]
         ]

Out [80]

                                 Team    Salary
Name

Russell Westbrook     Houston Rockets  38506482
Anthony Davis      Los Angeles Lakers  27093019

We can also use list-slicing syntax to extract multiple columns without explicitly writ-
ing out their names. We have four columns in our data set (Team, Position, Birthday,
and Salary). Let’s extract all columns from Position to Salary. Pandas includes both
endpoints in a loc slice:

In  [81] nba.loc["Joel Embiid", "Position":"Salary"]

Out [81] Position                      C
         Birthday    1994-03-16 00:00:00
         Salary                 27504630
         Name: Joel Embiid, dtype: object

We must pass the column names in the order in which they appear in the DataFrame.
The next example yields an empty result because the Salary column comes after the
Position column. Pandas is unable to identify which columns to pull out:

In  [82] nba.loc["Joel Embiid", "Salary":"Position"]

Out [82] Series([], Name: Joel Embiid, dtype: object)

Let’s say we wanted to target columns by their order rather than by their name.
Remember that pandas assigns an index position to each DataFrame column. In nba,
the Team column has an index of 0, Position has an index of 1, and so on. We can pass
a column’s index as the second argument to iloc. The next example targets the value
at the intersection of the row at index 57 and the column at index 3 (Salary):

In  [83] nba.iloc[57, 3]

Out [83] 796806
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We can use list-slicing syntax here as well. The next example pulls all rows from index
position 100 up to but not including index position 104. It also includes all columns
from the beginning of the columns up to but not including the column at index posi-
tion 3 (Salary):

In  [84] nba.iloc[100:104, :3]

Out [84]

                             Team Position   Birthday
Name

Brian Bowen        Indiana Pacers       SG 1998-10-02
Aaron Holiday      Indiana Pacers       PG 1996-09-30
Troy Daniels   Los Angeles Lakers       SG 1991-07-15
Buddy Hield      Sacramento Kings       SG 1992-12-17

The iloc and loc accessors are remarkably versatile. Their square brackets can
accept a single value, a list of values, a list slice, and more. The disadvantage of this
flexibility is that it demands extra overhead; pandas has to figure out what kind of
input we’ve given to iloc or loc.

 We can use two alternative attributes, at and iat, when we know that we want to
extract a single value from a DataFrame. The two attributes are speedier because pan-
das can optimize its searching algorithms when looking for a single value.

 The syntax is similar. The at attribute accepts row and column labels:

In  [85] nba.at["Austin Rivers", "Birthday"]

Out [85] Timestamp('1992-08-01 00:00:00')

The iat attribute accepts row and column indices:

In  [86] nba.iat[263, 1]

Out [86] 'PF'

Jupyter Notebook includes several magic methods to help enhance our developer
experience. We declare magic methods with a %% prefix and enter them alongside our
regular Python code. One example is %%timeit, which runs the code in a cell and
calculates the average time it takes to execute. %%timeit sometimes runs the cell up
to 100,000 times! The next examples use the magic method to compare the speed of
the accessors we’ve explored so far:

In  [87] %%timeit
         nba.at["Austin Rivers", "Birthday"]

6.38 µs ± 53.6 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In  [88] %%timeit
         nba.loc["Austin Rivers", "Birthday"]

9.12 µs ± 53.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
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In  [89] %%timeit
         nba.iat[263, 1]

4.7 µs ± 27.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In  [90] %%timeit
         nba.iloc[263, 1]

7.41 µs ± 39.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

The results are subject to some variance between different computers but show the
clear speed advantage of at and iat over loc and iloc.

4.8 Extracting values from Series
The loc, iloc, at, and iat accessors are available on Series objects as well. We can
practice on a sample Series from our DataFrame, such as Salary:

In  [91] nba["Salary"].loc["Damian Lillard"]

Out [91] 29802321

In  [92] nba["Salary"].at["Damian Lillard"]

Out [92] 29802321

In  [93] nba["Salary"].iloc[234]

Out [93] 2033160

In  [94] nba["Salary"].iat[234]

Out [94] 2033160

Feel free to use whatever accessors work best for you.

4.9 Renaming columns or rows
Do you recall the columns attribute? It exposes the Index object that stores the
DataFrame’s column names:

In  [95] nba.columns

Out [95] Index(['Team', 'Position', 'Birthday', 'Salary'], dtype='object')

We can rename any or all of a DataFrame’s columns by assigning a list of new names
to the attribute. The next example changes the name of the Salary column to Pay:

In  [96] nba.columns = ["Team", "Position", "Date of Birth", "Pay"]
         nba.head(1)

Out [96]

                            Team Position Date of Birth      Pay
Name

Shake Milton  Philadelphia 76ers       SG    1996-09-26  1445697
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The rename method is an alternative option that accomplishes the same result. We
can pass to its columns parameter a dictionary in which the keys are the existing col-
umn names and the values are their new names. The next example alters the Date of
Birth column’s name to Birthday:

In  [97] nba.rename(columns = { "Date of Birth": "Birthday" })

Out [97]

                               Team Position   Birthday       Pay
Name

Shake Milton     Philadelphia 76ers       SG 1996-09-26   1445697
Christian Wood      Detroit Pistons       PF 1995-09-27   1645357
PJ Washington     Charlotte Hornets       PF 1998-08-23   3831840
Derrick Rose        Detroit Pistons       PG 1988-10-04   7317074
Marial Shayok    Philadelphia 76ers        G 1995-07-26     79568
            …               …              …          …         …
Austin Rivers       Houston Rockets       PG 1992-08-01   2174310
Harry Giles        Sacramento Kings       PF 1998-04-22   2578800
Robin Lopez         Milwaukee Bucks        C 1988-04-01   4767000
Collin Sexton   Cleveland Cavaliers       PG 1999-01-04   4764960
Ricky Rubio            Phoenix Suns       PG 1990-10-21  16200000

450 rows × 4 columns

Let’s make the operation permanent by assigning the returned DataFrame to the nba
variable:

In  [98] nba = nba.rename(columns = { "Date of Birth": "Birthday" })

We can also rename index labels by passing a dictionary to the method’s index
parameter. The same logic applies; the keys are the old labels, and the values are the
new ones. The following example swaps "Giannis Antetokounmpo" with his popu-
lar nickname "Greek Freak":

In  [99] nba.loc["Giannis Antetokounmpo"]

Out [99] Team                 Milwaukee Bucks
         Position                          PF
         Birthday         1994-12-06 00:00:00
         Pay                         25842697

         Name: Giannis Antetokounmpo, dtype: object

In  [100] nba = nba.rename(
              index = { "Giannis Antetokounmpo": "Greek Freak" }
          )

Let’s try looking up the row by its new label:

In  [101] nba.loc["Greek Freak"]

Out [101] Team                 Milwaukee Bucks
          Position                          PF
          Birthday         1994-12-06 00:00:00
          Pay                         25842697
          Name: Greek Freak, dtype: object
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We’ve successfully changed the row label!

4.10 Resetting an index
Sometimes, we want to set another column as the index of our DataFrame. Let’s say
we wanted to make Team the index of nba. We could invoke the set_index method
we introduced earlier in the chapter with a different column, but we would lose our
current index of player names. Take a look at this example:

In  [102] nba.set_index("Team").head()

Out [102]

                   Position   Birthday   Salary
Team

Philadelphia 76ers       SG 1996-09-26  1445697
Detroit Pistons          PF 1995-09-27  1645357
Charlotte Hornets        PF 1998-08-23  3831840
Detroit Pistons          PG 1988-10-04  7317074
Philadelphia 76ers        G 1995-07-26    79568

To preserve the players’ names, we must first reintegrate the existing index as a regu-
lar column in the DataFrame. The reset_index method moves the current index to
a DataFrame column and replaces the former index with pandas’ numeric index:

In  [103] nba.reset_index().head()

Out [103]

               Name                 Team Position   Birthday    Salary

0      Shake Milton   Philadelphia 76ers       SG 1996-09-26   1445697
1    Christian Wood      Detroit Pistons       PF 1995-09-27   1645357
2     PJ Washington    Charlotte Hornets       PF 1998-08-23   3831840
3      Derrick Rose      Detroit Pistons       PG 1988-10-04   7317074
4     Marial Shayok   Philadelphia 76ers        G 1995-07-26     79568

Now we can use the set_index method to move the Team column to the index with
no data loss:

In  [104] nba.reset_index().set_index("Team").head()

Out [104]

                              Name Position   Birthday   Salary
Team

Philadelphia 76ers    Shake Milton       SG 1996-09-26  1445697
Detroit Pistons     Christian Wood       PF 1995-09-27  1645357
Charlotte Hornets    PJ Washington       PF 1998-08-23  3831840
Detroit Pistons       Derrick Rose       PG 1988-10-04  7317074
Philadelphia 76ers   Marial Shayok        G 1995-07-26    79568

One advantage of avoiding the inplace parameter is that we can chain multiple
method calls. Let’s chain the reset_index and set_index method calls and over-
write the nba variable with the result:

In  [105] nba = nba.reset_index().set_index("Team")
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That’s all there is to cover. You’re now acquainted with the DataFrame, the core work-
horse of the pandas library.

4.11 Coding challenge
Now that we’ve explored the NBA’s financials, let’s apply the chapter’s concepts in a
different sports league.

4.11.1 Problems

The nfl.csv file contains a list of players in the National Football League with similar
Name, Team, Position, Birthday, and Salary columns. See whether you can answer
these questions:

1 How can we import the nfl.csv file? What’s an effective way to convert the values
in its Birthday column to datetimes?

2 What are the two ways we can set the DataFrame index to store the player
names?

3 How can we count the number of players per team in this data set?
4 Who are the five highest-paid players?
5 How can we sort the data set first by teams in alphabetical order and then by sal-

ary in descending order?
6 Who is the oldest player on the New York Jets roster, and what is his birthday?

4.11.2 Solutions

Let’s walk through the challenges step by step:

1 We can import the CSV with the read_csv function. To store the Birthday col-
umn values as datetimes, we’ll pass the column to the parse_dates parameter
in a list:

In  [106] nfl = pd.read_csv("nfl.csv", parse_dates = ["Birthday"])
          nfl

Out [106]

                    Name                  Team Position   Birthday   Salary

0           Tremon Smith   Philadelphia Eagles       RB 1996-07-20   570000
1         Shawn Williams    Cincinnati Bengals       SS 1991-05-13  3500000
2            Adam Butler  New England Patriots       DT 1994-04-12   645000
3            Derek Wolfe        Denver Broncos       DE 1990-02-24  8000000
4              Jake Ryan  Jacksonville Jaguars      OLB 1992-02-27  1000000
   …                   …                     …        …          …        …
1650    Bashaud Breeland    Kansas City Chiefs       CB 1992-01-30   805000
1651         Craig James   Philadelphia Eagles       CB 1996-04-29   570000
1652  Jonotthan Harrison         New York Jets        C 1991-08-25  1500000
1653         Chuma Edoga         New York Jets       OT 1997-05-25   495000
1654        Tajae Sharpe      Tennessee Titans       WR 1994-12-23  2025000

1655 rows × 5 columns
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2 Our next challenge is setting the player names as the index labels. Our option is
to invoke the set_index method and assign the new DataFrame to the nfl
variable:

In  [107] nfl = nfl.set_index("Name")

Another option is to provide the index_col parameter to the read_csv func-
tion when importing the data set:

In  [108] nfl = pd.read_csv(
              "nfl.csv", index_col = "Name", parse_dates = ["Birthday"]
          )

The result will be the same either way:

In  [109] nfl.head()

Out [109]

                                Team Position   Birthday   Salary
Name

Tremon Smith     Philadelphia Eagles       RB 1996-07-20   570000
Shawn Williams    Cincinnati Bengals       SS 1991-05-13  3500000
Adam Butler     New England Patriots       DT 1994-04-12   645000
Derek Wolfe           Denver Broncos       DE 1990-02-24  8000000
Jake Ryan       Jacksonville Jaguars      OLB 1992-02-27  1000000

3 To count the number of players per team, we can invoke the value_counts
method on the Team column. First, we need to extract the Team Series with
dot syntax or square brackets:

In  [110] # The two lines below are equivalent
          nfl.Team.value_counts().head()
          nfl["Team"].value_counts().head()

Out [110] New York Jets           58
          Washington Redskins     56
          Kansas City Chiefs      56
          San Francisco 49Ers     55
          New Orleans Saints      55

4 To identify the five highest-paid players, we can use the sort_values method
to sort the Salary column. To tell pandas to sort in descending order, we can
pass the ascending parameter an argument of False. Another option is the
nlargest method:

In  [111] nfl.sort_values("Salary", ascending = False).head()

Out [111]

                                 Team Position   Birthday    Salary
Name

Kirk Cousins        Minnesota Vikings       QB 1988-08-19  27500000
Jameis Winston   Tampa Bay Buccaneers       QB 1994-01-06  20922000
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Marcus Mariota       Tennessee Titans       QB 1993-10-30  20922000
Derek Carr            Oakland Raiders       QB 1991-03-28  19900000
Jimmy Garoppolo   San Francisco 49Ers       QB 1991-11-02  17200000

5 To sort by multiple columns, we’ll have to pass arguments to both the by and
ascending parameters of the sort_values method. The following code sorts
the Team column in ascending order followed by the Salary column in descend-
ing order:

In  [112] nfl.sort_values(
              by = ["Team", "Salary"],
              ascending = [True, False]
          )

Out [112]

                                   Team Position   Birthday    Salary
Name

Chandler Jones        Arizona Cardinals      OLB 1990-02-27  16500000
Patrick Peterson      Arizona Cardinals       CB 1990-07-11  11000000
Larry Fitzgerald      Arizona Cardinals       WR 1983-08-31  11000000
David Johnson         Arizona Cardinals       RB 1991-12-16   5700000
Justin Pugh           Arizona Cardinals        G 1990-08-15   5000000
                 …                   …         …          …         …
Ross Pierschbacher  Washington Redskins        C 1995-05-05    495000
Kelvin Harmon       Washington Redskins       WR 1996-12-15    495000
Wes Martin          Washington Redskins        G 1996-05-09    495000
Jimmy Moreland      Washington Redskins       CB 1995-08-26    495000
Jeremy Reaves       Washington Redskins       SS 1996-08-29    495000

1655 rows × 4 columns

6 The final challenge is a tricky one: we have to find the oldest player on the New
York Jets roster. Given the current tools at our disposal, we can set the Team col-
umn as the DataFrame index to allow for easy extraction of all Jets players. To pre-
serve the player names currently in our index, we’ll first use the reset_index
method to move them back into the DataFrame as a regular column:

In  [113] nfl = nfl.reset_index().set_index(keys = "Team")
          nfl.head(3)

Out [113]

                                Name Position   Birthday   Salary
Team

Philadelphia Eagles     Tremon Smith       RB 1996-07-20   570000
Cincinnati Bengals    Shawn Williams       SS 1991-05-13  3500000
New England Patriots     Adam Butler       DT 1994-04-12   645000

Next, we can use the loc attribute to isolate all players on the New York Jets:

In  [114] nfl.loc["New York Jets"].head()

Out [114]
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                           Name Position   Birthday   Salary
Team

New York Jets   Bronson Kaufusi       DE 1991-07-06   645000
New York Jets    Darryl Roberts       CB 1990-11-26  1000000
New York Jets     Jordan Willis       DE 1995-05-02   754750
New York Jets  Quinnen Williams       DE 1997-12-21   495000
New York Jets        Sam Ficken        K 1992-12-14   495000

The last step is to sort the Birthday column and extract the top record. This sort
is possible only because we converted the column’s values to datetimes:

In  [115] nfl.loc["New York Jets"].sort_values("Birthday").head(1)

Out [115]

                     Name Position   Birthday   Salary
Team

New York Jets  Ryan Kalil        C 1985-03-29  2400000

The oldest player on the New York Jets in this data set is Ryan Kalil. His birthday was
March 29, 1985.

 Congratulations on completing the coding challenge!

Summary
 The DataFrame is a two-dimensional data structure consisting of rows and

columns.
 The DataFrame shares attributes and methods with the Series. Many of the

attributes and methods operate differently due to the dimensional differences
between the two objects.

 The sort_values method sorts one or more DataFrame columns. We can
assign each column a different sort order (ascending or descending).

 The loc attribute extracts rows or columns by index label. The at attribute is a
convenient shortcut for targeting only one value.

 The iloc attribute extracts rows or columns by index position. The iat attri-
bute is a convenient shortcut for targeting only one value.

 The reset_index method restores an index as a regular column in the Data-
Frame.

 The rename method sets a different name for one or more columns or rows.



Filtering a DataFrame
In chapter 4, we learned how to extract rows, columns, and cell values from a
DataFrame by using the loc and iloc accessors. These accessors work well when
we know the index labels and positions of the rows/columns we want to target.
Sometimes, we may want to target rows not by an identifier but by a condition or a
criterion. We may want to extract a subset of rows in which a column holds a spe-
cific value, for example.

This chapter covers
 Reducing a DataFrame’s memory use

 Extracting DataFrame rows by one or more 
conditions

 Filtering a DataFrame for rows that include or 
exclude null values

 Selecting column values that fall between a range

 Removing duplicate and null values from a 
DataFrame
113



114 CHAPTER 5 Filtering a DataFrame
 In this chapter, we’ll learn how to declare logical conditions that include and
exclude rows from a DataFrame. We’ll see how to combine multiple conditions by
using AND and OR logic. Finally, we’ll introduce some pandas utility methods that sim-
plify the filtering process. Lots of fun lies ahead, so let’s jump in.

5.1 Optimizing a data set for memory use
Before we segue into filtering, let’s quickly talk about reducing memory in pandas.
Whenever importing a data set, it’s important to consider whether each column stores
its data in the most optimal type. The “best” data type is the one that consumes the
least memory or provides the most utility. Integers occupy less memory than floating-
point numbers on most computers, for example, so if your data set includes whole
numbers, it’s ideal to import them as integers rather than floating-points. As another
example, if your data set includes dates, it’s ideal to import them as datetimes rather
than as strings, which allows for datetime-specific operations. In this section, we’ll
learn some tips and tricks to shrink memory consumption by converting column data
to different types, which will facilitate faster filtering later. Let’s begin with the usual
import of our favorite data analysis library:

In  [1] import pandas as pd

This chapter’s employees.csv data set is a fictional collection of workers at a company.
Each record includes the employee’s first name, gender, start date at the firm, salary,
manager status (True or False), and team. Let’s take a peek at the data set with the
read_csv function:

In  [2] pd.read_csv("employees.csv")

Out [2]

     First Name  Gender Start Date    Salary   Mgmt          Team

0       Douglas    Male     8/6/93       NaN   True     Marketing
1        Thomas    Male    3/31/96   61933.0   True           NaN
2         Maria  Female        NaN  130590.0  False       Finance
3         Jerry     NaN     3/4/05  138705.0   True       Finance
4         Larry    Male    1/24/98  101004.0   True            IT
  …           …       …          …         …      …             …
996     Phillip    Male    1/31/84   42392.0  False       Finance
997     Russell    Male    5/20/13   96914.0  False       Product
998       Larry    Male    4/20/13   60500.0  False  Business Dev
999      Albert    Male    5/15/12  129949.0   True         Sales
1000        NaN     NaN        NaN       NaN    NaN           NaN

1001 rows × 6 columns

Take a second to notice the NaNs scattered throughout the output. Every column has
missing values. In fact, the last row consists only of NaNs. Imperfect data like this is
common in the real world. Data sets can arrive with blank rows, blank columns,
and more.
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 How can we increase the utility of our data set? Our first optimization is one that
we should feel comfortable with by now. We can convert the text values in the Start
Date column to datetimes with the parse_dates parameter:

In  [3] pd.read_csv("employees.csv", parse_dates = ["Start Date"]).head()

Out [3]

  First Name  Gender  Start Date    Salary   Mgmt       Team

0    Douglas    Male  1993-08-06       NaN   True  Marketing
1     Thomas    Male  1996-03-31   61933.0   True        NaN
2      Maria  Female         NaT  130590.0  False    Finance
3      Jerry     NaN  2005-03-04  138705.0   True    Finance
4      Larry    Male  1998-01-24  101004.0   True         IT

We’re in a good place with the CSV import, so let’s assign the DataFrame object to a
descriptive variable such as employees: 

In  [4] employees = pd.read_csv(
            "employees.csv", parse_dates = ["Start Date"]
        )

A few options are available for improving the speed and efficiency of DataFrame
operations. First, let’s summarize the data set as it currently stands. We can invoke the
info method to see a list of the columns, their data types, a count of missing values,
and the DataFrame’s total memory consumption:

In  [5] employees.info()

Out [5]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   First Name  933 non-null    object
 1   Gender      854 non-null    object
 2   Start Date  999 non-null    datetime64[ns]
 3   Salary      999 non-null    float64
 4   Mgmt        933 non-null    object
 5   Team        957 non-null    object
dtypes: datetime64[ns](1), float64(1), object(4)
message usage: 47.0+ KB

Let’s walk through the output from top to bottom. We have a DataFrame with 1,001
rows, starting at index 0 and proceeding to index 1000. There are four string col-
umns, one datetime column, and one floating-point column. All six columns have
missing data.

 Memory use currently is ~47 KB—a small amount for modern computers, but let’s
try to whittle the number down. As you read the following examples, focus more on
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the percentage reductions than on the numeric reductions. The larger your data sets
grow, the more significant the performance improvement will be.

5.1.1 Converting data types with the astype method

Did you notice that pandas imported the Mgmt column’s values as strings? The col-
umn stores only two values: True and False. We can reduce memory use by convert-
ing the values to the more lightweight Boolean data type.

 The astype method converts a Series’ values to a different data type. It accepts a
single argument: the new data type. We can pass either the data type or a string with its
name.

 The next example extracts the Mgmt Series from employees and invokes its
astype method with an argument of bool. Pandas returns a new Series object of
Booleans. Note that the library converts NaNs to True values. We’ll discuss removing
missing values in section 5.5.4.

In  [6] employees["Mgmt"].astype(bool)

Out [6] 0        True
        1        True
        2       False
        3        True
        4        True
                ...
        996     False
        997     False
        998     False
        999      True
        1000     True
        Name: Mgmt, Length: 1001, dtype: bool

Looks good! Now that we’ve previewed what the Series will look like, we can over-
write the existing Mgmt column in employees. Updating a DataFrame column
works similarly to setting a key-value pair in a dictionary. If a column with the specified
name exists, pandas overwrites it with the new Series. If the column with the name
does not exist, pandas creates a new Series and appends it to the right of the
DataFrame. The library matches rows in the Series and DataFrame by shared
index labels.

 The next code sample overwrites the Mgmt column with our new Series of Bool-
eans. As a reminder, Python evaluates the right side of the assignment operator (=)
first. First, we create a new Series, then we overwrite our existing Mgmt column:

In  [7] employees["Mgmt"] = employees["Mgmt"].astype(bool)

A column assignment does not produce a return value, so the code does not output
anything in Jupyter Notebook. Let’s take a look at the DataFrame again to see the
results:
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In  [8] employees.tail()

Out [8]

     First Name Gender Start Date    Salary   Mgmt          Team

996     Phillip   Male 1984-01-31   42392.0  False       Finance
997     Russell   Male 2013-05-20   96914.0  False       Product
998       Larry   Male 2013-04-20   60500.0  False  Business Dev
999      Albert   Male 2012-05-15  129949.0   True         Sales
1000        NaN    NaN        NaT       NaN   True           NaN

Except for the True in the last row of missing values, the DataFrame looks no differ-
ent. But what about our memory use? Let’s invoke the info method again to see the
difference:

In  [9] employees.info()

Out [9]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   First Name  933 non-null    object
 1   Gender      854 non-null    object
 2   Start Date  999 non-null    datetime64[ns]
 3   Salary      999 non-null    float64
 4   Mgmt        1001 non-null   bool
 5   Team        957 non-null    object
dtypes: bool(1), datetime64[ns](1), float64(1), object(3)
memory usage: 40.2+ KB

We’ve reduced employees’ memory use by almost 15%, from 47 KB to 40.2 KB.
That’s a pretty good start!

 Next, let’s transition to the Salary column. If we open the raw CSV file, we can see
that its values are stored as whole numbers:

First Name,Gender,Start Date,Salary,Mgmt,Team
Douglas,Male,8/6/93,,True,Marketing
Thomas,Male,3/31/96,61933,True,
Maria,Female,,130590,False,Finance
Jerry,,3/4/05,138705,True,Finance

In employees, however, pandas stores the Salary values at floats. To support the NaNs
throughout the column, pandas converts the integers to floating-point numbers—a
technical requirement of the library that we observed in earlier chapters.

 Following our previous Boolean example, we might try to coerce the column’s val-
ues to integers with the astype method. Unfortunately, pandas raises a ValueError
exception:
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In  [10] employees["Salary"].astype(int)

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-99-b148c8b8be90> in <module>
----> 1 employees["Salary"].astype(int)

ValueError: Cannot convert non-finite values (NA or inf) to integer

Pandas is unable to convert the NaN values to integers. We can solve this problem by
replacing the NaN values with a constant value. The fillna method replaces a
Series’ null values with the argument we pass in. The next example provides a fill
value of 0. Note that your choice of value can distort the data; 0 is passed solely for the
sake of example.

 We know that the original Salary column has a missing value in its last row. Let’s
take a look at the last row after we invoke the fillna method:

In  [11] employees["Salary"].fillna(0).tail()

Out [11] 996      42392.0
         997      96914.0
         998      60500.0
         999     129949.0
         1000         0.0
         Name: Salary, dtype: float64

Excellent. Now that the Salary column has no missing values, we can convert its values
to integers with the astype method:

In  [12] employees["Salary"].fillna(0).astype(int).tail()

Out [12] 996      42392
         997      96914
         998      60500
         999     129949
         1000         0
         Name: Salary, dtype: int64

Next, we can overwrite the existing Salary Series in employees:

In  [13] employees["Salary"] = employees["Salary"].fillna(0).astype(int)

We can make one additional optimization. Pandas includes a special data type called a
category, which is ideal for a column consisting of a small number of unique values rel-
ative to its total size. Some everyday examples of data points with a limited number of
values include gender, weekdays, blood types, planets, and income groups. Behind the
scenes, pandas stores only one copy of each categorical value rather than storing
duplicates across rows.

 The nunique method can reveal the number of unique values in each DataFrame
column. Note that it excludes missing values (NaN) from the count by default:



119Optimizing a data set for memory use
In  [14] employees.nunique()

Out [14] First Name    200
         Gender          2
         Start Date    971
         Salary        995
         Mgmt            2
         Team           10
         dtype: int64

The Gender and Team columns stand out as good candidates to store categorical val-
ues. In 1,001 rows of data, Gender has only two unique values, and Team has only ten
unique values.

 Let’s use the astype method again. First, we’ll convert the Gender column’s val-
ues to categories by passing an argument of "category" to the method:

In  [15] employees["Gender"].astype("category")

Out [15] 0         Male
         1         Male
         2       Female
         3          NaN
         4         Male
                  ...
         996       Male
         997       Male
         998       Male
         999       Male
         1000       NaN
         Name: Gender, Length: 1001, dtype: category
         Categories (2, object): [Female, Male]

Pandas has identified two unique categories: "Female" and "Male". We’re good to
overwrite our existing Gender column:

In  [16] employees["Gender"] = employees["Gender"].astype("category")

Let’s check in on the memory use by invoking the info method. Memory use has
dropped significantly once again because pandas has to keep track of only two values
instead of 1,001:

In  [17] employees.info()

Out [17]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   First Name  933 non-null    object
 1   Gender      854 non-null    category
 2   Start Date  999 non-null    datetime64[ns]
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 3   Salary      1001 non-null   int64
 4   Mgmt        1001 non-null   bool
 5   Team        957 non-null    object
dtypes: bool(1), category(1), datetime64[ns](1), int64(1), object(2)
memory usage: 33.5+ KB

Let’s repeat the same process for the Team column, which has only ten unique values:

In  [18] employees["Team"] = employees["Team"].astype("category")

In  [19] employees.info()

Out [19]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 6 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   First Name  933 non-null    object
 1   Gender      854 non-null    category
 2   Start Date  999 non-null    datetime64[ns]
 3   Salary      1001 non-null   int64
 4   Mgmt        1001 non-null   bool
 5   Team        957 non-null    category
dtypes: bool(1), category(2)
memory usage: 27.0+ KB

With fewer than ten lines of code, we’ve reduced the DataFrame’s memory consump-
tion by more than 40%. Imagine that impact on data sets with millions of rows!

5.2 Filtering by a single condition
Extracting a subset of data is perhaps the most common operation in data analysis. A
subset is a portion of a larger data set that fits some kind of condition.

 Suppose that we want to generate a list of all employees named "Maria". To accom-
plish this task, we need to filter our employees data set based on the values in the First
Name column. The list of employees named Maria is a subset of all employees.

 First, a quick reminder of how equality works in Python. The equality operator
(==) compares the equality of two objects in Python, returning True if the objects are
equal and False if they are unequal. (See appendix B for a detailed explanation.)
Here’s a simple example:

In  [20] "Maria" == "Maria"

Out [20] True

In  [21] "Maria" == "Taylor"

Out [21] False
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To compare every Series entry with a constant value, we place the Series on one
side of the equality operator and the value on the other:

Series == value

One might think that this syntax would lead to an error, but pandas is smart enough
to recognize that we want to compare the equality of each Series value with the spec-
ified string, not with the Series itself. We explored similar ideas in chapter 2 when
we paired a Series with mathematical operators such as the addition sign.

 When we combine a Series with an equality operator, pandas returns a Series
of Booleans. The next example compares each First Name column value with
"Maria". A True value indicates that the string "Maria" does occur at that index,
and a False value indicates that it does not. The following output communicates that
index 2 stores the value "Maria":

In  [22] employees["First Name"] == "Maria"

Out [22] 0       False
         1       False
         2        True
         3       False
         4       False
                 ...
         996     False
         997     False
         998     False
         999     False
         1000    False
         Name: First Name, Length: 1001, dtype: bool

If we could extract only the rows with a True value above from our employees Data-
Frame, we would have all the "Maria" records in the data set. Luckily, pandas offers a
convenient syntax for extracting rows by using a Boolean Series. To filter rows, we
provide the Boolean Series between square brackets following the DataFrame:

In  [23] employees[employees["First Name"] == "Maria"]

Out [23]

    First Name  Gender Start Date  Salary   Mgmt          Team

2        Maria  Female        NaT  130590  False       Finance
198      Maria  Female 1990-12-27   36067   True       Product
815      Maria     NaN 1986-01-18  106562  False            HR
844      Maria     NaN 1985-06-19  148857  False         Legal
936      Maria  Female 2003-03-14   96250  False  Business Dev
984      Maria  Female 2011-10-15   43455  False   Engineering

Great success! We’ve used our Boolean Series to filter rows with a value of "Maria"
in the First Name column.
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 If the use of multiple square brackets is confusing, you can assign the Boolean
Series to a descriptive variable and then pass the variable into the square brackets
instead. The following code yields the same subset of rows as the preceding code:

In  [24] marias = employees["First Name"] == "Maria"
         employees[marias]

Out [24]

    First Name  Gender Start Date  Salary   Mgmt          Team

2        Maria  Female        NaT  130590  False       Finance
198      Maria  Female 1990-12-27   36067   True       Product
815      Maria     NaN 1986-01-18  106562  False            HR
844      Maria     NaN 1985-06-19  148857  False         Legal
936      Maria  Female 2003-03-14   96250  False  Business Dev
984      Maria  Female 2011-10-15   43455  False   Engineering

The most common mistake beginners make when comparing the equality of values is
using one equal sign instead of two. Remember that a single equal sign assigns an
object to a variable, and two equal signs check for equality between objects. If we acci-
dentally used a single equal sign in this example, we would overwrite all the First
Name column’s values with the string "Maria". No good.

 Let’s try another example. What if we want to extract a subset of employees who
are not on the Finance team? The protocol remains the same, but with a slight twist.
We need to generate a Boolean Series that checks which of the Team column’s val-
ues are not equal to "Finance". Then we can use the Boolean Series to filter
employees. Python’s inequality operator returns True if two values are not equal and
False if they are equal:

In  [25] "Finance" != "Engineering"

Out [25] True

The Series object plays friendly with the inequality operator as well. The next exam-
ple compares the values in the Team column with the string "Finance". True
denotes that the Team value for a given index is not "Finance", and False indicates
the Team value is "Finance":

In  [26] employees["Team"] != "Finance"

Out [26] 0        True
         1        True
         2       False
         3       False
         4        True
                 ...
         996     False
         997      True
         998      True
         999      True
         1000     True
         Name: Team, Length: 1001, dtype: bool
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Now that we have our Boolean Series, we can pass it inside square brackets to extract
the DataFrame rows with a value of True. In the following output, we see that pandas
has excluded the rows at indexes 2 and 3 because the Team value there is "Finance":

In  [27] employees[employees["Team"] != "Finance"]

Out [27]

     First Name  Gender Start Date  Salary   Mgmt          Team

0       Douglas    Male 1993-08-06       0   True     Marketing
1        Thomas    Male 1996-03-31   61933   True           NaN
4         Larry    Male 1998-01-24  101004   True            IT
5        Dennis    Male 1987-04-18  115163  False         Legal
6          Ruby  Female 1987-08-17   65476   True       Product
  …           …       …          …       …      …             …
995       Henry     NaN 2014-11-23  132483  False  Distribution
997     Russell    Male 2013-05-20   96914  False       Product
998       Larry    Male 2013-04-20   60500  False  Business Dev
999      Albert    Male 2012-05-15  129949   True         Sales
1000        NaN     NaN        NaT       0   True           NaN

899 rows × 6 columns

Note that the results include rows with missing values. We can see an example at index
1000. In this scenario, pandas considers a NaN to be unequal to the string "Finance".

 What if we want to retrieve all the managers in the company? Managers have a value
of True in the Mgmt column. We could execute employees["Mgmt"] == True, but
we don’t need to because Mgmt is already a Series of Booleans. The True values and
False values already indicate whether pandas should keep or discard a row. Therefore,
we can pass the Mgmt column by itself inside the square brackets:

In  [28] employees[employees["Mgmt"]].head()

Out [28]

  First Name  Gender Start Date  Salary  Mgmt       Team

0    Douglas    Male 1993-08-06       0  True  Marketing
1     Thomas    Male 1996-03-31   61933  True        NaN
3      Jerry     NaN 2005-03-04  138705  True    Finance
4      Larry    Male 1998-01-24  101004  True         IT
6       Ruby  Female 1987-08-17   65476  True    Product

We can also use arithmetic operands to filter columns based on mathematical condi-
tions. The next example generates a Boolean Series for Salary values greater than
$100,000 (see chapter 2 for more on this syntax):

In  [29] high_earners = employees["Salary"] > 100000
         high_earners.head()

Out [29] 0    False
         1    False
         2     True
         3     True
         4     True
         Name: Salary, dtype: bool
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Let’s see which employees earn a salary above $100,000:

In  [30] employees[high_earners].head()

Out [30]

  First Name  Gender Start Date  Salary   Mgmt          Team

2      Maria  Female        NaT  130590  False       Finance
3      Jerry     NaN 2005-03-04  138705   True       Finance
4      Larry    Male 1998-01-24  101004   True            IT
5     Dennis    Male 1987-04-18  115163  False         Legal
9    Frances  Female 2002-08-08  139852   True  Business Dev

Try practicing the syntax on some of the other columns in employees. As long as you
provide a Boolean Series, pandas will be able to filter the DataFrame.

5.3 Filtering by multiple conditions
We can filter a DataFrame with multiple conditions by creating two independent
Boolean Series and then declaring the logical criterion that pandas should apply
between them.

5.3.1 The AND condition

Suppose that we want to find all female employees who work on the business develop-
ment team. Now pandas must look for two conditions to select a row: a value of
"Female" in the Gender column and a value of "Business Dev" in the Team col-
umn. The two criteria are independent, but both must be met. Here’s a quick
reminder of how AND logic works with two conditions:

Let’s construct one Boolean Series at a time. We can begin by isolating the
"Female" values in the Gender column:

In  [31] is_female = employees["Gender"] == "Female"

Next, we’ll target all employees who work on the "Business Dev" team:

In  [32] in_biz_dev = employees["Team"] == "Business Dev"

Finally, we need to calculate the intersection of the two Series, the rows in which
both the is_female and in_biz_dev Series have True values. Pass both Series
into the square brackets, and place an ampersand symbol (&) between them. The

Condition 1 Condition 2 Evaluation

True True True

True False False

False True False

False False False
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ampersand declares an AND logical criterion. The is_female Series must have
True and the in_biz_dev Series must have True:

In  [33] employees[is_female & in_biz_dev].head()

Out [33]

   First Name  Gender Start Date  Salary   Mgmt          Team

9     Frances  Female 2002-08-08  139852   True  Business Dev
33       Jean  Female 1993-12-18  119082  False  Business Dev
36     Rachel  Female 2009-02-16  142032  False  Business Dev
38  Stephanie  Female 1986-09-13   36844   True  Business Dev
61     Denise  Female 2001-11-06  106862  False  Business Dev

We can include any amount of Series within the square brackets as long as we sepa-
rate every subsequent two with a & symbol. The next example adds a third criterion to
identify the female managers on the business development team:

In  [34] is_manager = employees["Mgmt"]
         employees[is_female & in_biz_dev & is_manager].head()

Out [34]

    First Name  Gender Start Date  Salary  Mgmt          Team

9      Frances  Female 2002-08-08  139852  True  Business Dev
38   Stephanie  Female 1986-09-13   36844  True  Business Dev
66       Nancy  Female 2012-12-15  125250  True  Business Dev
92       Linda  Female 2000-05-25  119009  True  Business Dev
111     Bonnie  Female 1999-12-17   42153  True  Business Dev

In summary, the & symbol selects rows that fit all conditions. Declare two or more
Boolean Series and then use the ampersand to weave them together.

5.3.2 The OR condition

We can also extract rows if they fit one of several conditions. Not all conditions have to
be true, but at least one does. Here’s a quick reminder of how OR logic works with two
conditions:

Suppose that we want to identify all employees with a Salary below $40,000 or a Start
Date after January 1, 2015. We can use mathematical operators such as < and > to
arrive at two separate Boolean Series for these conditions:

In  [35] earning_below_40k = employees["Salary"] < 40000
         started_after_2015 = employees["Start Date"] > "2015-01-01"

Condition 1 Condition 2 Evaluation

True True True

True False True

False True True

False False False
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We use a pipe symbol ( | ) between Boolean Series to declare OR criteria. The next
example selects the rows in which either of the Boolean Series holds a True value:

In  [36] employees[earning_below_40k | started_after_2015].tail()

Out [36]

     First Name  Gender Start Date  Salary   Mgmt         Team

958      Gloria  Female 1987-10-24   39833  False  Engineering
964       Bruce    Male 1980-05-07   35802   True        Sales
967      Thomas    Male 2016-03-12  105681  False  Engineering
989      Justin     NaN 1991-02-10   38344  False        Legal
1000        NaN     NaN        NaT       0   True          NaN

The rows at index positions 958, 964, 989, and 1000 fit the Salary condition, and the
row at index 967 fits the Start Date condition. Pandas will also include rows that fit
both conditions.

5.3.3 Inversion with ~

The tilde symbol (~) inverts the values in a Boolean Series. All True values become
False, and all False values become True. Here’s a simple example with a small Series:

In  [37] my_series = pd.Series([True, False, True])
         my_series

Out [37] 0     True
         1    False
         2     True
         dtype: bool

In  [38] ~my_series

Out [38] 0    False
         1     True
         2    False
         dtype: bool

Inversion is helpful when we’d like to reverse a condition. Let’s say we want to identify
employees with a Salary of less than $100,000. We could use two approaches, the first
of which is to write employees["Salary"] < 100000:

In  [39] employees[employees["Salary"] < 100000].head()

Out [39]

  First Name  Gender Start Date  Salary  Mgmt         Team

0    Douglas    Male 1993-08-06       0  True    Marketing
1     Thomas    Male 1996-03-31   61933  True          NaN
6       Ruby  Female 1987-08-17   65476  True      Product
7        NaN  Female 2015-07-20   45906  True      Finance
8     Angela  Female 2005-11-22   95570  True  Engineering

Alternatively, we could invert the results set of employees earning more than or equal
to $100,000. The resulting DataFrames will be identical. In the next example, we
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wrap our greater-than operation inside a parenthesis. The syntax ensures that pandas
generates the Boolean Series before inverting its values. In general, you should use
parentheses whenever the order of evaluation may be unclear to pandas:

In  [40] employees[~(employees["Salary"] >= 100000)].head()

Out [40]

  First Name  Gender Start Date  Salary  Mgmt         Team

0    Douglas    Male 1993-08-06       0  True    Marketing
1     Thomas    Male 1996-03-31   61933  True          NaN
6       Ruby  Female 1987-08-17   65476  True      Product
7        NaN  Female 2015-07-20   45906  True      Finance
8     Angela  Female 2005-11-22   95570  True  Engineering

TIP For complex extractions like this one, consider assigning the Boolean
Series to a descriptive variable.

5.3.4 Methods for Booleans

Pandas provides an alternative syntax for analysts who prefer methods over operators.
The following table displays the method alternatives for equality, inequality, and other
arithmetic operations:

The same rules apply regarding the use of & and | symbols for AND/OR logic.

5.4 Filtering by condition
Some filtering operations are more complex than simple equality or inequality
checks. Luckily, pandas ships with many helper methods that generate Boolean Series
for these types of extractions.

5.4.1 The isin method

What if we want to isolate the employees who belong to either the Sales, Legal, or Mar-
keting team? We could provide three separate Boolean Series inside the square
brackets and add the | symbol to declare OR criteria:

Operation Arithmetic syntax Method syntax

Equality employees["Team"] == "Marketing" employees["Team"].eq("Marketing")

Inequality employees["Team"] != "Marketing" employees["Team"].ne("Marketing")

Less than employees["Salary"] < 100000 employees["Salary"].lt(100000)

Less than or 
equal to

employees["Salary"] <= 100000 employees["Salary"].le(100000)

Greater than employees["Salary"] > 100000 employees["Salary"].gt(100000)

Greater than 
or equal to

employees["Salary"] >= 100000 employees["Salary"].ge(100000)



128 CHAPTER 5 Filtering a DataFrame
In  [41] sales = employees["Team"] == "Sales"
         legal = employees["Team"] == "Legal"
         mktg  = employees["Team"] == "Marketing"
         employees[sales | legal | mktg].head()

Out [41]

   First Name  Gender Start Date  Salary   Mgmt       Team

0     Douglas    Male 1993-08-06       0   True  Marketing
5      Dennis    Male 1987-04-18  115163  False      Legal
11      Julie  Female 1997-10-26  102508   True      Legal
13       Gary    Male 2008-01-27  109831  False      Sales
20       Lois     NaN 1995-04-22   64714   True      Legal

Although this solution works, it isn’t scalable. What if our next report asked for
employees from 15 teams instead of three? Declaring a Series for each condition is
laborious.

 A better solution is the isin method, which accepts an iterable of elements (list,
tuple, Series, and so on) and returns a Boolean Series. True denotes that pandas
found the row’s value among the iterable’s values, and False denotes that it did not.
When we have the Series, we can use it to filter the DataFrame in the usual manner.
The next example achieves the same result set:

In  [42] all_star_teams = ["Sales", "Legal", "Marketing"]
         on_all_star_teams = employees["Team"].isin(all_star_teams)
         employees[on_all_star_teams].head()

Out [42]

   First Name  Gender Start Date  Salary   Mgmt       Team

0     Douglas    Male 1993-08-06       0   True  Marketing
5      Dennis    Male 1987-04-18  115163  False      Legal
11      Julie  Female 1997-10-26  102508   True      Legal
13       Gary    Male 2008-01-27  109831  False      Sales
20       Lois     NaN 1995-04-22   64714   True      Legal

An optimal situation for using the isin method is when we do not know the compar-
ison collection in advance, such as when it is generated dynamically. 

5.4.2 The between method

When working with numbers or dates, we often want to extract values that fall within a
range. Suppose that we want to identify all employees with a salary between $80,000
and $90,000. We could create two Boolean Series, one to declare the lower bound
and one to declare the upper bound. Then we could use the & operator to mandate
that both conditions are True:

In  [43] higher_than_80 = employees["Salary"] >= 80000
         lower_than_90 = employees["Salary"] < 90000
         employees[higher_than_80 & lower_than_90].head()

Out [43]



129Filtering by condition
   First Name  Gender Start Date  Salary   Mgmt         Team

19      Donna  Female 2010-07-22   81014  False      Product
31      Joyce     NaN 2005-02-20   88657  False      Product
35    Theresa  Female 2006-10-10   85182  False        Sales
45      Roger    Male 1980-04-17   88010   True        Sales
54       Sara  Female 2007-08-15   83677  False  Engineering

A slightly cleaner solution is to use a method called between, which accepts a lower
bound and an upper bound; it returns a Boolean Series where True denotes that a
row’s value falls between the specified interval. Note that the first argument, the lower
bound, is inclusive, and the second argument, the upper bound, is exclusive. The fol-
lowing code returns the same DataFrame as the preceding code, filtering for salaries
between $80,000 and $90,000:

In  [44] between_80k_and_90k = employees["Salary"].between(80000, 90000)
         employees[between_80k_and_90k].head()

Out [44]

   First Name  Gender Start Date  Salary   Mgmt         Team

19      Donna  Female 2010-07-22   81014  False      Product
31      Joyce     NaN 2005-02-20   88657  False      Product
35    Theresa  Female 2006-10-10   85182  False        Sales
45      Roger    Male 1980-04-17   88010   True        Sales
54       Sara  Female 2007-08-15   83677  False  Engineering

The between method also works on columns of other data types. To filter datetimes,
we can pass strings for the start and end dates of our time range. The keyword param-
eters for the first and second arguments of the method are left and right. Here, we
find all employees who started with the company in the 1980s:

In  [45] eighties_folk = employees["Start Date"].between(
             left = "1980-01-01",
             right = "1990-01-01"
         )

         employees[eighties_folk].head()

Out [45]

   First Name  Gender Start Date  Salary   Mgmt     Team

5      Dennis    Male 1987-04-18  115163  False    Legal
6        Ruby  Female 1987-08-17   65476   True  Product
10     Louise  Female 1980-08-12   63241   True      NaN
12    Brandon    Male 1980-12-01  112807   True       HR
17      Shawn    Male 1986-12-07  111737  False  Product

We can also apply the between method to string columns. Let’s extract all employees
whose first names starts with the letter "R". We’ll start with a capital "R" as our inclu-
sive lower bound and go up to the noninclusive upper bound of "S":
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In  [46] name_starts_with_r = employees["First Name"].between("R", "S")
         employees[name_starts_with_r].head()

Out [46]

   First Name  Gender Start Date  Salary   Mgmt          Team

6        Ruby  Female 1987-08-17   65476   True       Product
36     Rachel  Female 2009-02-16  142032  False  Business Dev
45      Roger    Male 1980-04-17   88010   True         Sales
67     Rachel  Female 1999-08-16   51178   True       Finance
78      Robin  Female 1983-06-04  114797   True         Sales

As always, be mindful of case sensitivity when working with characters and strings.

5.4.3 The isnull and notnull methods

The employees data set includes plenty of missing values. We can see a few missing val-
ues in our first five rows:

In  [47] employees.head()

Out [47]

  First Name  Gender Start Date  Salary   Mgmt       Team

0    Douglas    Male 1993-08-06       0   True  Marketing
1     Thomas    Male 1996-03-31   61933   True        NaN
2      Maria  Female        NaT  130590  False    Finance
3      Jerry     NaN 2005-03-04  138705   True    Finance
4      Larry    Male 1998-01-24  101004   True         IT

Pandas marks missing text values and missing numeric values with a NaN (not a num-
ber) designation, and it marks missing datetime values with a NaT (not a time) desig-
nation. We can see an example in the Start Date column at index position 2.

 We can use several pandas methods to isolate rows with either null or present val-
ues in a given column. The isnull method returns a Boolean Series in which True
denotes that a row’s value is missing:

In  [48] employees["Team"].isnull().head()

Out [48] 0    False
         1     True
         2    False
         3    False
         4    False
         Name: Team, dtype: bool

Pandas considers the NaT and None values to be null as well. The next example
invokes the isnull method on the Start Date column:

In  [49] employees["Start Date"].isnull().head()

Out [49] 0    False
         1    False
         2     True
         3    False
         4    False
         Name: Start Date, dtype: bool
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The notnull method returns the inverse Series, one in which True indicates that a
row’s value is present. The following output communicates that indices 0, 2, 3, and 4
do not have missing values:

In  [50] employees["Team"].notnull().head()

Out [50] 0     True
         1    False
         2     True
         3     True
         4     True
         Name: Team, dtype: bool

We can produce the same result set by inverting the Series returned by the isnull
method. As a reminder, we use the tilde symbol (~) to invert a Boolean Series:

In  [51] (~employees["Team"].isnull()).head()

Out [51] 0     True
         1    False
         2     True
         3     True
         4     True
         Name: Team, dtype: bool

Either approach works, but notnull is a bit more descriptive and thus is recom-
mended.

 As always, we can use these Boolean Series to extract specific DataFrame rows.
Here, we extract all employees with a missing Team value:

In  [52] no_team = employees["Team"].isnull()
         employees[no_team].head()

Out [52]

   First Name  Gender Start Date  Salary   Mgmt Team

1      Thomas    Male 1996-03-31   61933   True  NaN
10     Louise  Female 1980-08-12   63241   True  NaN
23        NaN    Male 2012-06-14  125792   True  NaN
32        NaN    Male 1998-08-21  122340   True  NaN
91      James     NaN 2005-01-26  128771  False  NaN

The next example pulls out employees with a present First Name value:

In  [53] has_name = employees["First Name"].notnull()
         employees[has_name].tail()

Out [53]

    First Name Gender Start Date  Salary   Mgmt          Team

995      Henry    NaN 2014-11-23  132483  False  Distribution
996    Phillip   Male 1984-01-31   42392  False       Finance
997    Russell   Male 2013-05-20   96914  False       Product
998      Larry   Male 2013-04-20   60500  False  Business Dev
999     Albert   Male 2012-05-15  129949   True         Sales
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The isnull and notnull methods are the best way to quickly filter for present and
missing values in one or more rows.

5.4.4 Dealing with null values

While we’re on the topic of missing values, let’s discuss some options for dealing with
them. In section 5.2, we learned how to use the fillna method to replace NaNs with
a constant value. We could also remove them.

 Let’s kick off this section by bringing our data set back to its original shape. We’ll
reimport the CSV by using the read_csv function:

In  [54] employees = pd.read_csv(
             "employees.csv", parse_dates = ["Start Date"]
         )

Here’s a reminder of what it looks like:

In  [55] employees

Out [55]

     First Name  Gender Start Date    Salary   Mgmt          Team

0       Douglas    Male 1993-08-06       NaN   True     Marketing
1        Thomas    Male 1996-03-31   61933.0   True           NaN
2         Maria  Female        NaT  130590.0  False       Finance
3         Jerry     NaN 2005-03-04  138705.0   True       Finance
4         Larry    Male 1998-01-24  101004.0   True            IT
  …           …       …          …         …      …             …
996     Phillip    Male 1984-01-31   42392.0  False       Finance
997     Russell    Male 2013-05-20   96914.0  False       Product
998       Larry    Male 2013-04-20   60500.0  False  Business Dev
999      Albert    Male 2012-05-15  129949.0   True         Sales
1000        NaN     NaN        NaT       NaN    NaN           NaN

1001 rows × 6 columns

The dropna method removes DataFrame rows that hold any NaN values. It doesn’t
matter how many values a row is missing; the method excludes the row if a single NaN
is present. The employees DataFrame has a missing value at index 0 of the Salary col-
umn, index 1 of the Team column, index 2 of the Start Date column, and index 3 of the
Gender column. Notice that pandas excludes all these rows in the following output:

In  [56] employees.dropna()

Out [56]

    First Name  Gender Start Date    Salary   Mgmt          Team

4        Larry    Male 1998-01-24  101004.0   True            IT
5       Dennis    Male 1987-04-18  115163.0  False         Legal
6         Ruby  Female 1987-08-17   65476.0   True       Product
8       Angela  Female 2005-11-22   95570.0   True   Engineering
9      Frances  Female 2002-08-08  139852.0   True  Business Dev
  …          …       …          …         …      …             …
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994     George    Male 2013-06-21   98874.0   True     Marketing
996    Phillip    Male 1984-01-31   42392.0  False       Finance
997    Russell    Male 2013-05-20   96914.0  False       Product
998      Larry    Male 2013-04-20   60500.0  False  Business Dev
999     Albert    Male 2012-05-15  129949.0   True         Sales

761 rows × 6 columns

We can pass the how parameter an argument of "all" to remove rows in which all val-
ues are missing. Only one row in the data set, the last one, satisfies this condition:

In  [57] employees.dropna(how = "all").tail()

Out [57]

    First Name Gender Start Date    Salary   Mgmt          Team

995      Henry    NaN 2014-11-23  132483.0  False  Distribution
996    Phillip   Male 1984-01-31   42392.0  False       Finance
997    Russell   Male 2013-05-20   96914.0  False       Product
998      Larry   Male 2013-04-20   60500.0  False  Business Dev
999     Albert   Male 2012-05-15  129949.0   True         Sales

The how parameter’s default argument is "any". An argument of "any" removes a
row if any of its values is absent. Notice that the row at index label 995 has NaN in the
Gender column of the preceding output. Compare that output with the following out-
put, in which row 995 is not present; pandas still removes the last row because it has at
least one NaN value:

In  [58] employees.dropna(how = "any").tail()

Out [58]

    First Name Gender Start Date    Salary   Mgmt          Team

994     George   Male 2013-06-21   98874.0   True     Marketing
996    Phillip   Male 1984-01-31   42392.0  False       Finance
997    Russell   Male 2013-05-20   96914.0  False       Product
998      Larry   Male 2013-04-20   60500.0  False  Business Dev
999     Albert   Male 2012-05-15  129949.0   True         Sales

We can use the subset parameter to target rows with a missing value in a specific col-
umn. The next example removes rows that have a missing value in the Gender
column:

In  [59] employees.dropna(subset = ["Gender"]).tail()

Out [59]

    First Name Gender Start Date    Salary   Mgmt          Team

994     George   Male 2013-06-21   98874.0   True     Marketing
996    Phillip   Male 1984-01-31   42392.0  False       Finance
997    Russell   Male 2013-05-20   96914.0  False       Product
998      Larry   Male 2013-04-20   60500.0  False  Business Dev
999     Albert   Male 2012-05-15  129949.0   True         Sales
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We can also pass the subset parameter a list of columns. Pandas will remove a row if
it has a missing value in any of the specified columns. The next example removes rows
with missing values in the Start Date column, the Salary column, or both:

In  [60] employees.dropna(subset = ["Start Date", "Salary"]).head()

Out [60]

  First Name  Gender Start Date    Salary   Mgmt     Team

1     Thomas    Male 1996-03-31   61933.0   True      NaN
3      Jerry     NaN 2005-03-04  138705.0   True  Finance
4      Larry    Male 1998-01-24  101004.0   True       IT
5     Dennis    Male 1987-04-18  115163.0  False    Legal
6       Ruby  Female 1987-08-17   65476.0   True  Product

The thresh parameter specifies a minimum threshold of non-null values that a row
must have for pandas to keep it. The next example filters employees for rows with at
least four present values:

In  [61] employees.dropna(how = "any", thresh = 4).head()

Out [61]

  First Name  Gender Start Date    Salary   Mgmt       Team

0    Douglas    Male 1993-08-06       NaN   True  Marketing
1     Thomas    Male 1996-03-31   61933.0   True        NaN
2      Maria  Female        NaT  130590.0  False    Finance
3      Jerry     NaN 2005-03-04  138705.0   True    Finance
4      Larry    Male 1998-01-24  101004.0   True         IT

The thresh parameter is great when a certain number of missing values renders a
row useless for analysis.

5.5 Dealing with duplicates
Missing values are a common occurrence in messy data sets, and so are duplicate val-
ues. Luckily, pandas includes several methods for identifying and excluding duplicate
values.

5.5.1 The duplicated method

First up, here’s a quick reminder of the first five rows of the Team column. Notice that
the value "Finance" appears at index positions 2 and 3:

In  [62] employees["Team"].head()

Out [62] 0    Marketing
         1          NaN
         2      Finance
         3      Finance
         4           IT
         Name: Team, dtype: object
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The duplicated method returns a Boolean Series that identifies duplicates in a
column. Pandas returns True any time it sees a value that it previously encountered in
the Series. Consider the next example. The duplicated method marks the first
occurrence of "Finance" in the Team column as a nonduplicate with False. It
marks all subsequent occurrences of "Finance" as duplicates (with True). The same
logic applies to all other Team values:

In  [63] employees["Team"].duplicated().head()

Out [63] 0    False
         1    False
         2    False
         3     True
         4    False
         Name: Team, dtype: bool

The duplicated method’s keep parameter informs pandas which duplicate occur-
rence to keep. Its default argument, "first", keeps the first occurrence of each
duplicate value. The following code is equivalent to the preceding code:

In  [64] employees["Team"].duplicated(keep = "first").head()

Out [64] 0    False
         1    False
         2    False
         3     True
         4    False
         Name: Team, dtype: bool

We can also ask pandas to mark the last occurrence of a value in a column as the
nonduplicate. Pass a string of "last" to the keep parameter:

In  [65] employees["Team"].duplicated(keep = "last")

Out [65] 0        True
         1        True
         2        True
         3        True
         4        True
                 ...
         996     False
         997     False
         998     False
         999     False
         1000    False
         Name: Team, Length: 1001, dtype: bool

Let’s say we want to extract one employee from each team. One strategy we could use
is pulling out the first row for each unique team in the Team column. Our existing
duplicated method returns a Boolean Series;  True identifies all duplicate values
after the first encounter. If we invert that Series, we’ll get a Series in which True
denotes the first time pandas encounters a value:
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In  [66] (~employees["Team"].duplicated()).head()

Out [66] 0     True
         1     True
         2     True
         3    False
         4     True
         Name: Team, dtype: bool

Now we can extract one employee per team by passing the Boolean Series inside
square brackets. Pandas will include the rows with the first occurrences of a value in
the Team column. Note that the library considers NaNs to be a unique value:

In  [67] first_one_in_team = ~employees["Team"].duplicated()
         employees[first_one_in_team]

Out [67]

   First Name  Gender Start Date    Salary   Mgmt          Team

0     Douglas    Male 1993-08-06       NaN   True     Marketing
1      Thomas    Male 1996-03-31   61933.0   True           NaN
2       Maria  Female        NaT  130590.0  False       Finance
4       Larry    Male 1998-01-24  101004.0   True            IT
5      Dennis    Male 1987-04-18  115163.0  False         Legal
6        Ruby  Female 1987-08-17   65476.0   True       Product
8      Angela  Female 2005-11-22   95570.0   True   Engineering
9     Frances  Female 2002-08-08  139852.0   True  Business Dev
12    Brandon    Male 1980-12-01  112807.0   True            HR
13       Gary    Male 2008-01-27  109831.0  False         Sales
40    Michael    Male 2008-10-10   99283.0   True  Distribution

This output tells us that Douglas is the first employee on the Marketing team in the
data set, Thomas is the first one with a missing team, Maria is the first one on the
Finance team, and so on.

5.5.2 The drop_duplicates method

A DataFrame’s drop_duplicates method provides a convenient shortcut for
accomplishing the operation in section 5.5.1. By default, the method removes rows in
which all values are equal to those in a previously encountered row. There are no
employees rows in which all six row values are equal, so the method doesn’t accom-
plish much for us with a standard invocation:

In  [68] employees.drop_duplicates()

Out [68]

     First Name  Gender Start Date    Salary   Mgmt          Team

0       Douglas    Male 1993-08-06       NaN   True     Marketing
1        Thomas    Male 1996-03-31   61933.0   True           NaN
2         Maria  Female        NaT  130590.0  False       Finance
3         Jerry     NaN 2005-03-04  138705.0   True       Finance
4         Larry    Male 1998-01-24  101004.0   True            IT
  …           …       …          …         …      …             …
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996     Phillip    Male 1984-01-31   42392.0  False       Finance
997     Russell    Male 2013-05-20   96914.0  False       Product
998       Larry    Male 2013-04-20   60500.0  False  Business Dev
999      Albert    Male 2012-05-15  129949.0   True         Sales
1000        NaN     NaN        NaT       NaN    NaN           NaN

1001 rows × 6 columns

But we can pass the method a subset parameter with a list of columns that pandas
should use to determine a row’s uniqueness. The next example finds the first occur-
rence of each unique value in the Team column. In other words, pandas keeps a row
only if it has the first occurrence of a Team value (such as "Marketing"). It excludes
all rows with duplicate Team values after the first one:

In  [69] employees.drop_duplicates(subset = ["Team"])

Out [69]

   First Name  Gender Start Date    Salary   Mgmt          Team

0     Douglas    Male 1993-08-06       NaN   True     Marketing
1      Thomas    Male 1996-03-31   61933.0   True           NaN
2       Maria  Female        NaT  130590.0  False       Finance
4       Larry    Male 1998-01-24  101004.0   True            IT
5      Dennis    Male 1987-04-18  115163.0  False         Legal
6        Ruby  Female 1987-08-17   65476.0   True       Product
8      Angela  Female 2005-11-22   95570.0   True   Engineering
9     Frances  Female 2002-08-08  139852.0   True  Business Dev
12    Brandon    Male 1980-12-01  112807.0   True            HR
13       Gary    Male 2008-01-27  109831.0  False         Sales
40    Michael    Male 2008-10-10   99283.0   True  Distribution

The drop_duplicates method also accepts a keep parameter. We can pass it an
argument of "last" to keep the rows with each duplicate value’s last occurrence.
These rows are likely to be closer to the end of the data set. In the following example,
Alice is the last employee in the data set on the HR team, Justin is the last employee
on the Legal team, and so on:

In  [70] employees.drop_duplicates(subset = ["Team"], keep = "last")

Out [70]

     First Name  Gender Start Date    Salary   Mgmt          Team

988       Alice  Female 2004-10-05   47638.0  False            HR
989      Justin     NaN 1991-02-10   38344.0  False         Legal
990       Robin  Female 1987-07-24  100765.0   True            IT
993        Tina  Female 1997-05-15   56450.0   True   Engineering
994      George    Male 2013-06-21   98874.0   True     Marketing
995       Henry     NaN 2014-11-23  132483.0  False  Distribution
996     Phillip    Male 1984-01-31   42392.0  False       Finance
997     Russell    Male 2013-05-20   96914.0  False       Product
998       Larry    Male 2013-04-20   60500.0  False  Business Dev
999      Albert    Male 2012-05-15  129949.0   True         Sales
1000        NaN     NaN        NaT       NaN    NaN           NaN
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One additional option is available for the keep parameter. We can pass an argument
of False to exclude all rows with duplicate values. Pandas will reject a row if there are
any other rows with the same value. The next example filters for rows in employees
with a unique value in the First Name column. In other words, these first names occur
only once in the DataFrame:

In  [71] employees.drop_duplicates(subset = ["First Name"], keep = False)

Out [71]

    First Name  Gender Start Date    Salary   Mgmt          Team

5       Dennis    Male 1987-04-18  115163.0  False         Legal
8       Angela  Female 2005-11-22   95570.0   True   Engineering
33        Jean  Female 1993-12-18  119082.0  False  Business Dev
190      Carol  Female 1996-03-19   57783.0  False       Finance
291      Tammy  Female 1984-11-11  132839.0   True            IT
495     Eugene    Male 1984-05-24   81077.0  False         Sales
688      Brian    Male 2007-04-07   93901.0   True         Legal
832      Keith    Male 2003-02-12  120672.0  False         Legal
887      David    Male 2009-12-05   92242.0  False         Legal

Let’s say we want to identify duplicates by a combination of values across multiple col-
umns. We may want the first occurrence of each employee with a unique combination
of First Name and Gender in the data set, for example. For reference, here’s a subset
of all employees with a First Name of "Douglas" and a Gender of "Male":

In  [72] name_is_douglas = employees["First Name"] == "Douglas"
         is_male = employees["Gender"] == "Male"
         employees[name_is_douglas & is_male]

Out [72]

    First Name Gender Start Date    Salary   Mgmt         Team

0      Douglas   Male 1993-08-06       NaN   True    Marketing
217    Douglas   Male 1999-09-03   83341.0   True           IT
322    Douglas   Male 2002-01-08   41428.0  False      Product
835    Douglas   Male 2007-08-04  132175.0  False  Engineering

We can pass a list of columns to the drop_duplicates method’s subset parameter.
Pandas will use the columns to determine the presence of duplicates. The next exam-
ple uses a combination of values across the Gender and Team columns to identify
duplicates:

In  [73] employees.drop_duplicates(subset = ["Gender", "Team"]).head()

Out [73]

  First Name  Gender Start Date    Salary   Mgmt       Team

0    Douglas    Male 1993-08-06       NaN   True  Marketing
1     Thomas    Male 1996-03-31   61933.0   True        NaN
2      Maria  Female        NaT  130590.0  False    Finance
3      Jerry     NaN 2005-03-04  138705.0   True    Finance
4      Larry    Male 1998-01-24  101004.0   True         IT
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Let’s walk through the output. The row at index 0 holds the first occurrence of the
name "Douglas" and the gender "Male" in the employees data set. Pandas will
exclude any other rows with the same two values from the results set. To clarify, the
library will still include a row if it has a First Name of "Douglas" and a Gender not
equal to "Male". Similarly, it will include rows with Gender of "Male" and a First
Name not equal to "Douglas". Pandas uses the combination of values across the two
columns to identify the duplicates.

5.6 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

5.6.1 Problems

The netflix.csv data set is a collection of almost 6,000 titles that were available to watch
in November 2019 on the video streaming service Netflix. It includes four columns:
the video’s title, director, the date Netflix added it, and its type/category. The director
and date_added columns contain missing values. We can see examples at index posi-
tions 0, 2, and 5836 of the following output:

In  [74] pd.read_csv("netflix.csv")

Out [74]

                      title        director date_added     type

0               Alias Grace             NaN   3-Nov-17  TV Show
1            A Patch of Fog  Michael Lennox  15-Apr-17    Movie
2                  Lunatics             NaN  19-Apr-19  TV Show
3                 Uriyadi 2     Vijay Kumar   2-Aug-19    Movie
4         Shrek the Musical     Jason Moore  29-Dec-13    Movie
   …                      …               …          …        …
5832            The Pursuit     John Papola   7-Aug-19    Movie
5833       Hurricane Bianca   Matt Kugelman   1-Jan-17    Movie
5834           Amar's Hands  Khaled Youssef  26-Apr-19    Movie
5835  Bill Nye: Science Guy  Jason Sussberg  25-Apr-18    Movie
5836           Age of Glory             NaN        NaN  TV Show

5837 rows × 4 columns

Using the skills you learned in this chapter, solve the following challenges:

1 Optimize the data set for limited memory use and maximum utility.
2 Find all rows with a title of "Limitless".
3 Find all rows with a director of "Robert Rodriguez" and a type of "Movie".
4 Find all rows with either a date_added of "2019-07-31" or a director of

"Robert Altman".
5 Find all rows with a director of "Orson Welles", "Aditya Kripalani", or

"Sam Raimi".
6 Find all rows with a date_added value between May 1, 2019 and June 1, 2019.
7 Drop all rows with a NaN value in the director column.
8 Identify the days when Netflix added only one movie to its catalog.
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5.6.2 Solutions

Let’s tackle the questions!

1 To optimize the data set for memory and utility, we can first convert the date_
added column’s values to datetimes. We can force the type coercion during the
import with the parse_dates parameter to the read_csv function:

In  [75] netflix = pd.read_csv("netflix.csv", parse_dates = ["date_added"])

It’s important to keep benchmarks, so let’s take a look at current memory use:

In  [76] netflix.info()

Out [76]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5837 entries, 0 to 5836
Data columns (total 4 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   title       5837 non-null   object
 1   director    3936 non-null   object
 2   date_added  5195 non-null   datetime64[ns]
 3   type        5837 non-null   object
dtypes: datetime64[ns](1), object(3)
memory usage: 182.5+ KB

Can we convert any column’s values to a different data type? How about cate-
gorical values? Let’s use the nunique method to count the number of unique
values per column:

In  [77] netflix.nunique()

Out [77] title         5780
         director      3024
         date_added    1092
         type             2
         dtype: int64

The type column is a perfect candidate for categorical values. In a data set of
5,837 rows, it has only two unique values: "Movie" and "TV Show". We can
convert its values by using the astype method. Remember to overwrite the
original Series:

In  [78] netflix["type"] = netflix["type"].astype("category")

How much has the conversion to categorical data reduced our memory use? A
whopping 22%:

In  [79] netflix.info()

Out [79]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5837 entries, 0 to 5836
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Data columns (total 4 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   title       5837 non-null   object
 1   director    3936 non-null   object
 2   date_added  5195 non-null   datetime64[ns]
 3   type        5837 non-null   category
dtypes: category(1), datetime64[ns](1), object(2)
memory usage: 142.8+ KB

2 We’ll need to use the equality operator to compare each title column value with
the string "Limitless". Afterward, we can use the Boolean Series to extract
rows from netflix for which the evaluation returns True:

In  [80] netflix[netflix["title"] == "Limitless"]

Out [80]

          title         director date_added     type

1559  Limitless      Neil Burger 2019-05-16    Movie
2564  Limitless              NaN 2016-07-01  TV Show
4579  Limitless  Vrinda Samartha 2019-10-01    Movie

3 To extract movies directed by Robert Rodriguez, we’ll need two Boolean
Series, one comparing the director column’s values with "Robert Rodri-
guez" and the other comparing the type column’s values with "Movie". The &
symbol applies AND logic for two Boolean Series:

In  [81] directed_by_robert_rodriguez = (
             netflix["director"] == "Robert Rodriguez"
         )
         is_movie = netflix["type"] == "Movie"
         netflix[directed_by_robert_rodriguez & is_movie]

Out [81]

                                  title          director date_added   type

1384    Spy Kids: All the Time in the …  Robert Rodriguez 2019-02-19  Movie
1416                  Spy Kids 3: Game…  Robert Rodriguez 2019-04-01  Movie
1460  Spy Kids 2: The Island of Lost D…  Robert Rodriguez 2019-03-08  Movie
2890                           Sin City  Robert Rodriguez 2019-10-01  Movie
3836                             Shorts  Robert Rodriguez 2019-07-01  Movie
3883                           Spy Kids  Robert Rodriguez 2019-04-01  Movie

4 The next question asks all for all titles with a date_added of "2019-07-31" or a
director of "Robert Altman". This problem is similar to the preceding one
but requires a | symbol for OR logic:

In  [82] added_on_july_31 = netflix["date_added"] == "2019-07-31"
         directed_by_altman = netflix["director"] == "Robert Altman"
         netflix[added_on_july_31 | directed_by_altman]

Out [82]
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                                title       director date_added    type

611                            Popeye  Robert Altman 2019-11-24   Movie
1028        The Red Sea Diving Resort    Gideon Raff 2019-07-31   Movie
1092                     Gosford Park  Robert Altman 2019-11-01   Movie
3473  Bangkok Love Stories: Innocence            NaN 2019-07-31 TV Show
5117                       Ramen Shop      Eric Khoo 2019-07-31   Movie

5 The next challenge asks for entries with a director of "Orson Welles", "Adi-
tya Kripalani", or "Sam Raimi". One option is to create three Boolean
Series, one for each of the three directors, and then use the | operator. But a
more concise and scalable way to generate the Boolean Series is to invoke the
isin method on the director column and pass in the list of directors:

In  [83] directors = ["Orson Welles", "Aditya Kripalani", "Sam Raimi"]
         target_directors = netflix["director"].isin(directors)
         netflix[target_directors]

Out [83]

                           title          director date_added   type

946                 The Stranger      Orson Welles 2018-07-19  Movie
1870                    The Gift         Sam Raimi 2019-11-20  Movie
3706                Spider-Man 3         Sam Raimi 2019-11-01  Movie
4243        Tikli and Laxmi Bomb  Aditya Kripalani 2018-08-01  Movie
4475  The Other Side of the Wind      Orson Welles 2018-11-02  Movie
5115    Tottaa Pataaka Item Maal  Aditya Kripalani 2019-06-25  Movie

6 The most concise way to find all rows with a date_added value between May 1,
2019 and June 1, 2019, is to use the between method. We can provide the two
dates as the lower and upper bounds. This approach eliminates the need for
two separate Boolean Series:

In  [84] may_movies = netflix["date_added"].between(
             "2019-05-01", "2019-06-01"
         )

         netflix[may_movies].head()

Out [84]

                   title      director date_added     type

29            Chopsticks  Sachin Yardi 2019-05-31    Movie
60        Away From Home           NaN 2019-05-08  TV Show
82   III Smoking Barrels    Sanjib Dey 2019-06-01    Movie
108            Jailbirds           NaN 2019-05-10  TV Show
124              Pegasus       Han Han 2019-05-31    Movie

7 The dropna method removes DataFrame rows with missing values. We have to
include the subset parameter to limit the columns in which pandas should
look for null values. For this question, we’ll target NaN values in the director
column:
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In  [85] netflix.dropna(subset = ["director"]).head()

Out [85]

                                title        director date_added   type

1                      A Patch of Fog  Michael Lennox 2017-04-15  Movie
3                           Uriyadi 2     Vijay Kumar 2019-08-02  Movie
4                   Shrek the Musical     Jason Moore 2013-12-29  Movie
5                    Schubert In Love     Lars Büchel 2018-03-01  Movie
6  We Have Always Lived in the Castle   Stacie Passon 2019-09-14  Movie

8 The final challenge asks to identify the days when Netflix added only one movie
to the service. One solution is to recognize that the date_added column holds
duplicate date values for titles added on the same day. We can invoke the
drop_duplicates method with a subset of date_added and the keep param-
eter set to False. Pandas will remove any rows with duplicate entries in the
date_added column. The resulting DataFrame will have the titles that were the
only ones added on their respective dates:

In  [86] netflix.drop_duplicates(subset = ["date_added"], keep = False)

Out [86]

                                   title         director date_added   type

4                      Shrek the Musical      Jason Moore 2013-12-29  Movie
12                         Without Gorky   Cosima Spender 2017-05-31  Movie
30            Anjelah Johnson: Not Fancy        Jay Karas 2015-10-02  Movie
38                        One Last Thing      Tim Rouhana 2019-08-25  Movie
70    Marvel's Iron Man & Hulk: Heroes …        Leo Riley 2014-02-16  Movie
   …                                   …                …          …      …
5748                             Menorca     John Barnard 2017-08-27  Movie
5749                          Green Room  Jeremy Saulnier 2018-11-12  Movie
5788     Chris Brown: Welcome to My Life   Andrew Sandler 2017-10-07  Movie
5789             A Very Murray Christmas    Sofia Coppola 2015-12-04  Movie
5812            Little Singham in London    Prakash Satam 2019-04-22  Movie

391 rows × 4 columns

Congratulations on completing the coding challenge!

Summary
 The astype method converts a Series’ values to another data type.
 The category data type is ideal when a Series has a small number of unique

values.
 Pandas can extract subsets of data from a DataFrame based on one or more

conditions.
 Pass a Boolean Series inside square brackets to extract a subset of a Data-

Frame.
 Use the equality, inequality, and mathematical operators to compare each

Series entry with a constant value.
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 The & symbol mandates that multiple conditions be met to extract a row.
 The | symbol mandates that either condition be met to extract a row.
 Helper methods such as isnull, notnull, between, and duplicated return

Boolean Series that we can use to filter data sets.
 The fillna method replaces NaNs with a constant value.
 The dropna method removes rows with null values. We can customize its argu-

ments to target missing values in all or some columns.



Part 2

Applied pandas

In part 1, we laid the groundwork for our mastery of pandas. Now that we’re
comfortable working with Series and DataFrames, we can expand our hori-
zons and learn how to tackle common problems in data analysis. Chapter 6 dives
right into working with messy text data, including dealing with whitespace and
inconsistent character casing. In chapter 7, we learn how to use the powerful
MultiIndex to store and extract hierarchical data. Chapters 8 and 9 focus on
aggregation: pivoting our DataFrames, grouping data into buckets, summariz-
ing data, and more. In chapter 10, we explore how to merge datasets by using a
variety of joins. Immediately afterward, we learn the ins and outs of working with
another common data type, datetimes, in chapter 11. In chapter 12, we look at
importing and exporting data sets to and from pandas. Chapter 13 covers how to
adjust the library’s configuration settings. Finally, chapter 14 provides a tutorial
on creating visualizations from our DataFrames. 

 Along the way, we’ll practice pandas concepts on more than 30 datasets that
cover everything from baby names to breakfast cereals, from Fortune 1000 com-
panies to Nobel Prize winners. You are welcome to proceed through the chap-
ters linearly or explore whichever topic piques your interest most. Consider each
chapter here to be a new specialization to add to your pandas toolbox. Good
luck!
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Working with text data
Text data can get quite messy. Real-world data sets are riddled with incorrect char-
acters, improper letter casings, whitespace, and more. The process of cleaning data
is called wrangling or munging. Often, the majority of our data analysis is dedicated
to munging. We may know the insight we want to derive early on, but the difficulty
lies in arranging the data in a suitable shape for the manipulation. Luckily for us,
one of the primary motivations behind pandas was easing the difficulty of cleaning
up improperly formatted text values. The library is battle-tested and flexible. In this
chapter, we’ll learn how to use pandas to fix all sorts of imperfections in our text
data sets. There’s a lot of ground to cover, so let’s dive right in.

This chapter covers
 Removing whitespace from strings

 Uppercasing and lowercasing strings

 Finding and replacing characters in strings

 Slicing a string by character index positions

 Splitting text by a delimiter
147
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6.1 Letter casing and whitespace
We’ll begin by importing pandas in a new Jupyter Notebook:

In  [1] import pandas as pd

This chapter’s first data set, chicago_food_inspections.csv, is a listing of more than
150,000 food inspections conducted across the city of Chicago. The CSV includes only
two columns: one with an establishment’s name and the other with its risk ranking.
The four risk levels are Risk 1 (High), Risk 2 (Medium), Risk 3 (Low), and a special
All for the worst offenders:

In  [2] inspections = pd.read_csv("chicago_food_inspections.csv")
        inspections

Out [2]

                                      Name             Risk

0                  MARRIOT MARQUIS CHICAGO    Risk 1 (High)
1                               JETS PIZZA  Risk 2 (Medium)
2                                ROOM 1520     Risk 3 (Low)
3                  MARRIOT MARQUIS CHICAGO    Risk 1 (High)
4                               CHARTWELLS    Risk 1 (High)
     …                                  …                 …
153805                           WOLCOTT'S    Risk 1 (High)
153806        DUNKIN DONUTS/BASKIN-ROBBINS  Risk 2 (Medium)
153807                            Cafe 608    Risk 1 (High)
153808                         mr.daniel's    Risk 1 (High)
153809                          TEMPO CAFE    Risk 1 (High)

153810 rows × 2 columns

NOTE chicago_food_inspections.csv is a modified version of a data set avail-
able from the city of Chicago (http://mng.bz/9N60). There are typos and
inconsistencies within the data; we have preserved them so that you can see the
data irregularities that appear in the real world. I encourage you to consider
how you can optimize this data with the techniques you’ll learn in this chapter.

We immediately see an issue in the Name column: inconsistency in letter casing. Most
row values are uppercase, some are lowercase ("mr.daniel's"), and some are nor-
mal case ("Café 608").

 The preceding output does not show another problem hiding in inspections:
the Name column’s values are surrounded by whitespace. We can spot the extra spac-
ing more easily if we isolate the Name Series with square-bracket syntax. Notice that
the ends of the rows do not align:

In  [3] inspections["Name"].head()

Out [3] 0     MARRIOT MARQUIS CHICAGO   
        1                    JETS PIZZA 
        2                     ROOM 1520 
        3      MARRIOT MARQUIS CHICAGO  
        4                  CHARTWELLS   
        Name: Name, dtype: object

http://mng.bz/9N60
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We can use the values attribute on the Series to get the underlying NumPy ndarray
storing the values. The whitespace is present at the ends and the beginnings of the values:

In  [4] inspections["Name"].head().values

Out [4] array([' MARRIOT MARQUIS CHICAGO   ', ' JETS PIZZA ',
               '   ROOM 1520 ', '  MARRIOT MARQUIS CHICAGO  ',
               ' CHARTWELLS   '], dtype=object)

Let’s focus on the whitespace first. We’ll deal with the letter casings a little later.
 The Series object’s str attribute exposes a StringMethods object, a powerful

toolbox of methods for working with strings:

In  [5] inspections["Name"].str

Out [5] <pandas.core.strings.StringMethods at 0x122ad8510>

Any time we’d like to perform string manipulations, we invoke a method on the
StringMethods object rather than the Series itself. Some methods work like
Python’s native string methods, whereas other methods are exclusive to pandas. For a
comprehensive review of Python’s string methods, see appendix B.

 We can use the strip family of methods to remove whitespace from a string. The
lstrip (left strip) method removes whitespace from the beginning of a string. Here’s
a basic example:

In  [6] dessert = "  cheesecake  "
        dessert.lstrip()

Out [6] 'cheesecake  '

The rstrip (right strip) method removes whitespace from the end of a string:

In  [7] dessert.rstrip()

Out [7] '  cheesecake'

The strip method removes whitespace from both ends of a string:

In  [8] dessert.strip()

Out [8] 'cheesecake'

These three strip methods are available on the StringMethods object. Each one
returns a new Series object with the operation applied to every column value. Let’s
invoke each of them:

In  [9] inspections["Name"].str.lstrip().head()

Out [9] 0    MARRIOT MARQUIS CHICAGO   
        1                   JETS PIZZA 
        2                    ROOM 1520 
        3     MARRIOT MARQUIS CHICAGO  
        4                 CHARTWELLS   
        Name: Name, dtype: object
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In  [10] inspections["Name"].str.rstrip().head()

Out [10] 0      MARRIOT MARQUIS CHICAGO
         1                   JETS PIZZA
         2                    ROOM 1520
         3      MARRIOT MARQUIS CHICAGO
         4                   CHARTWELLS
         Name: Name, dtype: object

In  [11] inspections["Name"].str.strip().head()

Out [11] 0    MARRIOT MARQUIS CHICAGO
         1                 JETS PIZZA
         2                  ROOM 1520
         3    MARRIOT MARQUIS CHICAGO
         4                 CHARTWELLS
         Name: Name, dtype: object

Now we can overwrite our existing Series with the new one that has no extra
whitespace. On the right side of an equal sign, we’ll use the strip code to create the
new Series. On the left side, we’ll use square-bracket syntax to denote the column
we’d like to overwrite. Python processes the right side of the equal sign first. In sum-
mary, we use the Name column to create a new Series without whitespace and then
overwrite the Name column with that new Series:

In  [12] inspections["Name"] = inspections["Name"].str.strip()

This one-line solution is suitable for a small data set, but it may quickly become
tedious for one with a large number of columns. How can we quickly apply the same
logic to all DataFrame columns? You may recall the columns attribute, which exposes
the iterable Index object that holds the DataFrame’s column names:

In  [13] inspections.columns

Out [13] Index(['Name', 'Risk'], dtype='object')

We can use Python’s for loop to iterate over each column, extract it dynamically from
the DataFrame, invoke the str.strip method to return a new Series, and over-
write the original column. The logic requires only two lines:

In  [14] for column in inspections.columns:
             inspections[column] = inspections[column].str.strip()

All of Python’s character casing methods are available on the StringMethods object.
The lower method, for example, lowercases all string characters:

In  [15] inspections["Name"].str.lower().head()

Out [15] 0    marriot marquis chicago
         1                 jets pizza
         2                  room 1520
         3    marriot marquis chicago
         4                 chartwells
         Name: Name, dtype: object
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The complementary str.upper method returns a Series with uppercase strings.
The next example invokes the method on a different Series because the Name col-
umn is mostly uppercase already:

In  [16] steaks = pd.Series(["porterhouse", "filet mignon", "ribeye"])
         steaks

Out [16] 0     porterhouse
         1    filet mignon
         2          ribeye
         dtype: object

In  [17] steaks.str.upper()

Out [17] 0     PORTERHOUSE
         1    FILET MIGNON
         2          RIBEYE
         dtype: object

Suppose that we want to get the establishments’ names in a more standardized, read-
able format. We can use the str.capitalize method to capitalize the first letter of
each string in the Series:

In  [18] inspections["Name"].str.capitalize().head()

Out [18] 0    Marriot marquis chicago
         1                 Jets pizza
         2                  Room 1520
         3    Marriot marquis chicago
         4                 Chartwells
         Name: Name, dtype: object

That’s a step in the right direction, but perhaps the best method available is
str.title, which capitalizes each word’s first letter. Pandas uses spaces to identify
where one word ends and the next begins:

In  [19] inspections["Name"].str.title().head()

Out [19] 0    Marriot Marquis Chicago
         1                 Jets Pizza
         2                  Room 1520
         3    Marriot Marquis Chicago
         4                 Chartwells
         Name: Name, dtype: object

The title method is a fantastic option for dealing with locations, countries, cities,
and people’s full names.

6.2 String slicing
Let’s turn our focus to the Risk column. Each row’s value includes both a numeric and
categorical representation of the risk (such as 1 and "High"). Here’s a reminder of
what the column looks like:
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In  [20] inspections["Risk"].head()

Out [20]

0      Risk 1 (High)
1    Risk 2 (Medium)
2       Risk 3 (Low)
3      Risk 1 (High)
4      Risk 1 (High)
Name: Risk, dtype: object

Let’s say we want to extract the numeric risk value from each row. This operation may
appear simple, given the seemingly consistent format of each row, but we have to
tread carefully. There is always room for deception in a data set this large:

In  [21] len(inspections)

Out [21] 153810

Do all rows follow a "Risk Number (Risk Level)" format? We can find out by invok-
ing the unique method, which returns a NumPy ndarray consisting of the column’s
unique values:

In  [22] inspections["Risk"].unique()

Out [22] array(['Risk 1 (High)', 'Risk 2 (Medium)', 'Risk 3 (Low)', 'All',
                nan], dtype=object)

We have to account for two additional values: missing NaNs and the 'All' string.
How we deal with these values is ultimately up to the analyst and the business. Are the
values significant, or can they be discarded? In this scenario, let’s propose a compro-
mise: we’ll remove the missing NaN values and replace the "All" values with "Risk 4
(Extreme)". We’ll pick this approach to ensure that all Risk values have a consistent
format.

 We can remove missing values from a Series with the dropna method intro-
duced in chapter 5. We’ll pass its subset parameter a list of the DataFrame columns
in which pandas should look for NaNs. The next example removes rows in inspec-
tions with a NaN value in the Risk column:

In  [23] inspections = inspections.dropna(subset = ["Risk"])

Let’s check in on unique values in the Risk column:

In  [24] inspections["Risk"].unique()

Out [24] array(['Risk 1 (High)', 'Risk 2 (Medium)', 'Risk 3 (Low)', 'All'],
                dtype=object)

We can use the DataFrame’s helpful replace method to replace all occurrences
of one value with another. The method’s first parameter, to_replace, sets the value
to search for, and its second parameter, value, specifies what to replace each
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occurrence of it with. The next example replaces the "All" string values with "Risk
4 (Extreme)":

In  [25] inspections = inspections.replace(
             to_replace = "All", value = "Risk 4 (Extreme)"
         )

Now we have a consistent format for all values in the Risk column:

In  [26] inspections["Risk"].unique()

Out [26] array(['Risk 1 (High)', 'Risk 2 (Medium)', 'Risk 3 (Low)',
                'Risk 4 (Extreme)'], dtype=object)

Next, let’s continue with our original goal of extracting each row’s risk number.

6.3 String slicing and character replacement
We can use the slice method on the StringMethods object to extract a substring
from a string by index position. The method accepts a starting index and an ending
index as arguments. The lower bound (the starting point) is inclusive, whereas the
upper bound (the endpoint) is exclusive.

 Our risk number starts at index position 5 in each string. The next example pulls
the characters from index position 5 up to (but not including) index position 6:

In  [27] inspections["Risk"].str.slice(5, 6).head()

Out [27] 0    1
         1    2
         2    3
         3    1
         4    1
         Name: Risk, dtype: object

We can also replace the slice method with Python’s list-slicing syntax (see appendix
B). The following code returns the same result as the preceding code:

In  [28] inspections["Risk"].str[5:6].head()

Out [28] 0    1
         1    2
         2    3
         3    1
         4    1
         Name: Risk, dtype: object

What if we want to extract the categorical ranking ("High", "Medium", "Low", and
"All") from each row? This challenge is made difficult by the different lengths of the
words; we cannot extract the same number of characters from a starting index posi-
tion. A few solutions are available. We’ll discuss the most resilient option, regular
expressions, in section 6.7.
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 For now, let’s attack the problem step by step. We can start by using the slice
method to extract each row’s risk category. If we pass the slice method a single
value, pandas will use it as the lower bound and extract until the end of the string.

 The next example pulls the characters from index position 8 to the end of each
string. The character at index position 8 is the first letter in each risk type (the "H" in
"High", the "M" in "Medium", the "L" in "Low", and the "E" in "Extreme"):

In  [29] inspections["Risk"].str.slice(8).head()

Out [29] 0      High)
         1    Medium)
         2       Low)
         3      High)
         4      High)
         Name: Risk, dtype: object

We can use Python’s list-slicing syntax, too. Inside the square brackets, provide a start-
ing index position followed by a single colon. The result is identical:

In  [30] inspections["Risk"].str[8:].head()

Out [30] 0      High)
         1    Medium)
         2       Low)
         3      High)
         4      High)
         Name: Risk, dtype: object

We still have to deal with the pesky closing parentheses. Here’s a cool solution: pass a
negative argument to the str.slice method. A negative argument sets the index
bound relative to the end of the string: -1 extracts up to the last character, -2 extracts
up to the second-to-last character, and so on. Let’s extract a substring from index posi-
tion 8 up until the last character in each string:

In  [31] inspections["Risk"].str.slice(8, -1).head()

Out [31] 0      High
         1    Medium
         2       Low
         3      High
         4      High
         Name: Risk, dtype: object

We’ve got it! If you prefer list-slicing syntax, you can pass the -1 after the colon inside
the square brackets:

In  [32] inspections["Risk"].str[8:-1].head()

Out [32] 0      High
         1    Medium
         2       Low
         3      High
         4      High
         Name: Risk, dtype: object
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Another strategy we can use to remove the closing parentheses is the str.replace
method. We can replace each closing parentheses with an empty string—a string with-
out characters.

 Each str method returns a new Series object with its own str attribute. This
aspect allows us to chain multiple string methods in sequence, as long as we reference
the str attribute in each method invocation. The next example chains the slice and
replace methods:

In  [33] inspections["Risk"].str.slice(8).str.replace(")", "").head()

Out [33] 0      High
         1    Medium
         2       Low
         3      High
         4      High
         Name: Risk, dtype: object

By slicing from a middle index position and removing the ending parenthesis, we
were able to isolate the Risk level for each row.

6.4 Boolean methods
Section 6.3 introduced methods such as upper and slice that return a Series of
strings. Other methods available on the StringMethods object return a Series of
Booleans. These methods can prove to be particularly helpful for filtering a Data-
Frame.

 Suppose that we want to isolate all establishments with the word "Pizza" in their
names. In vanilla Python, we use the in operator to search for a substring with a string:

In  [34] "Pizza" in "Jets Pizza"

Out [34] True

The biggest challenge in string matching is case sensitivity. Python will not find the
string "pizza" in "Jets Pizza", for example, because of the mismatch in casing of
the "p" character:

In  [35] "pizza" in "Jets Pizza"

Out [35] False

To solve this problem, we need to ensure consistent casing across all column values
before we check for the presence of a substring. We can look for a lowercase "pizza"
in an all-lowercase Series or an uppercase "PIZZA" in an all-uppercase Series.
Let’s go with the former approach.

 The contains method checks for a substring’s inclusion in each Series value.
The method returns True when pandas finds the method’s argument within the row’s
string and False when it does not. The next example first lowercases the Name col-
umn with the lower method and then searches for "pizza" within each row:
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In  [36] inspections["Name"].str.lower().str.contains("pizza").head()

Out [36] 0    False
         1     True
         2    False
         3    False
         4    False
         Name: Name, dtype: bool

We have a Boolean Series, which we can use to extract all establishments with
"Pizza" in their name:

In  [37] has_pizza = inspections["Name"].str.lower().str.contains("pizza")
         inspections[has_pizza]

Out [37]

                                    Name             Risk

1                             JETS PIZZA  Risk 2 (Medium)
19         NANCY'S HOME OF STUFFED PIZZA    Risk 1 (High)
27            NARY'S GRILL & PIZZA ,INC.    Risk 1 (High)
29                   NARYS GRILL & PIZZA    Risk 1 (High)
68                         COLUTAS PIZZA    Risk 1 (High)
     …                                 …                …
153756       ANGELO'S STUFFED PIZZA CORP    Risk 1 (High)
153764                COCHIAROS PIZZA #2    Risk 1 (High)
153772  FERNANDO'S MEXICAN GRILL & PIZZA    Risk 1 (High)
153788            REGGIO'S PIZZA EXPRESS    Risk 1 (High)
153801        State Street Pizza Company    Risk 1 (High)

3992 rows × 2 columns

Notice that pandas preserves the original letter casing of the values in Name. The
inspections DataFrame is never mutated. The lower method returns a new
Series, and the contains method we invoke on it returns another new Series,
which pandas uses to filter rows from the original DataFrame.

 What if we want to be more precise in our targeting, perhaps extracting all estab-
lishments beginning with the string "tacos"? Now we care about the position of the
substring within each string. The str.startswith method solves the problem,
returning True if a string begins with its argument:

In  [38] inspections["Name"].str.lower().str.startswith("tacos").head()

Out [38] 0    False
         1    False
         2    False
         3    False
         4    False
         Name: Name, dtype: bool

In  [39] starts_with_tacos = (
             inspections["Name"].str.lower().str.startswith("tacos")
         )

         inspections[starts_with_tacos]
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Out [39]

                         Name           Risk

69               TACOS NIETOS  Risk 1 (High)
556       TACOS EL TIO 2 INC.  Risk 1 (High)
675          TACOS DON GABINO  Risk 1 (High)
958       TACOS EL TIO 2 INC.  Risk 1 (High)
1036      TACOS EL TIO 2 INC.  Risk 1 (High)
     …                      …              …
143587          TACOS DE LUNA  Risk 1 (High)
144026           TACOS GARCIA  Risk 1 (High)
146174        Tacos Place's 1  Risk 1 (High)
147810  TACOS MARIO'S LIMITED  Risk 1 (High)
151191            TACOS REYNA  Risk 1 (High)

105 rows × 2 columns

The complementary str.endswith method checks for a substring at the end of each
Series string:

In  [40] ends_with_tacos = (
             inspections["Name"].str.lower().str.endswith("tacos")
         )

         inspections[ends_with_tacos]

Out [40]

                   Name           Risk

382        LAZO'S TACOS  Risk 1 (High)
569        LAZO'S TACOS  Risk 1 (High)
2652       FLYING TACOS   Risk 3 (Low)
3250       JONY'S TACOS  Risk 1 (High)
3812       PACO'S TACOS  Risk 1 (High)
     …                …              …
151121      REYES TACOS  Risk 1 (High)
151318   EL MACHO TACOS  Risk 1 (High)
151801   EL MACHO TACOS  Risk 1 (High)
153087  RAYMOND'S TACOS  Risk 1 (High)
153504        MIS TACOS  Risk 1 (High)

304 rows × 2 columns

Whether you’re looking for text at the beginning, middle, or end of a string, the
StringMethods object has a helper method to assist you.

6.5 Splitting strings
Our next data set is a collection of fictional customers. Each row includes the cus-
tomer’s Name and Address. Let’s import the customers.csv file with the read_csv
function and assign the DataFrame to a customers variable:

In  [41] customers = pd.read_csv("customers.csv")
         customers.head()

Out [41]
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                  Name                                              Address

0        Frank Manning  6461 Quinn Groves, East Matthew, New Hampshire,166…
1    Elizabeth Johnson   1360 Tracey Ports Apt. 419, Kyleport, Vermont,319…
2      Donald Stephens   19120 Fleming Manors, Prestonstad, Montana, 23495
3  Michael Vincent III        441 Olivia Creek, Jimmymouth, Georgia, 82991
4       Jasmine Zamora     4246 Chelsey Ford Apt. 310, Karamouth, Utah, 76…

We can use the str.len method to return the length of each row’s string. Row 0’s
value of "Frank Manning", for example, has a length of 13 characters:

In  [42] customers["Name"].str.len().head()

Out [42] 0    13
         1    17
         2    15
         3    19
         4    14
         Name: Name, dtype: int64

Suppose that we want to isolate each customer’s first and last names in two separate
columns. You may be familiar with Python’s split method, which separates a string
by using a specified delimiter. The method returns a list consisting of all the substrings
after the split. The next example splits a phone number into a list of three strings by
using a hyphen delimiter:

In  [43] phone_number = "555-123-4567"
         phone_number.split("-")

Out [43] ['555', '123', '4567']

The str.split method performs the same operation on each row in a Series; its
return value is a Series of lists. We pass the delimiter to the method’s first parameter,
pat (short for pattern). The next example splits the values in Name by the presence of
a space:

In  [44] # The two lines below are equivalent
         customers["Name"].str.split(pat = " ").head()
         customers["Name"].str.split(" ").head()

Out [44] 0           [Frank, Manning]
         1       [Elizabeth, Johnson]
         2         [Donald, Stephens]
         3    [Michael, Vincent, III]
         4          [Jasmine, Zamora]
         Name: Name, dtype: object

Next, let’s reinvoke the str.len method on this new Series of lists to get the length
of each list. Pandas reacts dynamically to whatever data type a Series is storing:

In  [45] customers["Name"].str.split(" ").str.len().head()

Out [45] 0    2
         1    2
         2    2
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         3    3
         4    2
         Name: Name, dtype: int64

We have a small issue. Due to suffixes such as "MD" and "Jr", some names have more
than two words. We can see an example at index position 3: Michael Vincent III,
which pandas splits into a list of three elements. To ensure an equal number of ele-
ments per list, we can limit the number of splits. If we set a maximum threshold of one
split, pandas will split a string at the first space and stop. Then we’ll have a Series
consisting of two-element lists. Each list will hold the customer’s first name and any-
thing that follows it.

 The next example passes an argument of 1 to the split method’s n parameter,
which sets the maximum number of splits. Take a look at how pandas deals with
"Michael Vincent III" at index 3:

In  [46] customers["Name"].str.split(pat = " ", n = 1).head()

Out [46] 0          [Frank, Manning]
         1      [Elizabeth, Johnson]
         2        [Donald, Stephens]
         3    [Michael, Vincent III]
         4         [Jasmine, Zamora]
         Name: Name, dtype: object

Now all our lists have equal lengths. We can use str.get to pull out a value from each
row’s list based on its index position. We can target index 0, for example, to pull out
the first element of each list, which is the customer’s first name:

In  [47] customers["Name"].str.split(pat = " ", n = 1).str.get(0).head()

Out [47] 0        Frank
         1    Elizabeth
         2       Donald
         3      Michael
         4      Jasmine
         Name: Name, dtype: object

To pull the last name from each list, we could pass the get method an index position
of 1:

In  [48] customers["Name"].str.split(pat = " ", n = 1).str.get(1).head()

Out [48] 0        Manning
         1        Johnson
         2       Stephens
         3    Vincent III
         4         Zamora
         Name: Name, dtype: object

The get method also supports negative arguments. An argument of -1 extracts the
last element from each row’s list, regardless of how many elements the list holds. The
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following code produces the same result as the preceding code and is a bit more versa-
tile in scenarios in which the lists have different lengths:

In  [49] customers["Name"].str.split(pat = " ", n = 1).str.get(-1).head()

Out [49] 0        Manning
         1        Johnson
         2       Stephens
         3    Vincent III
         4         Zamora
         Name: Name, dtype: object

So far, so good. We’ve used two separate get method calls to extract the first and last
names in two separate Series. Wouldn’t it be nice to perform the same logic in a sin-
gle method call? Luckily, the str.split method accepts an expand parameter, and
when we pass it an argument of True, the method returns a new DataFrame instead
of a Series of lists:

In  [50] customers["Name"].str.split(
             pat = " ", n = 1, expand = True
         ).head()

Out [50]

           0            1

0      Frank      Manning
1  Elizabeth      Johnson
2     Donald     Stephens
3    Michael  Vincent III
4    Jasmine       Zamora

We’ve got a new DataFrame! Because we did not provide custom names for the col-
umns, pandas defaulted to a numeric index on the column axis.

 Be careful in these scenarios. If we do not limit the number of splits with the n
parameter, pandas will place None values in rows that do not have sufficient elements:

In  [51] customers["Name"].str.split(pat = " ", expand = True).head()

Out [51]

           0         1     2

0      Frank   Manning  None
1  Elizabeth   Johnson  None
2     Donald  Stephens  None
3    Michael   Vincent   III
4    Jasmine    Zamora  None

Now that we’ve isolated the customers’ names, let’s attach the new two-column Data-
Frame to the existing customers DataFrame. On the right side of an equal sign, we’ll
use the split code to create the DataFrame. On the left side of the equal sign, we’ll
provide a list of column names inside a pair of square brackets. Pandas will append
these columns to customers. The next example adds two new columns, First Name
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and Last Name, and populates them with the DataFrame returned by the split
method:

In  [52] customers[["First Name", "Last Name"]] = customers[
             "Name"
         ].str.split(pat = " ", n = 1, expand = True)

Let’s take a look at the result:

In  [53] customers

Out [53]

                 Name                    Address  First Name    Last Name

0           Frank Manning  6461 Quinn Groves, E…       Frank      Manning
1       Elizabeth Johnson  1360 Tracey Ports Ap…   Elizabeth      Johnson
2         Donald Stephens  19120 Fleming Manors…      Donald     Stephens
3     Michael Vincent III  441 Olivia Creek, Ji…     Michael  Vincent III
4          Jasmine Zamora  4246 Chelsey Ford Ap…     Jasmine       Zamora
   …                    …                      …           …            …
9956        Dana Browning  762 Andrew Views Apt…        Dana     Browning
9957      Amanda Anderson  44188 Day Crest Apt …      Amanda     Anderson
9958           Eric Davis  73015 Michelle Squar…        Eric        Davis
9959     Taylor Hernandez  129 Keith Greens, Ha…      Taylor    Hernandez
9960     Sherry Nicholson  355 Griffin Valley, …      Sherry    Nicholson

9961 rows × 4 columns

Excellent! Now that we’ve extracted the customers’ names to separate columns, we
can delete the original Name column. One way is to use the drop method on our cus-
tomers DataFrame. We’ll pass the column’s name to the labels parameter and an
argument of "columns" to the axis parameter. We need to include the axis param-
eter to tell pandas to look for the Name label in the columns instead of the rows:

In  [54] customers = customers.drop(labels = "Name", axis = "columns")

Remember that mutational operations do not produce output in Jupyter Notebook.
We must print the DataFrame to see the result:

In  [55] customers.head()

Out [55]

                                           Address  First Name    Last Name

0  6461 Quinn Groves, East Matthew, New Hampshire…       Frank      Manning
1   1360 Tracey Ports Apt. 419, Kyleport, Vermont…   Elizabeth      Johnson
2      19120 Fleming Manors, Prestonstad, Montana…      Donald     Stephens
3           441 Olivia Creek, Jimmymouth, Georgia…     Michael  Vincent III
4     4246 Chelsey Ford Apt. 310, Karamouth, Utah…     Jasmine       Zamora

There we go. The Name column is gone, and we have split its contents across two new
columns.
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6.6 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

6.6.1 Problems

Our customers data set includes an Address column. Each address consists of a street,
a city, a state, and a zip code. Your challenge is to separate these four values; assign
them to new Street, City, State, and Zip columns; and then remove the Address col-
umn. Give the problem a shot, and then review the solution.

6.6.2 Solutions

Our first step is splitting the address strings with a delimiter, using the split method.
A comma by itself seems to be a good argument:

In  [56] customers["Address"].str.split(",").head()

Out [56] 0    [6461 Quinn Groves,  East Matthew,  New Hampsh...
         1    [1360 Tracey Ports Apt. 419,  Kyleport,  Vermo...
         2    [19120 Fleming Manors,  Prestonstad,  Montana,...
         3    [441 Olivia Creek,  Jimmymouth,  Georgia,  82991]
         4    [4246 Chelsey Ford Apt. 310,  Karamouth,  Utah...
         Name: Address, dtype: object

Unfortunately, this split keeps the spaces after the commas. We could perform addi-
tional cleanup by using a method such as strip, but a better solution is available. If
we think about it, each portion of the address is separated by a comma and a space.
Therefore, we can pass the split method a delimiter of both characters:

In  [57] customers["Address"].str.split(", ").head()

Out [57] 0    [6461 Quinn Groves, East Matthew, New Hampshir...
         1    [1360 Tracey Ports Apt. 419, Kyleport, Vermont...
         2    [19120 Fleming Manors, Prestonstad, Montana, 2...
         3       [441 Olivia Creek, Jimmymouth, Georgia, 82991]
         4    [4246 Chelsey Ford Apt. 310, Karamouth, Utah, ...
         Name: Address, dtype: object

Now there is no extra whitespace at the start of each substring within the lists.
 By default, the split method returns a Series of lists. We can make the method

return a DataFrame by passing the expand parameter an argument of True:

In  [58] customers["Address"].str.split(", ", expand = True).head()

Out [58]

                            0             1              2      3

0           6461 Quinn Groves  East Matthew  New Hampshire  16656
1  1360 Tracey Ports Apt. 419      Kyleport        Vermont  31924
2        19120 Fleming Manors   Prestonstad        Montana  23495
3            441 Olivia Creek    Jimmymouth        Georgia  82991
4  4246 Chelsey Ford Apt. 310     Karamouth           Utah  76252
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We have a couple more steps left. Let’s add the new four-column DataFrame to our
existing customers DataFrame. We’ll define a list with the new column names. This
time around, let’s assign the list to a variable to simplify readability. Next, we’ll pass
the list in square brackets before an equal sign. On the right side of the equal sign,
we’ll use the preceding code to create the new DataFrame:

In  [59] new_cols = ["Street", "City", "State", "Zip"]

         customers[new_cols] = customers["Address"].str.split(
              pat = ", ", expand = True
         )

The last step is deleting the original Address column. The drop method is a good
solution here. To alter the DataFrame permanently, make sure to overwrite custom-
ers with the returned DataFrame:

In  [60] customers.drop(labels = "Address", axis = "columns").head()

Out [60]

  First Name    Last Name        Street          City         State    Zip

0      Frank      Manning  6461 Quin...  East Matthew  New Hamps...  16656
1  Elizabeth      Johnson  1360 Trac...      Kyleport       Vermont  31924
2     Donald     Stephens  19120 Fle...   Prestonstad       Montana  23495
3    Michael  Vincent III  441 Olivi...    Jimmymouth       Georgia  82991
4    Jasmine       Zamora  4246 Chel...     Karamouth          Utah  76252

Another option is to use Python’s built-in del keyword before the target column. This
syntax mutates the DataFrame:

In  [61] del customers["Address"]

Let’s take a look at the final product:

In  [62] customers.tail()

Out [62]

     First Name  Last Name        Street         City          State    Zip

9956       Dana   Browning  762 Andrew …   North Paul     New Mexico  28889
9957     Amanda   Anderson  44188 Day C…  Lake Marcia          Maine  37378
9958       Eric      Davis  73015 Miche…  Watsonville  West Virginia  03933
9959     Taylor  Hernandez  129 Keith G…    Haleyfurt       Oklahoma  98916
9960     Sherry  Nicholson  355 Griffin…    Davidtown     New Mexico  17581

We’ve successfully extracted the contents of the Address column to four new columns.
Congratulations on completing the coding challenge!

6.7 A note on regular expressions
Any discussion of working with text data is incomplete without mentioning regular
expressions, also known as RegEx. A regular expression is a search pattern that looks for
a sequence of characters within a string.

 We declare regular expressions with a special syntax consisting of symbols and
characters. \d, for example, matches any numeric digit between 0 and 9. With regular
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expressions, we can define complex search patterns by targeting lowercase characters,
uppercase characters, digits, slashes, whitespace, string boundaries, and more.

 Suppose that a phone number like 555-555-5555 is hidden in a larger string. We
can use regular expressions to define a search algorithm that extracts sequences of
three sequential digits, a dash, three sequential digits, another dash, and four more
sequential digits. That level of granularity grants regular expressions their power.

 Here’s a quick example that shows the syntax in action. The next code sample uses
the replace method on the Street column to swap all occurrences of four sequential
digits with an asterisk character:

In  [63] customers["Street"].head()

Out [63]  0             6461 Quinn Groves
          1    1360 Tracey Ports Apt. 419
          2          19120 Fleming Manors
          3              441 Olivia Creek
          4    4246 Chelsey Ford Apt. 310
          Name: Street, dtype: object

In  [64] customers["Street"].str.replace(
             "\d{4,}", "*", regex = True
         ).head()

Out [64] 0             * Quinn Groves
         1    * Tracey Ports Apt. 419
         2           * Fleming Manors
         3           441 Olivia Creek
         4    * Chelsey Ford Apt. 310
         Name: Street, dtype: object

Regular expressions are a highly specialized technical topic. Whole books are written
on the complexities of RegEx. For now, it’s important to note that pandas supports
RegEx arguments for most of its string methods. You can check out appendix E for a
more comprehensive introduction to the domain.

Summary
 The str attribute holds a StringMethods object with methods for performing

string manipulations on Series values.
 The strip family of methods removes whitespace from the start of a string, the

end of a string, or both sides.
 Methods such as upper, lower, capitalize, and title modify the letter cas-

ing of string characters.
 The contains method checks for the presence of a substring within another

string.
 The startswith method checks for a substring at the beginning of a string.
 The complementary endswith method checks for a substring at the end of a

string.
 The split method splits a string into a list by using a specified delimiter. We

can use it to split a DataFrame column’s text across several Series.



MultiIndex DataFrames
So far on our pandas journey, we’ve explored the one-dimensional Series and the
two-dimensional DataFrame. The number of dimensions is the number of refer-
ence points we need to extract a value from a data structure. We need only one label
or one index position to locate a value in a Series. We need two reference points
to locate a value in a DataFrame: a label/index for the rows and a label/index for
the columns. Can we expand beyond two dimensions? Absolutely! Pandas supports
data sets with any number of dimensions through the use of a MultiIndex.

 A MultiIndex is an index object that holds multiple levels. Each level stores a
value for the row. It is optimal to use a MultiIndex when a combination of values

This chapter covers
 Creating a MultiIndex

 Selecting rows and columns from a MultiIndex 
DataFrame

 Extracting a cross-section from a MultiIndex 
DataFrame

 Swapping MultiIndex levels
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provides the best identifier for a row of data. Consider the data set in figure 7.1, which
stores stock prices across multiple dates.

 Suppose that we want to find a unique identifier for each price. Neither a stock’s
name nor its date is sufficient by itself, but the combination of both values is a good
fit. The stock "MSFT" appears twice, the date "02/08/2021" appears twice, but the
combination of "MSFT" and "02/08/2021" appears only once. A MultiIndex stor-
ing the values of the Stock and Date columns would suit this data set well.

 A MultiIndex is also ideal for hierarchical data—data in which one column’s val-
ues are a subcategory of another column’s values. Consider the data set in figure 7.2.

The Item column’s values are subcategories of the Group column’s values. An Apple is
a type of Fruit, and Broccoli is a type of Vegetable. Thus, the Group and Item columns
could serve as a MultiIndex combo.

 The MultiIndex is an obscure feature in pandas but one that’s worth taking the
time to learn. The introduction of multiple index levels adds a lot of versatility to how
we slice and dice data sets.

7.1 The MultiIndex object
Let’s open a new Jupyter Notebook, import the pandas library, and assign it the alias pd:

In  [1] import pandas as pd

To keep things simple, we’ll start by creating a MultiIndex object from scratch. In
section 7.2, we’ll practice these concepts on an imported data set.

 Do you recall Python’s built-in tuple object? The tuple is an immutable data struc-
ture that holds a sequence of values in order. A tuple is effectively a list that cannot be
modified after creation. For a deeper dive into this data structure, see appendix B.

Figure 7.1 Sample data set with Stock, 
Date, and Price columns

Figure 7.2 Sample data set with Group, 
Item, and Calories columns
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 Let’s say we want to model a street address. An address typically includes a street
name, city, town, and zip code. We could store these four elements in a tuple:

In  [2] address = ("8809 Flair Square", "Toddside", "IL", "37206")
        address

Out [2] ('8809 Underwood Squares', 'Toddside', 'IL', '37206')

Series and DataFrame indices can hold various data types: strings, numbers, date-
times, and more. But all these objects can store only one value per index position, one
label per row. A tuple doesn’t have that limitation.

 What if we gathered multiple tuples in a list? The list would look like this:

In  [3] addresses = [
            ("8809 Flair Square", "Toddside", "IL", "37206"),
            ("9901 Austin Street", "Toddside", "IL", "37206"),
            ("905 Hogan Quarter", "Franklin", "IL", "37206"),
        ]

Now imagine these tuples serving as a DataFrame’s index labels. I hope that the idea
is not too confusing. All operations remain the same. We would still be able to refer-
ence a row by its index label, but each index label would be a container holding multi-
ple elements. That’s a good way to start thinking about the MultiIndex object—as an
index in which each label can store multiple pieces of data.

 We can create a MultiIndex object independently of a Series or DataFrame. The
MultiIndex class is available as a top-level attribute on the pandas library. It includes
a from_tuples class method that instantiates a MultiIndex from a list of tuples. A
class method is a method we invoke on a class rather than an instance. The next example
invokes the from_tuples class method and passes it the addresses list:

In  [4] # The two lines below are equivalent
        pd.MultiIndex.from_tuples(addresses)
        pd.MultiIndex.from_tuples(tuples = addresses)

Out [4] MultiIndex([( '8809 Flair Square',   'Toddside', 'IL', '37206'),
                    ('9901 Austin Street',   'Toddside', 'IL', '37206'),
                    ( '905 Hogan Quarter',   'Franklin', 'IL', '37206')],
                   )

We have our first MultiIndex, which stores three tuples of four elements each. There
is a consistent pattern to each tuple’s elements:

 The first value is the address.
 The second value is the city.
 The third value is the state.
 The fourth value is the zip code.

In pandas terminology, the collection of tuple values at the same position forms a level
of the MultiIndex. In the previous example, the first MultiIndex level consists of
the values "8809 Flair Square", "9901 Austin Street", and "905 Hogan
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Quarter". Similarly, the second MultiIndex level consists of "Toddside",
"Toddside", and "Franklin".

 We can assign each MultiIndex level a name by passing a list to the from_tuples
method’s names parameter. Here, we assign the names "Street", "City", "State",
and "Zip":

In  [5] row_index = pd.MultiIndex.from_tuples(
            tuples = addresses,
            names = ["Street", "City", "State", "Zip"]
        )

        row_index

Out [5] MultiIndex([( '8809 Flair Square',   'Toddside', 'IL', '37206'),
                    ('9901 Austin Street',   'Toddside', 'IL', '37206'),
                    ( '905 Hogan Quarter',   'Franklin', 'IL', '37206')],
                    names=['Street', 'City', 'State', 'Zip'])

To summarize, a MultiIndex is a storage container in which each label holds multi-
ple values. A level consists of the values at the same position across the labels.

 Now that we have a MultiIndex, let’s attach it to a DataFrame. The easiest way is
to use the DataFrame constructor’s index parameter. We passed this parameter a list
of strings in earlier chapters, but it also accepts any valid index object. Let’s pass it the
MultiIndex we assigned to the row_index variable. Because our MultiIndex has
three tuples (or, equivalently, three labels), we’ll need to provide three rows of data:

In  [6] data = [
            ["A", "B+"],
            ["C+", "C"],
            ["D-", "A"],
        ]

        columns = ["Schools", "Cost of Living"]

        area_grades = pd.DataFrame(
            data = data, index = row_index, columns = columns
        )

        area_grades

Out [6]

                                        Schools Cost of Living
Street             City     State Zip

8809 Flair Square  Toddside IL    37206       A             B+
9901 Austin Street Toddside IL    37206      C+              C
905 Hogan Quarter  Franklin IL    37206      D-              A

We have a DataFrame with a MultiIndex on its row axis. Each row’s label holds four
values: a street, a city, a state, and a zip code.

 Let’s turn our focus to the column axis. Pandas stores a DataFrame’s column
headers in an index object as well. We can access that index via the columns attribute:



169The MultiIndex object
In  [7] area_grades.columns

Out [7] Index(['Schools', 'Cost of Living'], dtype='object')

Pandas currently stores the two column names in a single-level Index object. Let’s cre-
ate a second MultiIndex and attach it to the column axis. The next example invokes
the from_tuples class method again, passing it a list of four tuples. Each tuple holds
two strings:

In  [8] column_index = pd.MultiIndex.from_tuples(
             [
                 ("Culture", "Restaurants"),
                 ("Culture", "Museums"),
                 ("Services", "Police"),
                 ("Services", "Schools"),
             ]
         )

         column_index

Out [8] MultiIndex([( 'Culture', 'Restaurants'),
                    ( 'Culture',     'Museums'),
                    ('Services',      'Police'),
                    ('Services',     'Schools')],
                   )

Let’s attach both of our MultiIndexes to a DataFrame. The MultiIndex for the
row axis (row_index) requires the data set to hold three rows. The MultiIndex for
the column axis (column_index) requires the data set to hold four columns. There-
fore, our data set must have a 3 x 4 shape. Let’s create that sample data. The next
example declares a list of three lists. Each nested list stores four strings:

In  [9] data = [
            ["C-", "B+", "B-", "A"],
            ["D+", "C", "A", "C+"],
            ["A-", "A", "D+", "F"]
        ]

We’re ready to put the pieces together and create a DataFrame with a MultiIndex
on both the row and column axes. In the DataFrame constructor, let’s pass our
respective MultiIndex variables to the index and columns parameters:

In  [10] pd.DataFrame(
             data = data, index = row_index, columns = column_index
         )

Out [10]

                                    Culture               Services
                                    Restaurants Museums   Police Schools
Street       City       State Zip

8809 Flai... Toddside   IL    37206          C-      B+       B-       A
9901 Aust... Toddside   IL    37206          D+       C        A      C+
905 Hogan... Franklin   IL    37206          A-       A       D+       F
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Hooray! We’ve successfully created a DataFrame with a four-level row MultiIndex
and a two-level column MultiIndex. A MultiIndex is an index that can store multi-
ple levels, multiple tiers. Each index label is made of multiple components. That’s all
there is to it.

7.2 MultiIndex DataFrames
Let’s scale things up a bit. The neighborhoods.csv data set is similar to the one we cre-
ated in section 7.1; it’s a listing of ~250 fictional addresses in cities across the United
States. Each address is graded on four characteristics of livability: Restaurants, Muse-
ums, Police, and Schools. The four grades are grouped in two parent categories: Cul-
ture and Services.

 Here’s a preview of the first couple of rows of the raw CSV file. In a CSV, a comma
separates every two subsequent values in a row of data. Thus, the presence of sequen-
tial commas with nothing between them indicates missing values:

,,,Culture,Culture,Services,Services
,,,Restaurants,Museums,Police,Schools
State,City,Street,,,,
MO,Fisherborough,244 Tracy View,C+,F,D-,A+

How will pandas import this CSV file’s data? Let’s find out with the read_csv function:

In  [11] neighborhoods = pd.read_csv("neighborhoods.csv")
         neighborhoods.head()

Out [11]

  Unnamed: 0  Unnamed: 1  Unnamed: 2    Culture Culture.1 Services Services.1

0        NaN         NaN         NaN  Restau...   Museums   Police    Schools
1      State        City      Street        NaN       NaN      NaN        NaN
2         MO   Fisher...   244 Tr...         C+         F       D-         A+
3         SD   Port C...   446 Cy...         C-         B        B         D+
4         WV   Jimene...   432 Jo...          A        A+        F          B

Something is off here! First, we have three Unnamed columns, each one ending in a
different number. When importing a CSV, pandas assumes that the file’s first row
holds the column names, also known as the headers. If a header slot does not have a
value, pandas assigns a title of "Unnamed" to the column. Simultaneously, the library
tries to avoid duplicate column names. To distinguish between multiple missing head-
ers, the library adds a numerical index to each. Thus, we have three Unnamed col-
umns: Unnamed: 0, Unnamed: 1, and Unnamed: 2.

 The four columns to the right have the same naming issue. Notice that pandas
assigns a title of Culture to the column at index 3 and Culture 1 to the one after it.
The CSV file has the same value of "Culture" for two header cells in a row, followed
by the same value of "Services" for two header cells in a row.

 Unfortunately, that’s not the end of our problems. In row 0, each of the first three
columns holds a NaN value. In row 1, we have NaN values present in the last four
columns. The issue is that the CSV is trying to model a multilevel row index and a
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multilevel column index, but the default arguments to the read_csv function’s
parameters don’t recognize it. Luckily, we can solve this problem by altering the argu-
ments to a couple of read_csv parameters.

 First, we have to tell pandas that the three leftmost columns should serve as the
index of the DataFrame. We can do this by passing the index_col parameter a list of
numbers, each one representing the index (or numeric position) of a column that
should be in the DataFrame’s index. The index starts counting from 0. Thus, the first
three columns (the Unnamed ones) will have index positions 0, 1, and 2. When we
pass index_col a list with multiple values, pandas automatically creates a Multi-
Index for the DataFrame:

In  [12] neighborhoods = pd.read_csv(
             "neighborhoods.csv",
             index_col = [0, 1, 2]
         )

         neighborhoods.head()

Out [12]
                                      Culture Culture.1 Services Services.1

NaN   NaN           NaN           Restaurants   Museums   Police    Schools
State City          Street                NaN       NaN      NaN        NaN
MO    Fisherbor...  244 Tracy...           C+         F       D-         A+
SD    Port Curt...  446 Cynth...           C-         B        B         D+
WV    Jimenezview   432 John ...            A        A+        F          B

We’re halfway there. Next, we need to tell pandas which data set rows we’d like to use
for our DataFrame’s headers. The read_csv function assumes that only the first row
will hold the headers. In this data set, the first two rows will hold the headers. We can
customize the DataFrame headers with the read_csv function’s header parameter,
which accepts a list of integers representing the rows that pandas should set as column
headers. If we provide a list with more than one element, pandas will assign a Multi-
Index to the columns. The next example sets the first two rows (indexes 0 and 1) as
column headers:

In  [13] neighborhoods = pd.read_csv(
             "neighborhoods.csv",
             index_col = [0, 1, 2],
             header = [0, 1]
         )

         neighborhoods.head()

Out [13]
                                           Culture         Services
                                      Restaurants Museums   Police Schools
State City             Street

MO    Fisherborough    244 Tracy View           C+       F       D-      A+
SD    Port Curtisv...  446 Cynthia ...          C-       B        B      D+
WV    Jimenezview      432 John Common           A      A+        F       B
AK    Stevenshire      238 Andrew Rue           D-       A       A-      A-
ND    New Joshuaport   877 Walter Neck          D+      C-        B       B
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Now we have something we can work with!
 As mentioned earlier, the data set groups four characteristics of livability (Restau-

rants, Museums, Police, and Schools) in two categories (Culture and Services). When
we have a parent category encompassing smaller child categories, creating a Multi-
Index is an optimal way to enable quick slicing.

 Let’s invoke some familiar methods to observe how the output changes with a
MultiIndex DataFrame. The info method is a good place to start:

In  [14] neighborhoods.info()

Out [14]

<class 'pandas.core.frame.DataFrame'>
MultiIndex: 251 entries, ('MO', 'Fisherborough', '244 Tracy View') to ('NE', 

'South Kennethmouth', '346 Wallace Pass')
Data columns (total 4 columns):
 #   Column                  Non-Null Count  Dtype
---  ------                  --------------  -----
 0   (Culture, Restaurants)  251 non-null    object
 1   (Culture, Museums)      251 non-null    object
 2   (Services, Police)      251 non-null    object
 3   (Services, Schools)     251 non-null    object
dtypes: object(4)
memory use: 27.2+ KB

Notice that pandas prints each column’s name as a two-element tuple, such as (Cul-
ture, Restaurants). Similarly, the library stores each row’s label as a three-element
tuple, such as ('MO', 'Fisherborough', '244 Tracy View').

 We can access the rows’ MultiIndex object with the familiar index attribute. The
output allows us to see the tuples that hold each row’s values:

In  [15] neighborhoods.index

Out [15] MultiIndex([
            ('MO',       'Fisherborough',        '244 Tracy View'),
            ('SD',    'Port Curtisville',     '446 Cynthia Inlet'),
            ('WV',         'Jimenezview',       '432 John Common'),
            ('AK',         'Stevenshire',        '238 Andrew Rue'),
            ('ND',      'New Joshuaport',       '877 Walter Neck'),
            ('ID',          'Wellsville',   '696 Weber Stravenue'),
            ('TN',           'Jodiburgh',    '285 Justin Corners'),
            ('DC',    'Lake Christopher',   '607 Montoya Harbors'),
            ('OH',           'Port Mike',      '041 Michael Neck'),
            ('ND',          'Hardyburgh', '550 Gilmore Mountains'),
            ...
            ('AK', 'South Nicholasshire',      '114 Jones Garden'),
            ('IA',     'Port Willieport',  '320 Jennifer Mission'),
            ('ME',          'Port Linda',        '692 Hill Glens'),
            ('KS',          'Kaylamouth',       '483 Freeman Via'),
            ('WA',      'Port Shawnfort',    '691 Winters Bridge'),
            ('MI',       'North Matthew',      '055 Clayton Isle'),
            ('MT',             'Chadton',     '601 Richards Road'),
            ('SC',           'Diazmouth',     '385 Robin Harbors'),
            ('VA',          'Laurentown',     '255 Gonzalez Land'),
            ('NE',  'South Kennethmouth',      '346 Wallace Pass')],
           names=['State', 'City', 'Street'], length=251)
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We can access the columns’ MultiIndex object with the columns attribute, which
also uses tuples to store the nested column labels:

In  [16] neighborhoods.columns

Out [16] MultiIndex([( 'Culture', 'Restaurants'),
            ( 'Culture',     'Museums'),
            ('Services',      'Police'),
            ('Services',     'Schools')],
           )

Under its hood, pandas composes a MultiIndex from multiple Index objects. When
importing the data set, the library assigned a name to each Index from a CSV header.
We can access the list of index names with the names attribute on the MultiIndex
object. State, City, and Street are the names of the three CSV columns that became
our index:

In  [17] neighborhoods.index.names

Out [17] FrozenList(['State', 'City', 'Street'])

Pandas assigns an order to each nested level within the MultiIndex. In our current
neighborhoods DataFrame,

 The State level has an index position of 0.
 The City level has an index position of 1.
 The Street level has an index position of 2.

The get_level_values method extracts the Index object at a given level of the
MultiIndex. We can pass either the level’s index position or the level’s name to the
method’s first and only parameter, level:

In  [18] # The two lines below are equivalent
         neighborhoods.index.get_level_values(1)
         neighborhoods.index.get_level_values("City")

Out [18] Index(['Fisherborough', 'Port Curtisville', 'Jimenezview',
                'Stevenshire', 'New Joshuaport', 'Wellsville', 'Jodiburgh',
                'Lake Christopher', 'Port Mike', 'Hardyburgh',
                ...
                'South Nicholasshire', 'Port Willieport', 'Port Linda',
                'Kaylamouth', 'Port Shawnfort', 'North Matthew', 'Chadton',
                'Diazmouth', 'Laurentown', 'South Kennethmouth'],
               dtype='object', name='City', length=251)

The columns’ MultiIndex levels do not have any names because the CSV did not
provide any:

In  [19] neighborhoods.columns.names

Out [19] FrozenList([None, None])

Let’s fix this problem. We can access the columns’ MultiIndex with the columns
attribute. Then we can assign a new list of column names to the names attribute of the
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MultiIndex object. The names "Category" and "Subcategory" seem to be fitting
here:

In  [20] neighborhoods.columns.names = ["Category", "Subcategory"]
         neighborhoods.columns.names

Out [20] FrozenList(['Category', 'Subcategory'])

The level names will appear to the left of the column headers in the output. Let’s
invoke the head method to see the difference:

In  [21] neighborhoods.head(3)

Out [21]

Category                            Culture         Services
Subcategory                     Restaurants Museums   Police Schools
State City         Street

MO    Fisherbor... 244 Tracy...          C+       F       D-      A+
SD    Port Curt... 446 Cynth...          C-       B        B      D+
WV    Jimenezview  432 John ...           A      A+        F       B

Now that we’ve assigned names to the levels, we can use the get_level_values
method to retrieve any Index from the columns’ MultiIndex. Remember that we
can pass either the column’s index position or its name to the method:

In  [22] # The two lines below are equivalent
         neighborhoods.columns.get_level_values(0)
         neighborhoods.columns.get_level_values("Category")

Out [22] Index(['Culture', 'Culture', 'Services', 'Services'],
         dtype='object', name='Category')

A MultiIndex will carry over to new objects derived from a data set. The index can
switch axes depending on the operation. Consider a DataFrame’s nunique method,
which returns a Series with a count of unique values per column. If we invoke
nunique on neighborhoods, the DataFrame’s column MultiIndex will swap axes
and serve as the row’s MultiIndex in the resulting Series:

In  [23] neighborhoods.head(1)

Out [23]

Category                                 Culture         Services
Subcategory                          Restaurants Museums   Police Schools
State City           Street

AK    Rowlandchester 386 Rebecca ...          C-      A-       A+       C

In  [24] neighborhoods.nunique()

Out [24] Culture   Restaurants    13
                   Museums        13
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         Services  Police         13
                   Schools        13
         dtype: int64

The MultiIndex Series tells us how many unique values pandas found in each of
the four columns. The values are equal in this case because all four columns hold the
13 possible grades (A+ to F).

7.3 Sorting a MultiIndex
Pandas can find a value in an ordered collection much quicker than in a jumbled one.
A good analogous example is searching for a word in a dictionary. It’s easier to locate
a word when words are in alphabetical order rather than a random sequence. Thus, it’s
optimal to sort an index before selecting any rows and columns from a DataFrame.

 Chapter 4 introduced the sort_index method for sorting a DataFrame. When
we invoke the method on a MultiIndex DataFrame, pandas sorts all levels in ascend-
ing order and proceeds from the outside in. In the next example, pandas sorts the
State-level values first, then the City-level values, and finally the Street-level values:

In  [25] neighborhoods.sort_index()

Out [25]

Category                                  Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State City            Street

AK    Rowlandchester 386 Rebecca ...          C-      A-       A+        C
      Scottstad      082 Leblanc ...           D      C-        D       B+
                     114 Jones Ga...          D-      D-        D        D
      Stevenshire    238 Andrew Rue           D-       A       A-       A-
AL    Clarkland      430 Douglas ...           A       F       C+       B+
 …                 …               …           …       …        …        …
WY    Lake Nicole    754 Weaver T...           B      D-        B        D
                     933 Jennifer...           C      A+       A-        C
      Martintown     013 Bell Mills           C-       D       A-       B-
      Port Jason     624 Faulkner...          A-       F       C+       C+
      Reneeshire     717 Patel Sq...           B      B+        D        A

251 rows × 4 columns

Let’s make sure that we understand the output. First, pandas targets the State level
and sorts the value "AK" before "AL". Then, within the state of "AK", pandas sorts the
city of "Rowlandchester" before "Scottstad". It applies the same logic to the
final level, Street.

 The sort_values method includes an ascending parameter. We can pass the
parameter a Boolean to apply a consistent sort order to all MultiIndex levels. The
next example provides an argument of False. Pandas sorts the State values in reverse
alphabetical order, then the City values in reverse alphabetical order, and finally the
Street values in reverse alphabetical order:
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In  [26] neighborhoods.sort_index(ascending = False).head()

Out [26]

Category                              Culture         Services
Subcategory                       Restaurants Museums   Police Schools
State City        Street

WY    Reneeshire  717 Patel Sq...           B      B+        D       A
      Port Jason  624 Faulkner...          A-       F       C+      C+
      Martintown  013 Bell Mills           C-       D       A-      B-
      Lake Nicole 933 Jennifer...           C      A+       A-       C
                  754 Weaver T...           B      D-        B       D

Suppose that we want to vary the sort order for different levels. We can pass the
ascending parameter a list of Booleans. Each Boolean sets the sort order for the
next MultiIndex level, starting with the outermost one and proceeding inward. An
argument of [True, False, True], for example, will sort the State level in ascend-
ing order, the City level in descending order, and the Street level in ascending order:

In  [27] neighborhoods.sort_index(ascending = [True, False, True]).head()

Out [27]

Category                                 Culture         Services
Subcategory                          Restaurants Museums   Police Schools
State City           Street

AK    Stevenshire    238 Andrew Rue           D-       A       A-      A-
      Scottstad      082 Leblanc ...           D      C-        D      B+
                     114 Jones Ga...          D-      D-        D       D
      Rowlandchester 386 Rebecca ...          C-      A-       A+       C
AL    Vegaside       191 Mindy Me...          B+      A-       A+      D+

We can also sort a MultiIndex level by itself. Let’s say we want to sort the rows by the
values in the second MultiIndex level, City. We can pass the level’s index position or
its name to the level parameter of the sort_index method. Pandas will ignore the
remaining levels when sorting:

In  [28] # The two lines below are equivalent
         neighborhoods.sort_index(level = 1)
         neighborhoods.sort_index(level = "City")

Out [28]

Category                                Culture         Services
Subcategory                         Restaurants Museums   Police Schools
State City          Street

AR    Allisonland   124 Diaz Brooks          C-      A+        F      C+
GA    Amyburgh      941 Brian Ex...           B       B       D-      C+
IA    Amyburgh      163 Heather ...           F       D       A+      A-
ID    Andrewshire   952 Ellis Drive          C+      A-       C+       A
UT    Baileyfort    919 Stewart ...          D+      C+        A       C
 …               …                …           …       …        …       …
NC    West Scott    348 Jack Branch          A-      D-       A-       A
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SD    West Scott    139 Hardy Vista          C+      A-       D+      B-
IN    Wilsonborough 066 Carr Road            A+      C-        B       F
NC    Wilsonshire   871 Christop...          B+       B       D+       F
NV    Wilsonshire   542 Jessica ...           A      A+       C-      C+

251 rows × 4 columns

The level parameter also accepts a list of levels. The next example sorts the City
level’s values first, followed by the Street level’s values. The State level’s values do not
influence the sort at all:

In  [29] # The two lines below are equivalent
         neighborhoods.sort_index(level = [1, 2]).head()
         neighborhoods.sort_index(level = ["City", "Street"]).head()

Out [29]

Category                              Culture         Services
Subcategory                       Restaurants Museums   Police Schools
State City        Street

AR    Allisonland 124 Diaz Brooks          C-      A+        F      C+
IA    Amyburgh    163 Heather ...           F       D       A+      A-
GA    Amyburgh    941 Brian Ex...           B       B       D-      C+
ID    Andrewshire 952 Ellis Drive          C+      A-       C+       A
VT    Baileyfort  831 Norma Cove            B      D+       A+      D+

We can also combine the ascending and level parameters. Notice in the preceding
example that pandas sorted the two Street values for the city of Amyburgh ("163
Heather Neck" and "941 Brian Expressway") in alphabetical/ascending order.
The next example sorts the City level in ascending order and the Street level in
descending order, thus swapping the positions of the two Amyburgh Street values:

In  [30] neighborhoods.sort_index(
             level = ["City", "Street"], ascending = [True, False]
         ).head()

Out [30]

Category                              Culture         Services
Subcategory                       Restaurants Museums   Police Schools
State City        Street

AR    Allisonland 124 Diaz Brooks          C-      A+        F      C+
GA    Amyburgh    941 Brian Ex...           B       B       D-      C+
IA    Amyburgh    163 Heather ...           F       D       A+      A-
ID    Andrewshire 952 Ellis Drive          C+      A-       C+       A
UT    Baileyfort  919 Stewart ...          D+      C+        A       C

We can sort the columns’ MultiIndex as well by supplying an axis parameter to the
sort_index method. The parameter’s default argument is 0, which represents the
row index. To sort the columns, we can pass either the number 1 or the string
"columns". In the next example, pandas sorts the Category level first and the Subcat-
egory level second. The value Culture comes before Services. Within the Culture level,
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the value Museums comes before Restaurants. Within Services, the value Police comes
before Schools:

In  [31] # The two lines below are equivalent
         neighborhoods.sort_index(axis = 1).head(3)
         neighborhoods.sort_index(axis = "columns").head(3)

Out [31]

Category                              Culture             Services
Subcategory                           Museums Restaurants   Police Schools
State City            Street

MO    Fisherborough   244 Tracy View        F          C+       D-      A+
SD    Port Curtisv... 446 Cynthia ...       B          C-        B      D+
WV    Jimenezview     432 John Common      A+           A        F       B

We can combine the level and ascending parameters with the axis parameter to
further customize the columns’ sort orders. The next example sorts the Subcategory
level values in descending order. Pandas ignores the values in the Category level. The
reverse alphabetical order of the subcategories ("Schools", "Restaurants",
"Police", and "Museums") forces a visual breakup of the Category group. Thus, the
output prints the Services and Culture column headers multiple times:

In  [32] neighborhoods.sort_index(
             axis = 1, level = "Subcategory", ascending = False
         ).head(3)

Out [32]

Category                              Services     Culture Services Culture
Subcategory                            Schools Restaurants   Police Museums
State City            Street

MO    Fisherborough   244 Tracy View        A+          C+       D-       F
SD    Port Curtisv... 446 Cynthia ...       D+          C-        B       B
WV    Jimenezview     432 John Common        B           A        F      A+

In section 7.4, we’ll learn how to extract rows and columns from a MultiIndex
DataFrame with familiar accessor attributes such as loc and iloc. As mentioned ear-
lier, it’s optimal to sort our index before we look up any row. Let’s sort the Multi-
Index levels in ascending order and overwrite our neighborhoods DataFrame:

In  [33] neighborhoods = neighborhoods.sort_index(ascending = True)

Here’s the result:

In  [34] neighborhoods.head(3)

Out [34]

Category                                 Culture         Services
Subcategory                          Restaurants Museums   Police Schools
State City           Street

AK    Rowlandchester 386 Rebecca ...          C-      A-       A+       C
      Scottstad      082 Leblanc ...           D      C-        D      B+
                     114 Jones Ga...          D-      D-        D       D
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Looks good. We’ve sorted each level in the MultiIndex and are clear to proceed.

7.4 Selecting with a MultiIndex
Extracting DataFrame rows and columns gets tricky when multiple levels are
involved. The key question to ask before writing any code is what we want to pull out.

 Chapter 4 introduced the square-bracket syntax for selecting a column from a
DataFrame. Here’s a quick reminder. The following code creates a DataFrame with
two rows and two columns:

In  [35] data = [
             [1, 2],
             [3, 4]
         ]

         df = pd.DataFrame(
             data = data, index = ["A", "B"], columns = ["X", "Y"]
         )

         df

Out [35]

   X  Y

A  1  2
B  3  4

The square-bracket syntax extracts a column from the DataFrame as a Series:

In  [36] df["X"]

Out [36] A    1
         B    3
         Name: X, dtype: int64

Suppose that we want to pull out a column from neighborhoods. Each of the four col-
umns in the DataFrame requires a combination of two identifiers: a Category and a
Subcategory. What happens if we pass only one?

7.4.1 Extracting one or more columns

If we pass a single value in square brackets, pandas will look for it in the outermost
level of the columns’ MultiIndex. The following example searches for "Services",
which is a valid value in the Category level:

In  [37] neighborhoods["Services"]

Out [37]

Subcategory                               Police Schools
State City           Street

AK    Rowlandchester 386 Rebecca Cove         A+       C
      Scottstad      082 Leblanc Freeway       D      B+
                     114 Jones Garden          D       D
      Stevenshire    238 Andrew Rue           A-      A-
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AL    Clarkland      430 Douglas Mission      C+      B+
 …                 …   …                …      …       …
WY    Lake Nicole    754 Weaver Turnpike       B       D
                     933 Jennifer Burg        A-       C
      Martintown     013 Bell Mills           A-      B-
      Port Jason     624 Faulkner Orchard     C+      C+
      Reneeshire     717 Patel Square          D       A

251 rows × 2 columns

Notice that the new DataFrame does not have a Category level. It has a plain Index
with two values: "Police" and "Schools". There is no longer a need for a Mul-
tiIndex; the two columns in this DataFrame are the subcategories that fall under
the Services value. The Category level no longer has any variation that merits listing.

 Pandas will raise a KeyError exception if the value does not exist in the outermost
level of the columns’ MultiIndex:

In  [38] neighborhoods["Schools"]

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)

KeyError: 'Schools'

What if we want to target a specific Category and then a Subcategory within it? To
specify values across multiple levels in the column’s MultiIndex, we can pass them
inside a tuple. The next example targets the column with a value of "Services" in
the Category level and a value of "Schools" in the Subcategory level:

In  [39] neighborhoods[("Services", "Schools")]

Out [39] State  City            Street
         AK     Rowlandchester  386 Rebecca Cove         C
                Scottstad       082 Leblanc Freeway     B+
                                114 Jones Garden         D
                Stevenshire     238 Andrew Rue          A-
         AL     Clarkland       430 Douglas Mission     B+
                                                        ..
         WY     Lake Nicole     754 Weaver Turnpike      D
                                933 Jennifer Burg        C
                Martintown      013 Bell Mills          B-
                Port Jason      624 Faulkner Orchard    C+
                Reneeshire      717 Patel Square         A
         Name: (Services, Schools), Length: 251, dtype: object

The method returns a Series without a column index! Once again, when we provide
a value for a MultiIndex level, we remove the need for that level to exist. We explic-
itly told pandas what values to target in the Category and Subcategory levels, so the
library removed the two levels from the column index. Because the ("Services",
"Schools") combination yielded a single column of data, pandas returned a Series
object.
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 To extract multiple DataFrame columns, we need to pass the square brackets a list
of tuples. Each tuple should specify the level values for one column. The order of
tuples within the list sets the order of columns in the resulting DataFrame. The next
example pulls out two columns from neighborhoods:

In  [40] neighborhoods[[("Services", "Schools"), ("Culture", "Museums")]]

Out [40]

Category                                  Services Culture
Subcategory                                Schools Museums
State City           Street

AK    Rowlandchester 386 Rebecca Cove            C      A-
      Scottstad      082 Leblanc Freeway        B+      C-
                     114 Jones Garden            D      D-
      Stevenshire    238 Andrew Rue             A-       A
AL    Clarkland      430 Douglas Mission        B+       F
 …                 …   …               …         …       …
WY    Lake Nicole    754 Weaver Turnpike         D      D-
                     933 Jennifer Burg           C      A+
      Martintown     013 Bell Mills             B-       D
      Port Jason     624 Faulkner Orchard       C+       F
      Reneeshire     717 Patel Square            A      B+

251 rows × 2 columns

Syntax tends to become confusing and error-prone when it involves multiple paren-
theses and brackets. We can simplify the preceding code by assigning the list to a vari-
able and breaking its tuples across several lines:

In  [41] columns = [
             ("Services", "Schools"),
             ("Culture", "Museums")
         ]

         neighborhoods[columns]

Out [41]

Category                                  Services Culture
Subcategory                                Schools Museums
State City           Street

AK    Rowlandchester 386 Rebecca Cove            C      A-
      Scottstad      082 Leblanc Freeway        B+      C-
                     114 Jones Garden            D      D-
      Stevenshire    238 Andrew Rue             A-       A
AL    Clarkland      430 Douglas Mission        B+       F
 …                 …   …               …         …       …
WY    Lake Nicole    754 Weaver Turnpike         D      D-
                     933 Jennifer Burg           C      A+
      Martintown     013 Bell Mills             B-       D
      Port Jason     624 Faulkner Orchard       C+       F
      Reneeshire     717 Patel Square            A      B+

251 rows × 2 columns
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The previous two examples accomplish the same result, but this code is significantly
easier to read; its syntax clearly identifies where each tuple begins and ends.

7.4.2 Extracting one or more rows with loc

Chapter 4 introduced the loc and iloc accessors for selecting rows and columns
from a DataFrame. The loc accessor extracts by index label, and the iloc accessor
extracts by index position. Here’s a quick review, using the df DataFrame we
declared in section 7.4.1:

In  [42] df

Out [42]

   X  Y

A  1  2
B  3  4

The next example uses loc to select the row with an index label of "A":

In  [43] df.loc["A"]

Out [43] X    1
         Y    2
         Name: A, dtype: int64

The next example uses iloc to select the row at index position 1:

In  [44] df.iloc[1]

Out [44] X    3
         Y    4
         Name: B, dtype: int64

We can use the loc and iloc accessors to pull rows from a MultiIndex DataFrame.
Let’s start slow and work our way up.

 The neighborhoods DataFrame’s MultiIndex has three levels: State, City, and
Address. If we know the values to target in each level, we can pass them in a tuple
within the square brackets. When we provide a value for a level, we remove the need
for the level to exist in the result. The next example provides "TX" for the State level,
"Kingchester" for the City level, and "534 Gordon Falls" for the Address level.
Pandas returns a Series object with an index constructed from the column headers
in neighborhoods:

In  [45] neighborhoods.loc[("TX", "Kingchester", "534 Gordon Falls")]

Out [45] Category  Subcategory
         Culture   Restaurants     C
                   Museums        D+
         Services  Police          B
                   Schools         B
         Name: (TX, Kingchester, 534 Gordon Falls), dtype: object
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If we pass a single label in the square brackets, pandas looks for it in the outermost
MultiIndex level. The next example selects the rows with a State value of "CA". State
is the first level of the rows’ MultiIndex:

In  [46] neighborhoods.loc["CA"]

Out [46]

Category                           Culture         Services
Subcategory                    Restaurants Museums   Police Schools
City           Street

Dustinmouth    793 Cynthia ...          A-      A+       C-       A
North Jennifer 303 Alisha Road          D-      C+       C+      A+
Ryanfort       934 David Run             F      B+        F      D-

Pandas returns a DataFrame with a two-level MultiIndex. Notice that the State level
is not present. There is no longer a need for it because all three rows belong to that
level; there is no longer any variation to display.

 Usually, the second argument to the square brackets denotes the column(s) we’d
like to extract, but we can also provide the value to look for in the next MultiIndex
level. The next example targets rows with a State value of "CA" and a City value of
"Dustinmouth". Once again, pandas returns a DataFrame with one fewer level.
Because only one level is left, pandas falls back to a plain Index object to store the
row labels from the Street level:

In  [47] neighborhoods.loc["CA", "Dustinmouth"]

Out [47]

Category               Culture         Services
Subcategory        Restaurants Museums   Police Schools
Street

793 Cynthia Square          A-      A+       C-       A

We can still use the second argument to loc to declare the column(s) to extract. The
next example extracts rows with a State value of "CA" in the row MultiIndex and a
Category value of "Culture" in the column MultiIndex:

In  [48] neighborhoods.loc["CA", "Culture"]

Out [48]

Subcategory                       Restaurants Museums
City           Street

Dustinmouth    793 Cynthia Square          A-      A+
North Jennifer 303 Alisha Road             D-      C+
Ryanfort       934 David Run                F      B+

The syntax in the previous two examples is not ideal because of its ambiguity. The sec-
ond argument to loc can represent either a value from the second level of the rows’
MultiIndex or a value from the first level of the columns’ MultiIndex.
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 The pandas documentation1 recommends the following indexing strategy to avoid
uncertainty. Use the first argument to loc for row index labels and the second argu-
ment for column index labels. Wrap all arguments for a given index inside a tuple.
Following this standard, we should place our row levels’ values inside a tuple and our
column levels’ values inside a tuple as well. The recommended way to access rows with
a State value of "CA" and a City value of "Dustinmouth" looks like this:

In  [49] neighborhoods.loc[("CA", "Dustinmouth")]

Out [49]

Category               Culture         Services
Subcategory        Restaurants Museums   Police Schools
Street

793 Cynthia Square          A-      A+       C-       A

This syntax is more straightforward and more consistent; it allows loc’s second argu-
ment to always represent the columns’ index labels to target. The next example pulls
out the Services columns for the same state of "CA" and city of "Dustinmouth". We
pass "Services" inside a tuple. A one-element tuple requires a comma for Python to
recognize it as a tuple:

In  [50] neighborhoods.loc[("CA", "Dustinmouth"), ("Services",)]

Out [50]

Subcategory        Police Schools
Street

793 Cynthia Square     C-       A

Here’s another helpful hint: pandas distinguishes between list and tuple arguments to
accessors. Use a list to store multiple keys. Use a tuple to store the components of one
multilevel key.

 We can pass a tuple as the second argument to loc to provide values for levels in
the columns’ MultiIndex. The next example targets

 "CA" and "Dustinmouth" in the rows’ MultiIndex levels
 "Services" and "Schools" in the columns’ MultiIndex levels

The placement of "Services" and "Schools" in a single tuple tells pandas to view
them as components that make up a single label. "Services" is the value for the Cat-
egory level, and "Schools" is the value for the Subcategory level:

In  [51] neighborhoods.loc[("CA", "Dustinmouth"), ("Services", "Schools")]

Out [51] Street
         793 Cynthia Square    A
         Name: (Services, Schools), dtype: object

1 See “Advanced indexing with hierarchical index,” http://mng.bz/5WJO.

http://mng.bz/5WJO
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What about selecting sequential rows? We can use Python’s list-slicing syntax. We place
a colon between our starting point and our ending point. The next code sample pulls
all consecutive rows with a State value between "NE" and "NH". In pandas slicing, the
endpoint (the value after the colon) is inclusive:

In  [52] neighborhoods["NE":"NH"]

Out [52]

Category                                  Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State City            Street

NE    Barryborough    460 Anna Tunnel          A+      A+        B       A
      Shawnchester    802 Cook Cliff           D-      D+        D       A
      South Kennet... 346 Wallace ...          C-      B-        A      A-
      South Nathan    821 Jake Fork            C+       D       D+       A
NH    Courtneyfort    697 Spencer ...          A+      A+       C+      A+
      East Deborah... 271 Ryan Mount            B       C       D+      B-
      Ingramton       430 Calvin U...          C+      D+        C      C-
      North Latoya    603 Clark Mount          D-      A-       B+      B-
      South Tara      559 Michael ...          C-      C-        F       B

We can combine list-slicing syntax with tuple arguments. The next example extracts
all rows that

 Start from a value of "NE" in the State level and "Shawnchester" in the City level
 End with a value of "NH" in the State level and "North Latoya" in the City level

In  [53] neighborhoods.loc[("NE", "Shawnchester"):("NH", "North Latoya")]

Out [53]

Category                                  Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State City            Street

NE    Shawnchester    802 Cook Cliff           D-      D+        D       A
      South Kennet... 346 Wallace ...          C-      B-        A      A-
      South Nathan    821 Jake Fork            C+       D       D+       A
NH    Courtneyfort    697 Spencer ...          A+      A+       C+      A+
      East Deborah... 271 Ryan Mount            B       C       D+      B-
      Ingramton       430 Calvin U...          C+      D+        C      C-
      North Latoya    603 Clark Mount          D-      A-       B+      B-

Be careful with this syntax; a single missing parenthesis or comma can raise an excep-
tion. We can simplify the code by assigning the tuples to descriptive variables and
breaking the extraction into smaller pieces. The next example returns the same result
set but is significantly easier to read:

In  [54] start = ("NE", "Shawnchester")
         end   = ("NH", "North Latoya")
         neighborhoods.loc[start:end]

Out [54]
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Category                                  Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State City            Street

NE    Shawnchester    802 Cook Cliff           D-      D+        D       A
      South Kennet... 346 Wallace ...          C-      B-        A      A-
      South Nathan    821 Jake Fork            C+       D       D+       A
NH    Courtneyfort    697 Spencer ...          A+      A+       C+      A+
      East Deborah... 271 Ryan Mount            B       C       D+      B-
      Ingramton       430 Calvin U...          C+      D+        C      C-
      North Latoya    603 Clark Mount          D-      A-       B+      B-

We do not have to provide each tuple values for each level. The next example does
not include a City-level value for the second tuple:

In  [55] neighborhoods.loc[("NE", "Shawnchester"):("NH")]

Out [55]

Category                                  Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State City            Street

NE    Shawnchester    802 Cook Cliff           D-      D+        D       A
      South Kennet... 346 Wallace ...          C-      B-        A      A-
      South Nathan    821 Jake Fork            C+       D       D+       A
NH    Courtneyfort    697 Spencer ...          A+      A+       C+      A+
      East Deborah... 271 Ryan Mount            B       C       D+      B-
      Ingramton       430 Calvin U...          C+      D+        C      C-
      North Latoya    603 Clark Mount          D-      A-       B+      B-
      South Tara      559 Michael ...          C-      C-        F       B

Pandas pulls rows starting from ("NE", "Shawnchester") until it reaches the end
of all rows with a State value of "NH".

7.4.3 Extracting one or more rows with iloc

The iloc accessor extracts rows and columns by index position. The following exam-
ples should be a refresher on concepts covered in chapter 4. We can pass an index
position to iloc to extract a single row:

In  [56] neighborhoods.iloc[25]

Out [56] Category  Subcategory
         Culture   Restaurants    A+
                   Museums         A
         Services  Police         A+
                   Schools        C+
         Name: (CT, East Jessicaland, 208 Todd Knolls), dtype: object

We can pass two arguments to iloc to represent the row and column indices. The next
example targets the row with index position 25 and the column with index position 2:

In  [57] neighborhoods.iloc[25, 2]

Out [57] 'A+'
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We can pull out multiple rows by wrapping their index positions in a list:

In  [58] neighborhoods.iloc[[25, 30]]

Out [58]

Category                                  Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State City            Street

CT    East Jessica... 208 Todd Knolls          A+       A       A+      C+
DC    East Lisaview   910 Sandy Ramp           A-      A+        B       B

There’s a big difference between loc and iloc when it comes to slicing. When we’re
index slicing with iloc, the endpoint is exclusive. In the preceding example, the
record with a street of "910 Sandy Ramp" has index position 30. When we provide 30
as the iloc endpoint in the next example, pandas pulls up to that index but does not
include it:

In  [59] neighborhoods.iloc[25:30]

Out [59]

Category                                  Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State City            Street

CT    East Jessica... 208 Todd Knolls          A+       A       A+      C+
      New Adrianhaven 048 Brian Cove           A-      C+       A+      D-
      Port Mike       410 Keith Lodge          D-       A       B+       D
      Sethstad        139 Bailey G...           C      C-       C+      A+
DC    East Jessica    149 Norman C...          A-      C-       C+      A-

Column slicing follows the same principles. The next example pulls the columns from
index positions 1 to 3 (exclusive):

In  [60] neighborhoods.iloc[25:30, 1:3]

Out [60]

Category                              Culture Services
Subcategory                           Museums   Police
State City            Street

CT    East Jessica... 208 Todd Knolls       A       A+
      New Adrianhaven 048 Brian Cove       C+       A+
      Port Mike       410 Keith Lodge       A       B+
      Sethstad        139 Bailey G...      C-       C+
DC    East Jessica    149 Norman C...      C-       C+

Pandas also permits negative slices. The next example pulls rows starting from the
fourth-to-last row and the columns starting from the second-to-last column:

In  [61] neighborhoods.iloc[-4:, -2:]

Out [61]
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Category                          Services
Subcategory                         Police Schools
State City        Street

WY    Lake Nicole 933 Jennifer...       A-       C
      Martintown  013 Bell Mills        A-      B-
      Port Jason  624 Faulkner...       C+      C+
      Reneeshire  717 Patel Sq...        D       A

Pandas assigns each DataFrame row an index position, not each value in a given
index level. Thus, we cannot index across consecutive MultiIndex levels with iloc.
This limitation is an intentional design decision by the pandas development team. As
developer Jeff Reback states, iloc serves as a “strict positional indexer” that “does not
regard the structure [of the DataFrame] at all.”2

7.5 Cross-sections
The xs method allows us to extract rows by providing a value for one MultiIndex
level. We pass the method a key parameter with the value to look for. We pass the
level parameter either the numeric position or the name of the index level in which
to look for the value. For example, let’s say we wanted to find all addresses in a city of
Lake Nicole, regardless of the state or street. City is the second level in the Multi-
Index; it has an index position of 1 in the level hierarchy:

In  [62] # The two lines below are equivalent
         neighborhoods.xs(key = "Lake Nicole", level = 1)
         neighborhoods.xs(key = "Lake Nicole", level = "City")

Out [62]

Category                      Culture         Services
Subcategory               Restaurants Museums   Police Schools
State Street

OR    650 Angela Track              D      C-        D       F
WY    754 Weaver Turnpike           B      D-        B       D
      933 Jennifer Burg             C      A+       A-       C

There are three addresses in a city of "Lake Nicole" across two states. Notice that
pandas removes the City level from the new DataFrame’s  MultiIndex. The City
value is fixed ("Lake Nicole"), so there is no need for pandas to include it.

 We can apply the same extraction techniques to columns by passing the axis
parameter an argument of "columns". The next example selects the columns with a
key of "Museums" in the Subcategory level of the column MultiIndex. Only one col-
umn fits that description:

In  [63] neighborhoods.xs(
             axis = "columns", key = "Museums", level = "Subcategory"
         ).head()

Out [63]

2 See Jeff Reback, “Inconsistent behavior of loc and iloc for MultiIndex,” https://github.com/pandas-dev/
pandas/issues/15228.

https://github.com/pandas-dev/pandas/issues/15228
https://github.com/pandas-dev/pandas/issues/15228
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Category                                 Culture
State City           Street

AK    Rowlandchester 386 Rebecca Cove         A-
      Scottstad      082 Leblanc Freeway      C-
                     114 Jones Garden         D-
      Stevenshire    238 Andrew Rue            A
AL    Clarkland      430 Douglas Mission       F

Notice that the Subcategory level is not present in the returned DataFrame, but the
Category level is still present. Pandas includes it because there is still potential for vari-
ation (such as multiple values) in the Category level. When we pull out values from an
intermediate level, they can belong to multiple top-level labels.

 We can also provide the xs method with keys across nonconsecutive MultiIndex
levels. We pass them in a tuple. Suppose that we want the rows with a Street value of
"238 Andrew Rue" and a State of "AK", irrespective of the City value. That’s not a
problem with xs:

In  [64] # The two lines below are equivalent
         neighborhoods.xs(
             key = ("AK", "238 Andrew Rue"), level = ["State", "Street"]
         )

         neighborhoods.xs(
             key = ("AK", "238 Andrew Rue"), level = [0, 2]
         )

Out [64]

Category        Culture         Services
Subcategory Restaurants Museums   Police Schools
City

Stevenshire          D-       A       A-      A-

The ability to target values in only one level is a powerful feature of MultiIndexes.

7.6 Manipulating the Index
At the start of the chapter, we contorted our neighborhoods data set into its current
shape by altering the parameters to the read_csv function. Pandas also allows us to
manipulate the index on an existing DataFrame. Let’s take a look.

7.6.1 Resetting the index

The neighborhoods DataFrame currently has State as its outermost MultiIndex
level, followed by City and Street:

In  [65] neighborhoods.head()

Out [65]

Category                                   Culture         Services
Subcategory                            Restaurants Museums   Police Schools
State City           Street

AK    Rowlandchester 386 Rebecca Cove           C-      A-       A+       C
      Scottstad      082 Leblanc Fr...           D      C-        D      B+
                     114 Jones Garden           D-      D-        D       D
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      Stevenshire    238 Andrew Rue             D-       A       A-      A-
AL    Clarkland      430 Douglas Mi...           A       F       C+      B+

The reorder_levels method arranges the MultiIndex levels in a specified order.
We pass its order parameter a list of levels in a desired order. The next example swaps
the positions of the City and State levels:

In  [66] new_order = ["City", "State", "Street"]
         neighborhoods.reorder_levels(order = new_order).head()

Out [66]

Category                                 Culture         Services
Subcategory                          Restaurants Museums   Police Schools
City           State Street

Rowlandchester AK    386 Rebecca ...          C-      A-       A+       C
Scottstad      AK    082 Leblanc ...           D      C-        D      B+
                     114 Jones Ga...          D-      D-        D       D
Stevenshire    AK    238 Andrew Rue           D-       A       A-      A-
Clarkland      AL    430 Douglas ...           A       F       C+      B+

We can also pass the order parameter a list of integers. The numbers must represent
the current index positions of the MultiIndex levels. If we want State to be the first
level in the new MultiIndex, for example, we have to start the list with 1—the State
level’s index position in the current MultiIndex. The next code sample returns the
same result as the preceding one:

In  [67] neighborhoods.reorder_levels(order = [1, 0, 2]).head()

Out [67]

Category                                 Culture         Services
Subcategory                          Restaurants Museums   Police Schools
City           State Street

Rowlandchester AK    386 Rebecca ...          C-      A-       A+       C
Scottstad      AK    082 Leblanc ...           D      C-        D      B+
                     114 Jones Ga...          D-      D-        D       D
Stevenshire    AK    238 Andrew Rue           D-       A       A-      A-
Clarkland      AL    430 Douglas ...           A       F       C+      B+

What if we want to get rid of the index? Perhaps we want to set a different combina-
tion of columns as the index labels. The reset_index method returns a new Data-
Frame that integrates the former MultiIndex levels as columns. Pandas replaces the
former MultiIndex with its standard numeric one:

In  [68] neighborhoods.reset_index().tail()

Out [68]

Category    State     City   Street     Culture         Services
Subcategory                         Restaurants Museums   Police Schools

246            WY  Lake...  754 ...        B         D-        B       D
247            WY  Lake...  933 ...        C         A+       A-       C
248            WY  Mart...  013 ...       C-          D       A-      B-



191Manipulating the Index
249            WY  Port...  624 ...       A-          F       C+      C+
250            WY  Rene...  717 ...        B         B+        D       A

Notice that the three new columns (State, City, and Street) become values in Cate-
gory, the outermost level of the columns’ MultiIndex. To ensure consistency among
columns (making each one a tuple of two values), pandas assigns the three new col-
umns a Subcategory value of an empty string.

 We can add the three columns to an alternate MultiIndex level. Pass the desired
level’s index position or name to the reset_index method’s col_level parameter.
The next example integrates the State, City, and Street columns into the Subcategory
level of the columns’ MultiIndex:

In  [69] # The two lines below are equivalent
         neighborhoods.reset_index(col_level = 1).tail()
         neighborhoods.reset_index(col_level = "Subcategory").tail()

Out [69]

Category                                Culture         Services
Subcategory State     City   Street Restaurants Museums   Police Schools

246            WY  Lake...  754 ...        B         D-        B       D
247            WY  Lake...  933 ...        C         A+       A-       C
248            WY  Mart...  013 ...       C-          D       A-      B-
249            WY  Port...  624 ...       A-          F       C+      C+
250            WY  Rene...  717 ...        B         B+        D       A

Now pandas will default to an empty string for Category, the parent level that holds
the Subcategory level under which State, City, and Street fall. We can replace the
empty string with a value of our choice by passing an argument to the col_fill
parameter. In the next example, we group the three new columns under an Address
parent level. Now the outer Category level holds the three distinct values Address, Cul-
ture, and Services:

In  [70] neighborhoods.reset_index(
             col_fill = "Address", col_level = "Subcategory"
         ).tail()

Out [70]

Category    Address                       Culture         Services
Subcategory   State     City   Street Restaurants Museums   Police Schools

246              WY  Lake...  754 ...        B         D-        B       D
247              WY  Lake...  933 ...        C         A+       A-       C
248              WY  Mart...  013 ...       C-          D       A-      B-
249              WY  Port...  624 ...       A-          F       C+      C+
250              WY  Rene...  717 ...        B         B+        D       A

The standard invocation of reset_index transforms all index levels into regular col-
umns. We can also move a single index level by passing its name to the levels param-
eter. The next example moves the Street level from the MultiIndex to a regular
DataFrame column:
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In  [71] neighborhoods.reset_index(level = "Street").tail()

Out [71]

Category                      Street     Culture         Services
Subcategory                          Restaurants Museums   Police Schools
State City

WY    Lake Nicole  754 Weaver Tur...           B      D-        B       D
      Lake Nicole  933 Jennifer Burg           C      A+       A-       C
      Martintown      013 Bell Mills          C-       D       A-      B-
      Port Jason   624 Faulkner O...          A-       F       C+      C+
      Reneeshire    717 Patel Square           B      B+        D       A

We can move multiple index levels by passing them in a list:

In  [72] neighborhoods.reset_index(level = ["Street", "City"]).tail()

Out [72]

Category            City       Street     Culture         Services
Subcategory                           Restaurants Museums   Police Schools
State

WY           Lake Nicole  754 Weav...           B      D-        B       D
WY           Lake Nicole  933 Jenn...           C      A+       A-       C
WY            Martintown  013 Bell...          C-       D       A-      B-
WY            Port Jason  624 Faul...          A-       F       C+      C+
WY            Reneeshire  717 Pate...           B      B+        D       A

What about removing a level from the MultiIndex? If we pass the reset_index
method’s drop parameter a value of True, pandas will delete the specified level
instead of adding it to the columns. The next reset_index example removes the
Street level:

In  [73] neighborhoods.reset_index(level = "Street", drop = True).tail()

Out [73]

Category              Culture         Services
Subcategory       Restaurants Museums   Police Schools
State City

WY    Lake Nicole           B      D-        B       D
      Lake Nicole           C      A+       A-       C
      Martintown           C-       D       A-      B-
      Port Jason           A-       F       C+      C+
      Reneeshire            B      B+        D       A

To set ourselves up for section 7.6.2, let’s make our index reset permanent by overwrit-
ing the neighborhoods variable with the new DataFrame. This operation moves all
three index levels to columns in the DataFrame:

In  [74] neighborhoods = neighborhoods.reset_index()
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Now we have seven columns in neighborhoods with a MultiIndex on only the col-
umn axis.

7.6.2 Setting the index

Let’s check in on our DataFrame to jog our memory:

In  [75] neighborhoods.head(3)

Out [75]

Category    State     City   Street     Culture         Services
Subcategory                         Restaurants Museums   Police Schools

0              AK  Rowl...  386 ...       C-         A-       A+       C
1              AK  Scot...  082 ...        D         C-        D      B+
2              AK  Scot...  114 ...       D-         D-        D       D

The set_index method sets one or more DataFrame columns as the new index. We
can pass the column(s) to use to its keys parameter:

In  [76] neighborhoods.set_index(keys = "City").head()

Out [76]

Category       State          Street     Culture         Services
Subcategory                          Restaurants Museums   Police Schools
City

Rowlandchester    AK  386 Rebecca...          C-      A-       A+       C
Scottstad         AK  082 Leblanc...           D      C-        D      B+
Scottstad         AK  114 Jones G...          D-      D-        D       D
Stevenshire       AK  238 Andrew Rue          D-       A       A-      A-
Clarkland         AL  430 Douglas...           A       F       C+      B+

What if we want one of the last four columns to serve as the index?. The next example
passes the keys parameter a tuple with the values to target at each MultiIndex level:

In  [77] neighborhoods.set_index(keys = ("Culture", "Museums")).head()

Out [77]

Category    State       City     Street     Culture Services
Subcategory                             Restaurants   Police Schools
(Cultur...

A-             AK  Rowlan...  386 Re...         C-        A+       C
C-             AK  Scottstad  082 Le...          D         D      B+
D-             AK  Scottstad  114 Jo...         D-         D       D
A              AK  Steven...  238 An...         D-        A-      A-
F              AL  Clarkland  430 Do...          A        C+      B+

To create a MultiIndex on the row axis, we can pass a list with multiple columns to
the keys parameter:

In  [78] neighborhoods.set_index(keys = ["State", "City"]).head()

Out [78]
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Category                      Street     Culture         Services 
Subcategory                          Restaurants Museums   Police Schools
State City

AK    Rowlandchester  386 Rebecca...          C-      A-       A+       C
      Scottstad       082 Leblanc...           D      C-        D      B+
      Scottstad       114 Jones G...          D-      D-        D       D
      Stevenshire     238 Andrew Rue          D-       A       A-      A-
AL    Clarkland       430 Douglas...           A       F       C+      B+

As we’ve seen frequently in pandas, there are many permutations and combinations
for shaping a data set for analysis. When defining a DataFrame’s indices, ask yourself
which values matter most to your current problem. What is the key piece of
information? Are several pieces of data intrinsically tied together? Which data points
would you like to store as rows versus columns? Do rows or columns comprise a
group or category? For many of these problems, a MultiIndex can provide an effec-
tive solution for storing your data.

7.7 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

7.7.1 Problems

The investments.csv data set holds more than 27,000 records of startup investments
gathered from the website Crunchbase. Each startup has a Name, a Market, a Status, a
State of operation, and a number of Funding Rounds:

In  [79] investments = pd.read_csv("investments.csv")
         investments.head()

Out [79]

                 Name      Market     Status State  Funding Rounds

0            #waywire       News    Acquired    NY               1
1  &TV Communications      Games   Operating    CA               2
2  -R- Ranch and Mine    Tourism   Operating    TX               2
3    004 Technologies   Software   Operating    IL               1
4             1-4 All   Software   Operating    NC               1

Let’s add a MultiIndex to this DataFrame. We can begin by identifying the number
of unique values in each column with the nunique method. Columns with a small
number of unique items usually represent categorical data and are good candidates
for index levels:

In  [80] investments.nunique()

Out [80] Name              27763
         Market              693
         Status                3
         State                61
         Funding Rounds       16
         dtype: int64
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Let’s create a three-level MultiIndex with the Status, Funding Rounds, and State col-
umns. We’ll order the columns so that the ones with the smallest number of values
come first. The fewer unique values in a level, the quicker pandas can extract its rows.
We’ll also sort the DataFrame index to accelerate lookup time:

In  [81] investments = investments.set_index(
             keys = ["Status", "Funding Rounds", "State"]
         ).sort_index()

Here’s what investments currently looks like:

In  [82] investments.head()

Out [82]
                                              Name               Market
Status   Funding Rounds State

Acquired 1              AB          Hallpass Media                Games
                        AL               EnteGreat   Enterprise Soft...
                        AL     Onward Behaviora...        Biotechnology
                        AL                 Proxsys        Biotechnology
                        AZ             Envox Group     Public Relations

Here are the challenges for this section:

1 Extract all rows with a Status of "Closed".
2 Extract all rows with a Status of "Acquired" and 10 funding rounds.
3 Extract all rows with a Status of "Operating", six funding rounds, and a State

of "NJ".
4 Extract all rows with a Status of "Closed" and eight funding rounds. Pull out

only the Name column.
5 Extract all rows with a State of "NJ", irrespective of the values in the Status and

Funding Rounds levels.
6 Reincorporate the MultiIndex levels back into the DataFrame as columns.

7.7.2 Solutions

Let’s tackle the problems one by one:

1 To extract all rows with a Status of "Closed", we can use the loc accessor. We’ll
pass a tuple with a single value of "Closed". Remember that a one-element
tuple requires a comma:

In  [83] investments.loc[("Closed",)].head()

Out [83]

                                            Name                 Market
Funding Rounds State

1              AB    Cardinal Media Technologies   Social Network Media
               AB               Easy Bill Online               Tracking
               AB                  Globel Direct       Public Relations
               AB              Ph03nix New Media                  Games
               AL                          Naubo                   News
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2 Next, we need to pull out rows that fit two conditions: a Status value of
"Acquired" and a Funding Rounds value of 10. These are sequential levels in
the MultiIndex. We can pass a tuple with the proper values to the loc accessor:

In  [84] investments.loc[("Acquired", 10)]

Out [84]

                   Name        Market
State

NY     Genesis Networks   Web Hosting
TX       ACTIVE Network      Software

3 We can use the same solution that we used for the preceding two problems.
This time around, we need to provide a tuple of three values, one for each Mul-
tiIndex level:

In  [85] investments.loc[("Operating", 6, "NJ")]

Out [85]

                                              Name              Market
Status    Funding Rounds State

Operating 6              NJ     Agile Therapeutics       Biotechnology
                         NJ               Agilence   Retail Technology
                         NJ      Edge Therapeutics       Biotechnology
                         NJ                Nistica         Web Hosting

4 To extract DataFrame columns, we can pass a second argument to the loc
accessor. For this problem, we’ll pass a one-element tuple with the Name col-
umn. The first argument still holds the values for the Status and Funding
Rounds levels:

In  [86] investments.loc[("Closed", 8), ("Name",)]

Out [86]

                      Name
State

CA               CipherMax
CA      Dilithium Networks
CA                 Moblyng
CA                SolFocus
CA                Solyndra
FL     Extreme Enterprises
GA                MedShape
NC     Biolex Therapeutics
WA              Cozi Group

5 The next challenge asks us to extract rows with a value of "NJ" in the State
level. We can use the xs method, passing either the level’s index position or the
level’s name to the level parameter:
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In  [87] # The two lines below are equivalent
         investments.xs(key = "NJ", level = 2).head()
         investments.xs(key = "NJ", level = "State").head()

Out [87]

                                    Name               Market
Status   Funding Rounds

Acquired 1                         AkaRx        Biotechnology
         1                Aptalis Pharma        Biotechnology
         1                        Cadent             Software
         1               Cancer Genetics  Health And Wellness
         1                     Clacendix           E-Commerce

6 Finally, we want to add the MultiIndex levels back to the DataFrame as col-
umns. We’ll invoke the reset_index method to reincorporate the index levels
and overwrite the investments DataFrame to make the change permanent:

In  [88] investments = investments.reset_index()
         investments.head()

Out [88]

     Status  Funding Rounds State                 Name               Market

0  Acquired               1    AB       Hallpass Media                Games
1  Acquired               1    AL            EnteGreat  Enterprise Software
2  Acquired               1    AL  Onward Behaviora...        Biotechnology
3  Acquired               1    AL              Proxsys        Biotechnology
4  Acquired               1    AZ          Envox Group     Public Relations

Congratulations on completing the coding challenge!

Summary
 A MultiIndex is an index made of multiple levels.
 A MultiIndex uses tuples of values to store its labels.
 A DataFrame can store a MultiIndex on both its row and column axis.
 The sort_index method sorts MultiIndex levels. Pandas can sort index lev-

els individually or as a group.
 The label-based loc and the position-based iloc accessors require additional

arguments to extract the proper combination of rows and columns.
 Pass tuples to the loc and iloc accessors to avoid ambiguity.
 The reset_index method integrates index levels as DataFrame columns.
 Pass the set_index method a list of columns to build a MultiIndex from

existing DataFrame columns.



Reshaping and pivoting
A data set can arrive in a format unsuited for the analysis that we’d like to perform
on it. Sometimes, issues are confined to a specific column, row, or cell. A column
may have the wrong data type, a row may have missing values, or a cell may have
incorrect character casing. At other times, a data set may have larger structural
problems that extend beyond the data. Perhaps the data set stores its values in a for-
mat that makes it easy to extract a single row but difficult to aggregate the data.

 Reshaping a data set means manipulating it into a different shape, one that tells
a story that could not be gleaned from its original presentation. Reshaping offers a

This chapter covers
 Comparing wide and narrow data

 Generating a pivot table from a DataFrame

 Aggregating values by sum, average, count, and 
more

 Stacking and unstacking DataFrame index 
levels

 Melting a DataFrame
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new view or perspective on the data. This skill is critical; one study estimates that 80%
of data analysis consists of cleaning up data and contorting it into the proper shape.1

 In this chapter, we’ll explore new pandas techniques for molding data sets into the
shapes we desire. First, we’ll look at how to summarize a larger data set in a concise
pivot table. Then we’ll proceed in the opposite direction, learning how to split an
aggregated data set. By the end, you’ll be a master of contorting data into whatever
presentation best fits your analysis.

8.1 Wide vs. narrow data
Before we dive into more methods, let’s talk briefly about data set structure. A data set
can store its values in wide or narrow format. A narrow data set is also called a long or a
tall data set. These names reflect the direction in which the data set expands as we add
more values to it. A wide data set increases in width; it grows out. A narrow/long/tall
data set increases in height; it grows down.

 Take a peek at the following table, which measures temperatures in two cities over
two days:

   Weekday  Miami  New York

0   Monday    100        65
1  Tuesday    105        70

Consider the variables, the measurements that vary. One might think that the only vari-
ables in this data set are the weekdays and the temperatures. But an additional vari-
able is hiding in the column names: the city. This data set stores the same variable—
temperature—across two columns instead of one. The Miami and New York headers
do not describe the data their columns store—that is, 100 is not a type of Miami in
the same way that Monday is a type of Weekday. The data set has hidden the varying
cities variable by storing it in the column headers. We can categorize this table as
being a wide data set. A wide data set expands horizontally.

 Suppose that we introduced temperature measurements for two more cities. We
would have to add two new columns for the same variable: the temperature. Notice
the direction in which the data set expands. The data grows wider, not taller:

   Weekday  Miami  New York  Chicago  San Francisco

0   Monday    100        65       50             60
1  Tuesday    105        70       58             62

Is horizontal expansion a bad thing? Not necessarily. A wide data set is ideal for seeing
the aggregate picture—the complete story. If what we care about is the temperatures
on Monday and Tuesday, the data set is easy to read and understand. But the wide for-
mat has its share of disadvantages too. The data set becomes more difficult to work
with as we add more columns. Suppose that we wrote code to calculate the average
temperature across all days. Now the temperatures are stored across four columns. If

1 See Hadley Wickham, “Tidy Data,” Journal of Statistical Software, https://vita.had.co.nz/papers/tidy-data.pdf.

https://vita.had.co.nz/papers/tidy-data.pdf
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we added another city column, we’d have to alter our calculation logic to include it.
The design is less flexible.

 A narrow data set grows vertically. A narrow format makes it easier to manipulate
existing data and to add new records. Each variable is isolated to a single column.
Compare the first table in this section with the following table:

   Weekday      City  Temperature

0   Monday     Miami          100
1   Monday  New York           65
2  Tuesday     Miami          105
3  Tuesday  New York           70

To include temperatures for two more cities, we would add rows instead of columns.
The data grows taller, not wider:

   Weekday           City  Temperature

0   Monday          Miami          100
1   Monday       New York           65
2   Monday        Chicago           50
3   Monday  San Francisco           60
4  Tuesday          Miami          105
5  Tuesday       New York           70
6  Tuesday        Chicago           58
7  Tuesday  San Francisco           62

Is it easier to locate the temperatures for cities on Monday? I would argue no because
now the data is scattered across four rows. But it is easier to calculate the average tem-
perature because we have isolated the temperature values to a single column. As we
add more rows, the average calculation logic remains the same.

 The optimal storage format for a data set depends on the insight we’re trying to
glean from it. Pandas offers tools to transform DataFrames from narrow formats to
wide formats and vice versa. We’ll learn how to apply both transformations through-
out the rest of the chapter.

8.2 Creating a pivot table from a DataFrame
Our first data set, sales_by_employee.csv, is a list of business deals at a fictional com-
pany. Each row includes the sale’s Date, the salesman’s Name, the Customer, and the
Revenue and Expenses from the deal:

In  [1] import pandas as pd

In  [2] pd.read_csv("sales_by_employee.csv").head()

Out [2]

     Date   Name       Customer  Revenue  Expenses

0  1/1/20  Oscar  Logistics XYZ     5250       531
1  1/1/20  Oscar    Money Corp.     4406       661
2  1/2/20  Oscar     PaperMaven     8661      1401
3  1/3/20  Oscar    PaperGenius     7075       906
4  1/4/20  Oscar    Paper Pound     2524      1767
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For utility’s sake, let’s convert the strings in the Date column to datetime objects with
the read_csv function’s parse_dates parameter. After that change, this import
looks good to go. We can assign the DataFrame to a sales variable:

In  [3] sales = pd.read_csv(
            "sales_by_employee.csv", parse_dates = ["Date"]
        )

        sales.tail()

Out [3]

         Date   Name           Customer  Revenue  Expenses

21 2020-01-01  Creed        Money Corp.     4430       548
22 2020-01-02  Creed  Average Paper Co.     8026      1906
23 2020-01-02  Creed  Average Paper Co.     5188      1768
24 2020-01-04  Creed         PaperMaven     3144      1314
25 2020-01-05  Creed        Money Corp.      938      1053

With our data set loaded, let’s explore how we can aggregate its data with a pivot table.

8.2.1 The pivot_table method

A pivot table aggregates a column’s values and groups the results by using other col-
umns’ values. The word aggregate describes a summary computation that involves mul-
tiple values. Example aggregations include average, sum, median, and count. A pivot
table in pandas is similar to the Pivot Table feature in Microsoft Excel.

 As always, an example proves to be most helpful, so let’s tackle our first challenge.
Multiple salesmen closed deals on the same date. In addition, the same salesmen
closed multiple deals on the same date. What if we want to sum the revenue by date
and see how much each salesman contributed to the daily totals? 

 We follow four steps to create a pivot table:

1 Select the column(s) whose values we want to aggregate.
2 Choose the aggregation operation to apply to the column(s).
3 Select the column(s) whose values will group the aggregated data into

categories.
4 Determine whether to place the groups on the row axis, the column axis, or

both axes.

Let’s proceed one step at a time. First, we’ll need to invoke the pivot_table method
on our existing sales DataFrame. The method’s index parameter accepts the col-
umn whose values will make up the pivot table’s index labels. Pandas will use the
unique values from that column to group the results.

 The next example uses the Date column’s values for the index labels of the pivot
table. The Date column contains five unique dates. Pandas applies its default
aggregation operation, an average, to all numeric columns in sales (Expenses and
Revenue):
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In  [4] sales.pivot_table(index = "Date")

Out [4]

               Expenses      Revenue
Date

2020-01-01   637.500000  4293.500000
2020-01-02  1244.400000  7303.000000
2020-01-03  1313.666667  4865.833333
2020-01-04  1450.600000  3948.000000
2020-01-05  1196.250000  4834.750000

The method returns a regular DataFrame object. It may be a bit underwhelming, but
this DataFrame is a pivot table! The table shows average expenses and average reve-
nue organized by the five unique dates in the Date column.

 We declare the aggregation function with the aggfunc parameter; its default argu-
ment is "mean". The following code produces the same result as the preceding code:

In  [5] sales.pivot_table(index = "Date", aggfunc = "mean")

Out [5]

               Expenses      Revenue
Date

2020-01-01   637.500000  4293.500000
2020-01-02  1244.400000  7303.000000
2020-01-03  1313.666667  4865.833333
2020-01-04  1450.600000  3948.000000
2020-01-05  1196.250000  4834.750000

We’ll have to modify some method arguments to reach our original goal: a sum of
each date’s revenue organized by salesman. First, let’s swap the aggfunc parameter’s
argument to "sum" to add the values in Expenses and Revenue:

In  [6] sales.pivot_table(index = "Date", aggfunc = "sum")

Out [6]

            Expenses  Revenue
Date

2020-01-01      3825    25761
2020-01-02      6222    36515
2020-01-03      7882    29195
2020-01-04      7253    19740
2020-01-05      4785    19339

For now, we care only about summing the values in the Revenue column. The values
parameter accepts the DataFrame column(s) that pandas will aggregate. To aggregate
only one column’s values, we can pass the parameter a string with the column name:

In  [7] sales.pivot_table(
            index = "Date", values = "Revenue", aggfunc = "sum"
        )
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Out [7]

            Revenue
Date

2020-01-01    25761
2020-01-02    36515
2020-01-03    29195
2020-01-04    19740
2020-01-05    19339

To aggregate values across multiple columns, we can pass values a list of columns.
 We have a sum of revenue grouped by date. Our final step is communicating how

much each salesman contributed to the daily total. One presentational view that
seems to be optimal is placing each salesman’s name in a separate column. In other
words, we’d like to use the Name column’s unique values as the column headers in
the pivot table. Let’s add a columns parameter to the method invocation and pass it
an argument of "Name":

In  [8] sales.pivot_table(
            index = "Date",
            columns = "Name",
            values = "Revenue",
            aggfunc = "sum"
        )

Out [8]

Name          Creed   Dwight     Jim  Michael   Oscar
Date

2020-01-01   4430.0   2639.0  1864.0   7172.0  9656.0
2020-01-02  13214.0      NaN  8278.0   6362.0  8661.0
2020-01-03      NaN  11912.0  4226.0   5982.0  7075.0
2020-01-04   3144.0      NaN  6155.0   7917.0  2524.0
2020-01-05    938.0   7771.0     NaN   7837.0  2793.0

That’s it! We have an aggregated sum of revenue organized by dates on the row axis and
salesmen on the column axis. Notice the presence of NaNs in the data set. A NaN
denotes that the salesman did not have a row in sales with a Revenue value for a given
date. Dwight does not have any sales row with a Date value of 2020-01-02, for example.
The pivot table needs the index label of 2020-01-02 to exist for the four salesmen who
have a revenue value for that date. Pandas plugs in the missing holes with NaNs. The
presence of NaN values also forces the coercion of integers into floating-point numbers.

 We can use the fill_value parameter to replace all pivot table NaNs with a fixed
value. Let’s fill in the data gaps with zeroes:

In  [9] sales.pivot_table(
            index = "Date",
            columns = "Name",
            values = "Revenue",
            aggfunc = "sum",
            fill_value = 0
        )
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Out [9]

Name        Creed  Dwight   Jim  Michael  Oscar
Date

2020-01-01   4430    2639  1864     7172   9656
2020-01-02  13214       0  8278     6362   8661
2020-01-03      0   11912  4226     5982   7075
2020-01-04   3144       0  6155     7917   2524
2020-01-05    938    7771     0     7837   2793

We may also want to see the revenue subtotals for each combination of date and sales-
man. We can pass an argument of True to the margins parameter to add totals for
each row and column:

In  [10] sales.pivot_table(
             index = "Date",
             columns = "Name",
             values = "Revenue",
             aggfunc = "sum",
             fill_value = 0,
             margins = True
         )

Out [10]

Name                 Creed  Dwight    Jim  Michael  Oscar     All
Date

2020-01-01 00:00:00   4430    2639   1864     7172   9656   25761
2020-01-02 00:00:00  13214       0   8278     6362   8661   36515
2020-01-03 00:00:00      0   11912   4226     5982   7075   29195
2020-01-04 00:00:00   3144       0   6155     7917   2524   19740
2020-01-05 00:00:00    938    7771      0     7837   2793   19339
All                  21726   22322  20523    35270  30709  130550

Notice that the inclusion of "All" in the row labels changes the visual representation
of the dates, which now include the hour, minute, and second. Pandas needs to sup-
port both dates and string index labels. A string is the only data type that can repre-
sent either a date or a text value. Thus, the library converts the index from a
DatetimeIndex for dates to a plain Index for strings. When converting a datetime
object to its string representation, pandas includes the time; it also assumes the start
of the day for a date without time.

 We can use the margins_name parameter to customize the subtotal labels. The
next example changes the labels from "All" to "Total":

In  [11] sales.pivot_table(
             index = "Date",
             columns = "Name",
             values = "Revenue",
             aggfunc = "sum",
             fill_value = 0,
             margins = True,
             margins_name = "Total"
         )



205Creating a pivot table from a DataFrame
Out [11]

Name                 Creed  Dwight    Jim  Michael  Oscar   Total
Date

2020-01-01 00:00:00   4430    2639   1864     7172   9656   25761
2020-01-02 00:00:00  13214       0   8278     6362   8661   36515
2020-01-03 00:00:00      0   11912   4226     5982   7075   29195
2020-01-04 00:00:00   3144       0   6155     7917   2524   19740
2020-01-05 00:00:00    938    7771      0     7837   2793   19339
Total                21726   22322  20523    35270  30709  130550

Ideally, Excel users will feel right at home with these options.

8.2.2 Additional options for pivot tables

A pivot table supports a variety of aggregation operations. Suppose that we’re inter-
ested in the number of business deals closed per day. We can pass aggfunc an argu-
ment of "count" to count the number of sales rows for each combination of date
and employee:

In  [12] sales.pivot_table(
             index = "Date",
             columns = "Name",
             values = "Revenue",
             aggfunc = "count"
         )

Out [12]

Name        Creed  Dwight  Jim  Michael  Oscar
Date

2020-01-01    1.0     1.0  1.0      1.0    2.0
2020-01-02    2.0     NaN  1.0      1.0    1.0
2020-01-03    NaN     3.0  1.0      1.0    1.0
2020-01-04    1.0     NaN  2.0      1.0    1.0
2020-01-05    1.0     1.0  NaN      1.0    1.0

Once again, a NaN value indicates that the salesman did not make a sale on a given
day. Creed did not close a single sale on 2020-01-03, for example, whereas Dwight
closed three. Some additional options for the aggfunc parameter are listed in the fol-
lowing table:

Argument Description

max The largest value in the grouping

min The smallest value in the grouping

std The standard deviation of the values in the grouping

median The median (midpoint) of the values in the grouping

size The number of values in the grouping (equivalent to count)
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We can also pass a list of aggregation functions to the pivot_table function’s agg-
func parameter. The pivot table will create a MultiIndex on the column axis and
store the aggregations in its outermost level. The next example aggregates both the
sum of revenue by date and the count of revenue by date:

In  [13] sales.pivot_table(
             index = "Date",
             columns = "Name",
             values = "Revenue",
             aggfunc = ["sum", "count"],
             fill_value = 0
         )

Out [13]

              sum                            count
Name        Creed Dwight   Jim Michael Oscar  Creed Dwight Jim Michael Oscar
Date

2020-01-01   4430   2639  1864    7172  9656      1      1   1       1     2
2020-01-02  13214      0  8278    6362  8661      2      0   1       1     1
2020-01-03      0  11912  4226    5982  7075      0      3   1       1     1
2020-01-04   3144      0  6155    7917  2524      1      0   2       1     1
2020-01-05    938   7771     0    7837  2793      1      1   0       1     1

We can apply different aggregations to different columns by passing a dictionary to
the aggfunc parameter. Use the dictionary’s keys to identify DataFrame columns
and the values to set the aggregation. The next example extracts the minimum reve-
nue and the maximum expense for each combination of date and salesman:

In  [14] sales.pivot_table(
             index = "Date",
             columns = "Name",
             values = ["Revenue", "Expenses"],
             fill_value = 0,
             aggfunc = { "Revenue": "min", "Expenses": "max" }
         )

Out [14]

      Expenses                           Revenue
Name     Creed Dwight Jim Michael Oscar  Creed  Dwight    Jim Michael Oscar
Date

20...   548      368  1305    412   531   4430    2639   1864    7172  5250
20...  1768        0   462    685  1401   8026       0   8278    6362  8661
20...     0      758  1923   1772   906      0    4951   4226    5982  7075
20...  1314        0   426   1857  1767   3144       0   3868    7917  2524
20...  1053     1475     0   1633   624    938    7771      0    7837  2793

We can also stack multiple groupings on a single axis by passing the index parameter
a list of columns. The next example aggregates the sum of expenses by salesman and
date on the row axis. Pandas return a DataFrame with a two-level MultiIndex:

In  [15] sales.pivot_table(
             index = ["Name", "Date"], values = "Revenue", aggfunc = "sum"
         ).head(10)



207Stacking and unstacking index levels
Out [15]

                   Revenue
Name   Date

Creed  2020-01-01     4430
       2020-01-02    13214
       2020-01-04     3144
       2020-01-05      938
Dwight 2020-01-01     2639
       2020-01-03    11912
       2020-01-05     7771
Jim    2020-01-01     1864
       2020-01-02     8278
       2020-01-03     4226

Switch the order of strings in the index list to rearrange the levels in the pivot table’s
MultiIndex. The next example swaps the positions of Name and Date:

In  [16] sales.pivot_table(
             index = ["Date", "Name"], values = "Revenue", aggfunc = "sum"
         ).head(10)

Out [16]

                    Revenue
Date       Name

2020-01-01 Creed       4430
           Dwight      2639
           Jim         1864
           Michael     7172
           Oscar       9656
2020-01-02 Creed      13214
           Jim         8278
           Michael     6362
           Oscar       8661
2020-01-03 Dwight     11912

The pivot table first organizes and sorts the Date values, and then organizes and sorts
the Name values within each Date.

8.3 Stacking and unstacking index levels
Here’s a reminder of what sales looks like currently:

In  [17] sales.head()

Out [17]

        Date   Name       Customer  Revenue  Expenses

0 2020-01-01  Oscar  Logistics XYZ     5250       531
1 2020-01-01  Oscar    Money Corp.     4406       661
2 2020-01-02  Oscar     PaperMaven     8661      1401
3 2020-01-03  Oscar    PaperGenius     7075       906
4 2020-01-04  Oscar    Paper Pound     2524      1767



208 CHAPTER 8 Reshaping and pivoting
Let’s pivot sales to organize revenue by employee name and date. We’ll place dates on
the column axis and names on the row axis:

In  [18] by_name_and_date = sales.pivot_table(
             index = "Name",
             columns = "Date",
             values = "Revenue",
             aggfunc = "sum"
         )

         by_name_and_date.head(2)

Out [18]

Date    2020-01-01  2020-01-02  2020-01-03  2020-01-04  2020-01-05
Name

Creed       4430.0     13214.0         NaN      3144.0       938.0
Dwight      2639.0         NaN     11912.0         NaN      7771.0

Sometimes, we may want to move an index level from one axis to another. This
change offers a different presentation of the data, and we can decide which view we
like better.

 The stack method moves an index level from the column axis to the row axis.
The next example moves the Date index level from the column axis to the row axis.
Pandas creates a MultiIndex to store the two row levels: Name and Date. Because
only one column of values remains, pandas returns a Series:

In  [19] by_name_and_date.stack().head(7)

Out [19]

Name    Date
Creed   2020-01-01     4430.0
        2020-01-02    13214.0
        2020-01-04     3144.0
        2020-01-05      938.0
Dwight  2020-01-01     2639.0
        2020-01-03    11912.0
        2020-01-05     7771.0
dtype: float64

Notice that the DataFrame’s NaNs are absent from the Series. Pandas kept cells with
NaNs in the by_name_and_date pivot table to maintain the structural integrity of the
rows and columns. The shape of this MultiIndex Series allows pandas to discard
the NaN values.

 The complementary unstack method moves an index level from the row axis to
the column axis. Consider the following pivot table, which groups revenue by cus-
tomer and salesman. The row axis has a two-level MultiIndex, and the column axis
has a regular index:

In  [20] sales_by_customer = sales.pivot_table(
             index = ["Customer", "Name"],
             values = "Revenue",
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             aggfunc = "sum"
         )

         sales_by_customer.head()

Out [20]

                           Revenue
Customer          Name

Average Paper Co. Creed      13214
                  Jim         2287
Best Paper Co.    Dwight      2703
                  Michael    15754
Logistics XYZ     Dwight      9209

The unstack method moves the innermost level of the row index to the column index:

In  [21] sales_by_customer.unstack()

Out [21]

                   Revenue
Name                 Creed  Dwight     Jim  Michael   Oscar
Customer

Average Paper Co.  13214.0     NaN  2287.0      NaN     NaN
Best Paper Co.         NaN  2703.0     NaN  15754.0     NaN
Logistics XYZ          NaN  9209.0     NaN   7172.0  5250.0
Money Corp.         5368.0     NaN  8278.0      NaN  4406.0
Paper Pound            NaN  7771.0  4226.0      NaN  5317.0
PaperGenius            NaN  2639.0  1864.0  12344.0  7075.0
PaperMaven          3144.0     NaN  3868.0      NaN  8661.0

In the new DataFrame, the column axis now has a two-level MultiIndex, and the
row axis has a regular one-level index.

8.4 Melting a data set
A pivot table aggregates the values in a data set. In this section, we’ll learn how to do
the opposite: break an aggregated collection of data into an unaggregated one.

 Let’s apply our wide-versus-narrow framework to the sales DataFrame. Here’s an
effective strategy to figure out whether a data set is in narrow format: navigate across
one row of values, and ask each cell whether its value is a single measurement of the
variable that the column header is describing. Here’s the first row of sales:

In  [22] sales.head(1)

Out [22]

        Date   Name       Customer  Revenue  Expenses

0 2020-01-01  Oscar  Logistics XYZ     5250       531

In the previous example, "2020-01-01" is a Date, "Oscar" is a Name, "Logistics
XYZ" is a Customer, 5250 is a Revenue amount, and 531 is an Expenses amount. The
sales DataFrame is an example of a narrow data set. Each row value represents a sin-
gle observation for a given variable. No variable repeats across multiple columns.
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 We often have to choose between flexibility and readability when manipulating
data in a wide or narrow format. We could represent the last four columns (Name,
Customer, Revenue, Expenses) as fields in a single Category column (following exam-
ple), but there is no real benefit because the four variables are distinct and separate. It
is harder to aggregate data when it is stored in a format like this one:

        Date  Category          Value

0 2020-01-01      Name          Oscar
1 2020-01-01  Customer  Logistics XYZ
2 2020-01-01   Revenue           5250
3 2020-01-01  Expenses            531

The next data set, video_game_sales.csv, is a listing of regional sales for more than
16,000 video games. Each row includes the game’s name as well as the number of
units sold (in millions) in the North America (NA), Europe (EU), Japan (JP), and
other (Other) regions:

In  [23] video_game_sales = pd.read_csv("video_game_sales.csv")
         video_game_sales.head()

Out [23]

                  Name     NA     EU     JP  Other

0           Wii Sports  41.49  29.02   3.77   8.46
1    Super Mario Bros.  29.08   3.58   6.81   0.77
2       Mario Kart Wii  15.85  12.88   3.79   3.31
3    Wii Sports Resort  15.75  11.01   3.28   2.96
4  Pokemon Red/Poke...  11.27   8.89  10.22   1.00

Once again, let’s traverse a sample row and ask each cell whether it holds the correct
piece of information. Here’s the first row of video_game_sales:

In  [24] video_game_sales.head(1)

Out [24]

         Name     NA     EU    JP  Other

0  Wii Sports  41.49  29.02  3.77   8.46

The first cell is fine; "Wii Sports" is an example of a Name. The next four cells are
problematic. 41.49 is not a type of NA or a measurement of NA. NA (North America)
is not a variable whose values vary throughout its column. The NA column’s real piece
of variable data is the sales numbers. NA represents the region for those sales num-
bers—a separate and distinct variable.

 Thus, video_game_sales stores its data in wide format. Four columns (NA, EU, JP,
and Other) store the same data point: the number of units sold. If we added more
regional sales columns, the data set would grow horizontally. If we can group multiple
column headers in a common category, it is a hint that the data set is storing its data in
wide format.

 Suppose that we moved the values "NA", "EU", "JP", and "Other" to a new
Region column. Compare the preceding presentation with the following one:
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         Name Region  Sales

0  Wii Sports     NA  41.49
1  Wii Sports     EU  29.02
2  Wii Sports     JP   3.77
3  Wii Sports  Other   8.46

In a way, we are unpivoting the video_game_sales DataFrame. We are converting an
aggregate, summary view of the data to one in which each column stores one variable
piece of information.

 Pandas melts a DataFrame with the melt method. (Melting is the process of con-
verting a wide data set to a narrow one.) The method accepts two primary parameters:

 The id_vars parameter sets the identifier column, the column for which the
wide data set aggregates data. Name is the identifier column in video_game_-
sales. The data set aggregates sales per video game.

 The value_vars parameter accepts the column(s) whose values pandas will
melt and store in a new column.

Let’s start simple, melting only the NA column’s values. In the next example, pandas
loops through each NA column value and assigns it to a separate row in a new Data-
Frame. The library stores the former column name (NA) in a new variable column:

In  [25] video_game_sales.melt(id_vars = "Name", value_vars = "NA").head()

Out [25]

                       Name variable  value

0                Wii Sports       NA  41.49
1         Super Mario Bros.       NA  29.08
2            Mario Kart Wii       NA  15.85
3         Wii Sports Resort       NA  15.75
4  Pokemon Red/Pokemon Blue       NA  11.27

Next, let’s melt all four of the regional sales columns. The next code sample passes
the value_vars parameter a list of the four regional sales columns from vid-
eo_game_sales:

In  [26] regional_sales_columns = ["NA", "EU", "JP", "Other"]

         video_game_sales.melt(
             id_vars = "Name", value_vars = regional_sales_columns
         )

Out [26]

                                                   Name variable  value

0                                            Wii Sports       NA  41.49
1                                     Super Mario Bros.       NA  29.08
2                                        Mario Kart Wii       NA  15.85
3                                     Wii Sports Resort       NA  15.75
4                              Pokemon Red/Pokemon Blue       NA  11.27
    …                                                 …        …      …
66259                Woody Woodpecker in Crazy Castle 5    Other   0.00
66260                     Men in Black II: Alien Escape    Other   0.00
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66261  SCORE International Baja 1000: The Official Game    Other   0.00
66262                                        Know How 2    Other   0.00
66263                                  Spirits & Spells    Other   0.00

66264 rows × 3 columns

The melt method returns a DataFrame with 66,264 rows! By comparison, video_
game_sales has 16,566 rows. The new data set is four times longer because it has four
rows of data for each row in video_games_sales. The data set stores

 16,566 rows for each video game and its respective NA sales number
 16,566 rows for each video game and its respective EU sales number
 16,566 rows for each video game and its respective JP sales number
 16,566 rows for each video game and its respective Other sales number

The variable column holds the four regional column names from video_game_sales.
The value column holds the values from those four regional sales columns. In the pre-
vious output, the data tells us that the videogame "Woody Woodpecker in Crazy
Castle 5" had a value of 0.00 in the Other column of video_game_sales.

 We can customize the melted DataFrame’s column names by passing arguments
to the var_name and value_name parameters. The next example uses Region for the
variable column and Sales for the value column:

In  [27] video_game_sales_by_region = video_game_sales.melt(
             id_vars = "Name",
             value_vars = regional_sales_columns,
             var_name = "Region",
             value_name = "Sales"
         )

         video_game_sales_by_region.head()

Out [27]

                       Name Region  Sales

0                Wii Sports     NA  41.49
1         Super Mario Bros.     NA  29.08
2            Mario Kart Wii     NA  15.85
3         Wii Sports Resort     NA  15.75
4  Pokemon Red/Pokemon Blue     NA  11.27

Narrow data is easier to aggregate than wide data. Let’s say we want to find the sum of
each video game’s sales across all regions. Given the melted data set, we can use the
pivot_table method to accomplish this task with a few lines of code:

In  [28] video_game_sales_by_region.pivot_table(
             index = "Name", values = "Sales", aggfunc = "sum"
         ).head()

Out [28]
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                               Sales
Name

'98 Koshien                     0.40
.hack//G.U. Vol.1//Rebirth      0.17
.hack//G.U. Vol.2//Reminisce    0.23
.hack//G.U. Vol.3//Redemption   0.17
.hack//Infection Part 1         1.26

The data set’s narrow shape simplified the process of pivoting it.

8.5 Exploding a list of values
Sometimes, a data set stores multiple values in the same cell. We may want to break up
the data cluster so that each row stores a single value. Consider recipes.csv, a collec-
tion of three recipes, each of which has a name and an ingredients list. The ingredi-
ents are stored in a single comma-separated string:

In  [29] recipes = pd.read_csv("recipes.csv")
         recipes

Out [29]

                    Recipe                              Ingredients

0   Cashew Crusted Chicken  Apricot preserves, Dijon mustard, cu...
1      Tomato Basil Salmon  Salmon filets, basil, tomato, olive ...
2  Parmesan Cheese Chicken  Bread crumbs, Parmesan cheese, Itali...

Do you recall the str.split method we introduced in chapter 6? This method uses
a delimiter to split a string into substrings. We can split each Ingredients string by the
presence of a comma. In the next example, pandas returns a Series of lists. Each list
stores the ingredients for the row:

In  [30] recipes["Ingredients"].str.split(",")

Out [30]

0    [Apricot preserves,  Dijon mustard,  curry pow...
1    [Salmon filets,  basil,  tomato,  olive oil,  ...
2    [Bread crumbs,  Parmesan cheese,  Italian seas...
Name: Ingredients, dtype: object

Let’s overwrite the original Ingredients column with the new one:

In  [31] recipes["Ingredients"] = recipes["Ingredients"].str.split(",")
         recipes

Out [31]

                    Recipe                              Ingredients

0   Cashew Crusted Chicken  [Apricot preserves,  Dijon mustard, ...
1      Tomato Basil Salmon  [Salmon filets,  basil,  tomato,  ol...
2  Parmesan Cheese Chicken  [Bread crumbs,  Parmesan cheese,  It...
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Now, how can we spread out each list’s values across multiple rows? The explode
method creates a separate row for each list element in a Series. We invoke the
method on a DataFrame and pass in the column with lists:

In  [32] recipes.explode("Ingredients")

Out [32]

                   Recipe         Ingredients

0  Cashew Crusted Chicken   Apricot preserves
0  Cashew Crusted Chicken       Dijon mustard
0  Cashew Crusted Chicken        curry powder
0  Cashew Crusted Chicken     chicken breasts
0  Cashew Crusted Chicken             cashews
1     Tomato Basil Salmon       Salmon filets
1     Tomato Basil Salmon               basil
1     Tomato Basil Salmon              tomato
1     Tomato Basil Salmon           olive oil
1     Tomato Basil Salmon     Parmesan cheese
2  Simply Parmesan Cheese        Bread crumbs
2  Simply Parmesan Cheese     Parmesan cheese
2  Simply Parmesan Cheese   Italian seasoning
2  Simply Parmesan Cheese                 egg
2  Simply Parmesan Cheese     chicken breasts

Beautiful! We’ve isolated each ingredient to a separate line. Note that the explode
method requires a Series of lists to work properly.

8.6 Coding challenge
Here’s an opportunity to practice the reshaping, pivoting, and melting concepts intro-
duced in this chapter.

8.6.1 Problems

We have two data sets for you to play with. The used_cars.csv file is a listing of used
cars for sale on the classifieds website Craigslist. Each row includes the car’s manufac-
turer, year of production, fuel type, transmission type, and price:

In  [33] cars = pd.read_csv("used_cars.csv")
         cars.head()

Out [33]

  Manufacturer  Year Fuel Transmission  Price

0        Acura  2012  Gas    Automatic  10299
1       Jaguar  2011  Gas    Automatic   9500
2        Honda  2004  Gas    Automatic   3995
3    Chevrolet  2016  Gas    Automatic  41988
4          Kia  2015  Gas    Automatic  12995

The minimum_wage.csv data set is a collection of minimum wages across the United
States. The data set has a State column and multiple year columns:
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In  [34] min_wage = pd.read_csv("minimum_wage.csv")
         min_wage.head()

Out [34]

        State  2010  2011  2012  2013  2014  2015   2016   2017

0     Alabama  0.00  0.00  0.00  0.00  0.00  0.00   0.00   0.00
1      Alaska  8.90  8.63  8.45  8.33  8.20  9.24  10.17  10.01
2     Arizona  8.33  8.18  8.34  8.38  8.36  8.50   8.40  10.22
3    Arkansas  7.18  6.96  6.82  6.72  6.61  7.92   8.35   8.68
4  California  9.19  8.91  8.72  8.60  9.52  9.51  10.43  10.22

Here are the challenges:

1 Aggregate the sum of car prices in cars. Group the results by fuel type on the
row axis.

2 Aggregate the count of cars in cars. Group the results by manufacturer on the
index axis and transmission type on the column axis. Show the subtotals for
both the rows and columns.

3 Aggregate the average of car prices in cars. Group the results by year and fuel
type on the index axis and transmission type on the column axis.

4 Given a DataFrame from the preceding challenge, move the transmission level
from the column axis to the row axis.

5 Convert the min_wage from wide format to narrow format. In other words,
move the data from the eight year columns (2010–17) to a single column.

8.6.2 Solutions

Let’s tackle the problems one by one:

1 The pivot_table method is an optimal solution for adding the values in the
Price column and organizing the totals by fuel type. We can use the method’s
index parameter to set the pivot table’s index labels; we’ll pass an argument of
"Fuel". We’ll specify the aggregation operation as "sum" with the aggfunc
parameter:

In  [35] cars.pivot_table(
             values = "Price", index = "Fuel", aggfunc = "sum"
         )

Out [35]

                Price
Fuel

Diesel      986177143
Electric     18502957
Gas       86203853926
Hybrid       44926064
Other       242096286
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2 We can also use the pivot_table method to count cars by manufacturer and
transmission type. We’ll use the columns parameter to set the Transmission col-
umn’s values as the pivot table’s column labels. Remember to pass the margins
parameter an argument of True to show subtotals for rows and columns:

In  [36] cars.pivot_table(
             values = "Price",
             index = "Manufacturer",
             columns = "Transmission",
             aggfunc = "count",
             margins = True
         ).tail()

Out [36]

Transmission  Automatic   Manual    Other     All
Manufacturer

Tesla             179.0      NaN     59.0     238
Toyota          31480.0   1367.0   2134.0   34981
Volkswagen       7985.0   1286.0    236.0    9507
Volvo            2665.0    155.0     50.0    2870
All            398428.0  21005.0  21738.0  441171

3 To organize average car prices by year and fuel type on the pivot table’s row axis,
we can pass a list of strings to the pivot_table function’s index parameter:

   In  [37] cars.pivot_table(
                values = "Price",
                index = ["Year", "Fuel"],
                columns = ["Transmission"],
                aggfunc = "mean"
            )

Out [37]

Transmission      Automatic        Manual         Other
Year Fuel

2000 Diesel    11326.176962  14010.164021  11075.000000
     Electric   1500.000000           NaN           NaN
     Gas        4314.675996   6226.140327   3203.538462
     Hybrid     2600.000000   2400.000000           NaN
     Other     16014.918919  11361.952381  12984.642857
   …        …             …             …             …
2020 Diesel    63272.595930      1.000000   1234.000000
     Electric   8015.166667   2200.000000  20247.500000
     Gas       34925.857933  36007.270833  20971.045455
     Hybrid    35753.200000           NaN   1234.000000
     Other     22210.306452           NaN   2725.925926

102 rows × 3 columns

Let’s assign the previous pivot table to a report variable for the next challenge:

In  [38] report = cars.pivot_table(
             values = "Price",
             index = ["Year", "Fuel"],
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             columns = ["Transmission"],
             aggfunc = "mean"
         )

4 The next exercise is to move the transmission type from the column index to
the row index. The stack method does the trick here. The method returns a
MultiIndex Series. The Series has three levels: Year, Fuel, and the newly
added Transmission:

In  [39] report.stack()

Out [39]

Year  Fuel      Transmission
2000  Diesel    Automatic       11326.176962
                Manual          14010.164021
                Other           11075.000000
      Electric  Automatic        1500.000000
      Gas       Automatic        4314.675996
                                    ...
2020  Gas       Other           20971.045455
      Hybrid    Automatic       35753.200000
                Other            1234.000000
      Other     Automatic       22210.306452
                Other            2725.925926
Length: 274, dtype: float64 

5 Next, we’d like to convert the min_wage data set from wide format to narrow
format. Eight columns store the same variable: the wages themselves. The solu-
tion is the melt method. We can declare the State column as the identifier col-
umn and the eight year columns as the variable columns:

In  [40] year_columns = [
             "2010", "2011", "2012", "2013",
             "2014", "2015", "2016", "2017"
         ]

         min_wage.melt(id_vars = "State", value_vars = year_columns)

Out [40]

             State variable  value

0          Alabama     2010   0.00
1           Alaska     2010   8.90
2          Arizona     2010   8.33
3         Arkansas     2010   7.18
4       California     2010   9.19
  …              …        …      …
435       Virginia     2017   7.41
436     Washington     2017  11.24
437  West Virginia     2017   8.94
438      Wisconsin     2017   7.41
439        Wyoming     2017   5.26

440 rows × 3 columns
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Here’s a bonus tip: we can remove the value_vars parameter from the melt
method invocation and still get the same DataFrame. By default, pandas melts
data from all columns except the one we pass to the id_vars parameter:

In  [41] min_wage.melt(id_vars = "State")

Out [41]

             State variable  value

0          Alabama     2010   0.00
1           Alaska     2010   8.90
2          Arizona     2010   8.33
3         Arkansas     2010   7.18
4       California     2010   9.19
  …              …        …      …
435       Virginia     2017   7.41
436     Washington     2017  11.24
437  West Virginia     2017   8.94
438      Wisconsin     2017   7.41
439        Wyoming     2017   5.26

440 rows × 3 columns

We can also customize the column names with the var_name and value_name
parameters. The next example uses "Year" and "Wage" to better explain what
each column represents:

In  [42] min_wage.melt(
             id_vars = "State", var_name = "Year", value_name = "Wage"
         )

Out [42]

             State  Year   Wage

0          Alabama  2010   0.00
1           Alaska  2010   8.90
2          Arizona  2010   8.33
3         Arkansas  2010   7.18
4       California  2010   9.19
  …              …     …      …
435       Virginia  2017   7.41
436     Washington  2017  11.24
437  West Virginia  2017   8.94
438      Wisconsin  2017   7.41
439        Wyoming  2017   5.26

440 rows × 3 columns

Congratulations on completing the coding challenge!

Summary
 The pivot_table method aggregates a DataFrame’s data.
 Pivot table aggregations include sum, count, and average.
 We can customize the pivot table’s row labels and column labels.



219Summary
 We can use one or more columns’ values as the index labels of the pivot table.
 The stack method moves an index level from the column index to the row

index.
 The unstack method moves an index level from the row index to the column

index.
 The melt method “unpivots” an aggregated table by distributing its data across

individual rows. The process converts a wide data set to a narrow one.
 The explode method creates a separate row entry for each element in a list; it

requires a Series of lists.



The GroupBy object
The pandas library’s GroupBy object is a storage container for grouping Data-
Frame rows into buckets. It provides a set of methods to aggregate and analyze
each independent group in the collection. It allows us to extract rows at specific
index positions within each group. It also offers a convenient way to iterate over the
groups of rows. There’s lots of power packed into a GroupBy object, so let’s see
what it’s capable of doing.

This chapter covers
 Splitting a DataFrame into groups by using the 

groupby method

 Extracting first and last rows from groups in a 
GroupBy object

 Performing aggregate operations on GroupBy 
groups

 Iterating over DataFrames in a GroupBy object
220
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9.1 Creating a GroupBy object from scratch
Let’s create a new Jupyter Notebook and import the pandas library:

In  [1] import pandas as pd

We’ll kick things off with a small example and dive into more of the technical details
in section 9.2. Let’s begin by creating a DataFrame that stores the prices of fruits and
vegetables in a supermarket:

In  [2] food_data = {
          "Item": ["Banana", "Cucumber", "Orange", "Tomato", "Watermelon"],
          "Type": ["Fruit", "Vegetable", "Fruit", "Vegetable", "Fruit"],
          "Price": [0.99, 1.25, 0.25, 0.33, 3.00]
        }

        supermarket = pd.DataFrame(data = food_data)

        supermarket

Out [2]

         Item       Type  Price

0      Banana      Fruit   0.99
1    Cucumber  Vegetable   1.25
2      Orange      Fruit   0.25
3      Tomato  Vegetable   0.33
4  Watermelon      Fruit   3.00

The Type column identifies the group to which an Item belongs. There are two
groups of items in the supermarket data set: fruits and vegetables. We can use terms
such as groups, buckets, and clusters interchangeably to describe the same idea. Multiple
rows fall into the same category.

 The GroupBy object organizes DataFrame rows into buckets based on shared val-
ues in a column. Suppose that we are interested in the average price of a fruit and the
average price of a vegetable. If we could isolate the "Fruit" rows and "Vegetable"
rows into separate groups, it would be easier to perform the calculations.

 Let’s begin by invoking the groupby method on the supermarket DataFrame. We
need to pass it the column whose values pandas will use to create the groups. The next
example provides the Type column. The method returns an object we haven’t seen
yet: a DataFrameGroupBy. The DataFrameGroupBy object is separate and distinct
from a DataFrame:

In  [3] groups = supermarket.groupby("Type")
        groups

Out [3] <pandas.core.groupby.generic.DataFrameGroupBy object at
        0x114f2db90>
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The Type column has two unique values, so the GroupBy object will store two groups.
The get_group method accepts a group name and returns a DataFrame with the
corresponding rows. Let’s pull out the "Fruit" rows:

In  [4] groups.get_group("Fruit")

Out [4]

         Item   Type  Price

0      Banana  Fruit   0.99
2      Orange  Fruit   0.25
4  Watermelon  Fruit   3.00

We can also pull out the "Vegetable" rows:

In  [5] groups.get_group("Vegetable")

Out [5]

       Item       Type  Price

1  Cucumber  Vegetable   1.25
3    Tomato  Vegetable   0.33

The GroupBy object excels at aggregate operations. Our original goal was to calculate
the average price of the fruits and vegetables in supermarket. We can invoke the mean
method on groups to calculate the average price of items within each group. With a
few lines of code, we’ve successfully split, aggregated, and analyzed a data set:

In  [6] groups.mean()

Out [6]

              Price
Type

Fruit      1.413333
Vegetable  0.790000

With the foundational knowledge under our belts, let’s move on to a more complex
data set.

9.2 Creating a GroupBy object from a data set
The Fortune 1000 is a listing of the 1,000 largest companies in the United States by
revenue. The list is updated annually by the business magazine Fortune. The for-
tune1000.csv file is a collection of Fortune 1000 companies from 2018. Each row
includes a company’s name, revenue, profits, employee count, sector, and industry:

In  [7] fortune = pd.read_csv("fortune1000.csv")
        fortune

Out [7]

          Company  Revenues  Profits  Employees        Sector      Industry

0         Walmart  500343.0   9862.0    2300000     Retailing  General M...
1     Exxon Mobil  244363.0  19710.0      71200        Energy  Petroleum...
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2    Berkshire...  242137.0  44940.0     377000    Financials  Insurance...
3           Apple  229234.0  48351.0     123000    Technology  Computers...
4    UnitedHea...  201159.0  10558.0     260000   Health Care  Health Ca...
…               …         …        …          …             …             …
995  SiteOne L...    1862.0     54.6       3664   Wholesalers  Wholesale...
996  Charles R...    1858.0    123.4      11800   Health Care  Health Ca...
997     CoreLogic    1851.0    152.2       5900  Business ...  Financial...
998  Ensign Group    1849.0     40.5      21301   Health Care  Health Ca...
999           HCP    1848.0    414.2        190    Financials   Real estate

1000 rows × 6 columns

A sector can have many companies. Apple and Amazon.com both belong to the
"Technology" sector, for example.

 An industry is a subcategory within a sector. The "Pipelines" and "Petroleum
Refining" industries fall in the "Energy" sector, for example.

 The Sector column holds 21 unique sectors. Suppose that we want to find the aver-
age revenue across the companies within each sector. Before we use the GroupBy
object, let’s solve the problem by taking an alternative approach. Chapter 5 showed us
how to create a Boolean Series to extract a subset of rows from a DataFrame. The
next example pulls out all companies with a Sector value of "Retailing":

In  [8] in_retailing = fortune["Sector"] == "Retailing"
        retail_companies = fortune[in_retailing]
        retail_companies.head()

Out [8]

       Company  Revenues  Profits  Employees     Sector           Industry

0      Walmart  500343.0   9862.0    2300000  Retailing  General Mercha...
7   Amazon.com  177866.0   3033.0     566000  Retailing  Internet Servi...
14      Costco  129025.0   2679.0     182000  Retailing  General Mercha...
22  Home Depot  100904.0   8630.0     413000  Retailing  Specialty Reta...
38      Target   71879.0   2934.0     345000  Retailing  General Mercha...

We can pull out the Revenues column from the subset by using square brackets:

In  [9] retail_companies["Revenues"].head()

Out [9] 0     500343.0
        7     177866.0
        14    129025.0
        22    100904.0
        38     71879.0
        Name: Revenues, dtype: float64

Finally, we can calculate the Retailing sector’s average revenue by invoking the mean
method on the Revenues column:

In  [10] retail_companies["Revenues"].mean()

Out [10] 21874.714285714286

The preceding code is suitable for calculating the average revenue of one sector. We’ll
need to write a lot of additional code, however, to apply the same logic to the other 20
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sectors in fortune. The code is not particularly scalable. Python can automate some
of the repetition, but the GroupBy object offers the best solution out of the box. The
pandas developers have already solved this problem for us.

 Let’s invoke the groupby method on the fortune DataFrame. The method
accepts the column whose values pandas will use to group the rows. A column is a
good candidate for a grouping if it stores categorical data for the rows. Make sure that
there are parent categories under which multiple rows fall. The data set has 1,000
unique companies but only 21 unique sectors, for example, so the Sector column is a
good fit for aggregate analysis:

In  [11] sectors = fortune.groupby("Sector")

Let’s output the sectors variable to see what kind of object we’re working with:

In  [12] sectors

Out [12] <pandas.core.groupby.generic.DataFrameGroupBy object at
         0x1235b1d10>

A DataFrameGroupBy object is a bundle of DataFrames. Behind the scenes, pandas
repeated the extraction process we used for the "Retailing" sector but for all 21 val-
ues in the Sector column.

 We can count the number of groups in sectors by passing the GroupBy object
into Python’s built-in len function:

In  [13] len(sectors)

Out [13] 21

The sectors GroupBy object has 21 DataFrames. The number is equal to the num-
ber of unique values in fortune’s Sector column, which we can discover by invoking
the nunique method:

In  [14] fortune["Sector"].nunique()

Out [14] 21

What are the 21 sectors, and how many companies from fortune belong to each one?
The size method on the GroupBy object returns a Series with an alphabetical list
of the groups and their row counts. The following output tells us that 25 fortune com-
panies have a Sector value of "Aerospace & Defense", 14 have a value of
"Apparel", and so on:

In  [15] sectors.size()

Out [15] Sector
         Aerospace & Defense               25
         Apparel                           14
         Business Services                 53
         Chemicals                         33
         Energy                           107



225Attributes and methods of a GroupBy object
         Engineering & Construction        27
         Financials                       155
         Food &  Drug Stores               12
         Food, Beverages & Tobacco         37
         Health Care                       71
         Hotels, Restaurants & Leisure     26
         Household Products                28
         Industrials                       49
         Materials                         45
         Media                             25
         Motor Vehicles & Parts            19
         Retailing                         77
         Technology                       103
         Telecommunications                10
         Transportation                    40
         Wholesalers                       44
         dtype: int64

Now that we’ve bucketed our fortune rows, let’s explore what we can do with a
GroupBy object.

9.3 Attributes and methods of a GroupBy object
One way to visualize our GroupBy object is as a dictionary that maps the 21 sectors to
a collection of fortune rows belonging to each one. The groups attribute stores a dic-
tionary with these group-to-row associations; its keys are sector names, and its values
are Index objects storing the row index positions from the fortune DataFrame. The
dictionary has 21 total key-value pairs, but I’ve limited the following output to the first
two pairs to save space:

In  [16] sectors.groups

Out [16]

'Aerospace &  Defense': Int64Index([ 26,  50,  58,  98, 117, 118, 207, 224,
                                     275, 380, 404, 406, 414, 540, 660,
                                     661, 806, 829, 884, 930, 954, 955,
                                     959, 975, 988], dtype='int64'),
 'Apparel': Int64Index([88, 241, 331, 420, 432, 526, 529, 554, 587, 678,
                        766, 774, 835, 861], dtype='int64'),

The output tells us that rows with index positions 26, 50, 58, 98, and so on have a value
of "Aerospace & Defense" in fortune’s Sector column.

 Chapter 4 introduced the loc accessor for extracting DataFrame rows and col-
umns by index label. Its first argument is the row index label, and its second argument
is the column index label. Let’s extract a sample fortune row to confirm that pandas is
pulling it into the correct sector group. We’ll try 26, the first index position listed in
the "Aerospace & Defense" group:

In  [17] fortune.loc[26, "Sector"]

Out [17] 'Aerospace &  Defense'
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What if we want to find the highest-performing company (by revenue) within each
sector? The GroupBy object’s first method extracts the first row listed for each sec-
tor in fortune. Because our fortune DataFrame is sorted by revenue, the first com-
pany pulled out for each sector will be the highest-performing company within that
sector. The return value of first is a 21-row DataFrame (one company per sector):

In  [18] sectors.first()

Out [18]

                      Company  Revenues  Profits  Employees       Industry
Sector

Aerospace &...         Boeing   93392.0   8197.0     140800  Aerospace ...
Apparel                  Nike   34350.0   4240.0      74400        Apparel
Business Se...  ManpowerGroup   21034.0    545.4      29000  Temporary ...
Chemicals           DowDuPont   62683.0   1460.0      98000      Chemicals
Energy            Exxon Mobil  244363.0  19710.0      71200  Petroleum ...
             …              …         …        …          …              …
Retailing             Walmart  500343.0   9862.0    2300000  General Me...
Technology              Apple  229234.0  48351.0     123000  Computers,...
Telecommuni...           AT&T  160546.0  29450.0     254000  Telecommun...
Transportation            UPS   65872.0   4910.0     346415  Mail, Pack...
Wholesalers          McKesson  198533.0   5070.0      64500  Wholesaler...

The complementary last method extracts the last company from fortune that belongs
to each sector. Again, pandas pulls the rows out in the order in which they appear in the
DataFrame. Because fortune sorts companies in descending order by revenue, the fol-
lowing results reveal the companies with the lowest revenue per sector:

In  [19] sectors.last()

Out [19]

                      Company  Revenues  Profits  Employees       Industry
Sector

Aerospace &...  Aerojet Ro...    1877.0     -9.2       5157  Aerospace ...
Apparel         Wolverine ...    2350.0      0.3       3700        Apparel
Business Se...      CoreLogic    1851.0    152.2       5900  Financial ...
Chemicals              Stepan    1925.0     91.6       2096      Chemicals
Energy          Superior E...    1874.0   -205.9       6400  Oil and Ga...
             …              …         …        …          …              …
Retailing       Childrens ...    1870.0     84.7       9800  Specialty ...
Technology      VeriFone S...    1871.0   -173.8       5600  Financial ...
Telecommuni...  Zayo Group...    2200.0     85.7       3794  Telecommun...
Transportation  Echo Globa...    1943.0     12.6       2453  Transporta...
Wholesalers     SiteOne La...    1862.0     54.6       3664  Wholesaler...

The GroupBy object assigns index positions to the rows in each sector group. The first
fortune row in the "Aerospace & Defense" sector has an index position of 0 within
its group. Likewise, the first fortune row in the "Apparel" sector has an index posi-
tion of 0 within its group. The index positions are independent between groups.

 The nth method extracts the row at a given index position within its group. If we
invoke the nth method with an argument of 0, we get the first company within each
sector. The next DataFrame is identical to the one returned by the first method:
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In  [20] sectors.nth(0)

Out [20]

                      Company  Revenues  Profits  Employees       Industry
Sector

Aerospace &...         Boeing   93392.0   8197.0     140800  Aerospace ...
Apparel                  Nike   34350.0   4240.0      74400        Apparel
Business Se...  ManpowerGroup   21034.0    545.4      29000  Temporary ...
Chemicals           DowDuPont   62683.0   1460.0      98000      Chemicals
Energy            Exxon Mobil  244363.0  19710.0      71200  Petroleum ...
             …              …         …        …          …              …
Retailing             Walmart  500343.0   9862.0    2300000  General Me...
Technology              Apple  229234.0  48351.0     123000  Computers,...
Telecommuni...           AT&T  160546.0  29450.0     254000  Telecommun...
Transportation            UPS   65872.0   4910.0     346415  Mail, Pack...
Wholesalers          McKesson  198533.0   5070.0      64500  Wholesaler...

The next example passes an argument of 3 to the nth method to pull out the fourth
row from each sector in the fortune DataFrame. The results include the 21 compa-
nies that are ranked fourth-best by revenue in their sector:

In  [21] sectors.nth(3)

Out [21]

                      Company  Revenues  Profits  Employees       Industry
Sector

Aerospace &...  General Dy...   30973.0   2912.0      98600  Aerospace ...
Apparel          Ralph Lauren    6653.0    -99.3      18250        Apparel
Business Se...        Aramark   14604.0    373.9     215000  Diversifie...
Chemicals            Monsanto   14640.0   2260.0      21900      Chemicals
Energy          Valero Energy   88407.0   4065.0      10015  Petroleum ...
             …              …         …        …          …              …
Retailing          Home Depot  100904.0   8630.0     413000  Specialty ...
Technology                IBM   79139.0   5753.0     397800  Informatio...
Telecommuni...  Charter Co...   41581.0   9895.0      94800  Telecommun...
Transportation  Delta Air ...   41244.0   3577.0      86564       Airlines
Wholesalers             Sysco   55371.0   1142.5      66500  Wholesaler...

Notice that the value for the "Apparel" sector is "Ralph Lauren". We can confirm
the output is correct by filtering for the "Apparel" rows in fortune. Notice that
"Ralph Lauren" is fourth in line:

In  [22] fortune[fortune["Sector"] == "Apparel"].head()

Out [22]

          Company  Revenues  Profits  Employees   Sector Industry

88           Nike   34350.0   4240.0      74400  Apparel  Apparel
241            VF   12400.0    614.9      69000  Apparel  Apparel
331           PVH    8915.0    537.8      28050  Apparel  Apparel
420  Ralph Lauren    6653.0    -99.3      18250  Apparel  Apparel
432   Hanesbrands    6478.0     61.9      67200  Apparel  Apparel
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The head method extracts multiple rows from each group. In the next example,
head(2) extracts the first two rows for each sector within fortune. The result is a Data-
Frame with 42 rows (21 unique sectors, with two rows for each sector). Don’t confuse
this head method on a GroupBy object with the head method on a DataFrame object:

In  [23] sectors.head(2)

Out [23]

          Company  Revenues  Profits  Employees        Sector      Industry

0         Walmart  500343.0   9862.0    2300000     Retailing  General M...
1     Exxon Mobil  244363.0  19710.0      71200        Energy  Petroleum...
2    Berkshire...  242137.0  44940.0     377000    Financials  Insurance...
3           Apple  229234.0  48351.0     123000    Technology  Computers...
4    UnitedHea...  201159.0  10558.0     260000   Health Care  Health Ca...
  …             …         …        …          …             …             …
160          Visa   18358.0   6699.0      15000  Business ...  Financial...
162  Kimberly-...   18259.0   2278.0      42000  Household...  Household...
163         AECOM   18203.0    339.4      87000  Engineeri...  Engineeri...
189  Sherwin-W...   14984.0   1772.3      52695     Chemicals     Chemicals
241            VF   12400.0    614.9      69000       Apparel       Apparel

The complementary tail method extracts the last rows from each group. tail(3)
pulls the last three rows for each sector, for example. The result is a 63-row Data-
Frame (21 sectors x 3 rows):

In  [24] sectors.tail(3)

Out [24]

          Company  Revenues  Profits  Employees        Sector      Industry

473  Windstrea...    5853.0  -2116.6      12979  Telecommu...  Telecommu...
520  Telephone...    5044.0    153.0       9900  Telecommu...  Telecommu...
667  Weis Markets    3467.0     98.4      23000  Food &  D...  Food and ...
759  Hain Cele...    2853.0     67.4       7825  Food, Bev...  Food Cons...
774  Fossil Group    2788.0   -478.2      12300       Apparel       Apparel
  …             …         …        …          …             …             …
995  SiteOne L...    1862.0     54.6       3664   Wholesalers  Wholesale...
996  Charles R...    1858.0    123.4      11800   Health Care  Health Ca...
997     CoreLogic    1851.0    152.2       5900  Business ...  Financial...
998  Ensign Group    1849.0     40.5      21301   Health Care  Health Ca...
999           HCP    1848.0    414.2        190    Financials   Real estate

63 rows × 6 columns

We can use the get_group method to extract all rows in a given group. The method
returns a DataFrame containing the rows. The next example shows all companies in
the "Energy" sector:

In  [25] sectors.get_group("Energy").head()

Out [25]

           Company  Revenues  Profits  Employees  Sector        Industry

1      Exxon Mobil  244363.0  19710.0      71200  Energy  Petroleum R...
12         Chevron  134533.0   9195.0      51900  Energy  Petroleum R...
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27     Phillips 66   91568.0   5106.0      14600  Energy  Petroleum R...
30   Valero Energy   88407.0   4065.0      10015  Energy  Petroleum R...
40  Marathon Pe...   67610.0   3432.0      43800  Energy  Petroleum R...

Now that we understand a GroupBy object’s mechanics, let’s discuss how we can
aggregate the values in every nested group.

9.4 Aggregate operations
We can invoke methods on the GroupBy object to apply aggregate operations to every
nested group. The sum method, for example, adds the column values in each group.
By default, pandas targets all numeric columns in the original DataFrame. In the
next example, the sum method calculates the sum per sector for the three numeric
columns (Revenues, Profits, and Employees) in the fortune DataFrame. We invoke
the sum method on the GroupBy object:

In  [26] sectors.sum().head(10)

Out [26]

                             Revenues   Profits  Employees
Sector

Aerospace & Defense          383835.0   26733.5    1010124
Apparel                      101157.3    6350.7     355699
Business Services            316090.0   37179.2    1593999
Chemicals                    251151.0   20475.0     474020
Energy                      1543507.2   85369.6     981207
Engineering & Construction   172782.0    7121.0     420745
Financials                  2442480.0  264253.5    3500119
Food &  Drug Stores          405468.0    8440.3    1398074
Food, Beverages & Tobacco    510232.0   54902.5    1079316
Health Care                 1507991.4   92791.1    2971189

Let’s double-check a sample calculation. Pandas lists the sum of company revenue in
"Aerospace & Defense" as $383,835. We can use the get_group method to
retrieve the nested "Aerospace & Defense" DataFrame, target its Revenues col-
umn, and use the sum method to calculate its sum:

In  [27] sectors.get_group("Aerospace & Defense").head()

Out [27]

          Company  Revenues  Profits  Employees        Sector      Industry

26         Boeing   93392.0   8197.0     140800  Aerospace...  Aerospace...
50   United Te...   59837.0   4552.0     204700  Aerospace...  Aerospace...
58   Lockheed ...   51048.0   2002.0     100000  Aerospace...  Aerospace...
98   General D...   30973.0   2912.0      98600  Aerospace...  Aerospace...
117  Northrop ...   25803.0   2015.0      70000  Aerospace...  Aerospace...

In  [28] sectors.get_group("Aerospace & Defense").loc[:,"Revenues"].head()

Out [28] 26     93392.0
         50     59837.0
         58     51048.0
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         98     30973.0
         117    25803.0
         Name: Revenues, dtype: float64

In  [29] sectors.get_group("Aerospace & Defense").loc[:, "Revenues"].sum()

Out [29] 383835.0

The values are equal. Pandas is correct! With a single sum method call, the library
applied the calculation logic to each nested DataFrame in the sectors GroupBy
object. We’ve performed an aggregate analysis for all of a column’s groups with a min-
imal amount of code.

 The GroupBy object supports many other aggregation methods. The next exam-
ple invokes the mean method to calculate the average of the Revenues, Profits, and
Employees columns per sector. Again, pandas includes only numeric columns in its
calculations:

In  [30] sectors.mean().head()

Out [30]

                         Revenues      Profits     Employees
Sector

Aerospace & Defense  15353.400000  1069.340000  40404.960000
Apparel               7225.521429   453.621429  25407.071429
Business Services     5963.962264   701.494340  30075.452830
Chemicals             7610.636364   620.454545  14364.242424
Energy               14425.300935   805.373585   9170.158879

We can target a single fortune column by passing its name inside square brackets after
the GroupBy object. Pandas returns a new object, a SeriesGroupBy:

In  [31] sectors["Revenues"]

Out [31] <pandas.core.groupby.generic.SeriesGroupBy object at 0x114778210>

Under the hood, the DataFrameGroupBy object stores a collection of Series-
GroupBy objects. The SeriesGroupBy objects can perform aggregate operations on
individual columns from fortune. Pandas will organize the results by sector. The next
example calculates the sum of revenue by sector:

In  [32] sectors["Revenues"].sum().head()

Out [32] Sector
         Aerospace & Defense     383835.0
         Apparel                 101157.3
         Business Services       316090.0
         Chemicals               251151.0
         Energy                 1543507.2
         Name: Revenues, dtype: float64
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The next example calculates the average number of employees per sector:

In  [33] sectors["Employees"].mean().head()

Out [33] Sector
         Aerospace & Defense    40404.960000
         Apparel                25407.071429
         Business Services      30075.452830
         Chemicals              14364.242424
         Energy                  9170.158879
         Name: Employees, dtype: float64

The max method returns the maximum value from a given column. In the next exam-
ple, we extract the highest Profits column value for each sector. The best-performing
company in the "Aerospace & Defense" sector has profits of $8,197:

In  [34] sectors["Profits"].max().head()

Out [34] Sector
         Aerospace & Defense     8197.0
         Apparel                 4240.0
         Business Services       6699.0
         Chemicals               3000.4
         Energy                 19710.0
         Name: Profits, dtype: float64

The complementary min method returns the minimum value in a given column. The
next example displays the minimum employee count per sector. The smallest number
of employees at a company in the "Aerospace & Defense" sector is 5,157:

In  [35] sectors["Employees"].min().head()

Out [35] Sector
         Aerospace & Defense    5157
         Apparel                3700
         Business Services      2338
         Chemicals              1931
         Energy                  593
         Name: Employees, dtype: int64

The agg method applies multiple aggregate operations to different columns and
accepts a dictionary as its argument. In each key-value pair, the key denotes a Data-
Frame column, and the value specifies the aggregate operation to apply to the col-
umn. The next example extracts the lowest revenue, highest profit, and average
number of employees for each sector:

In  [36] aggregations = {
             "Revenues": "min",
             "Profits": "max",
             "Employees": "mean"
         }

         sectors.agg(aggregations).head()
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Out [36]

                     Revenues  Profits     Employees
Sector

Aerospace & Defense    1877.0   8197.0  40404.960000
Apparel                2350.0   4240.0  25407.071429
Business Services      1851.0   6699.0  30075.452830
Chemicals              1925.0   3000.4  14364.242424
Energy                 1874.0  19710.0   9170.158879

Pandas returns a DataFrame with the aggregation dictionary’s keys as column head-
ers. The sectors remain index labels.

9.5 Applying a custom operation to all groups
Suppose that we want to apply a custom operation to each nested group in a GroupBy
object. In section 9.4, we used the GroupBy object’s max method to find each sector’s
maximum revenue. Let’s say we want to identify the company with the highest reve-
nue in each sector. We solved this problem earlier, but let’s now assume that fortune is
unordered.

 A DataFrame’s nlargest method extracts the rows with the greatest value in a
given column. Here’s a quick refresher. The next example returns the five fortune
rows with the greatest values in the Profits column:

In  [37] fortune.nlargest(n = 5, columns = "Profits")

Out [37]

         Company  Revenues  Profits  Employees        Sector      Industry

3          Apple  229234.0  48351.0     123000    Technology  Computers...
2   Berkshire...  242137.0  44940.0     377000    Financials  Insurance...
15       Verizon  126034.0  30101.0     155400  Telecommu...  Telecommu...
8           AT&T  160546.0  29450.0     254000  Telecommu...  Telecommu...
19  JPMorgan ...  113899.0  24441.0     252539    Financials  Commercia...

If we could invoke the nlargest method on each nested DataFrame in sectors, we’d
get the results we seek. We’d get the company with the highest revenue in each sector.

 We can use the GroupBy object’s apply method here. The method expects a func-
tion as an argument. It invokes the function once for each group in the GroupBy
object. Then it collects the return values from the function invocations and returns
them in a new DataFrame.

 First, let’s define a get_largest_row function that accepts a single argument: a
DataFrame. The function will return the DataFrame row with the greatest value in
the Revenues column. The function is dynamic; it can perform the logic on any
DataFrame as long as it has a Revenues column:

In  [38] def get_largest_row(df):
             return df.nlargest(1, "Revenues")
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 Next, we can invoke the apply method and pass in the uninvoked get_larg-
est_row function. Pandas invokes get_largest_row once for each sector and
returns a DataFrame with the companies with the highest revenue in their sector:

In  [39] sectors.apply(get_largest_row).head()

Out [39]

                        Company  Revenues  Profits  Employees      Industry
Sector

Aerospace ... 26         Boeing   93392.0   8197.0     140800  Aerospace...
Apparel       88           Nike   34350.0   4240.0      74400       Apparel
Business S... 142  ManpowerG...   21034.0    545.4      29000  Temporary...
Chemicals     46      DowDuPont   62683.0   1460.0      98000     Chemicals
Energy        1     Exxon Mobil  244363.0  19710.0      71200  Petroleum...

Use the apply method when pandas does not support a custom aggregation you’d
like to apply to each nested group.

9.6 Grouping by multiple columns
We can create a GroupBy object with values from multiple DataFrame columns. This
operation is optimal when a combination of column values serves as the best identifier
for a group. The next example passes a list of two strings to the groupby method.
Pandas groups the rows first by the Sector column’s values and then by the Industry
column’s values. Remember that a company’s industry is a subcategory within a larger
sector:

In  [40] sector_and_industry = fortune.groupby(by = ["Sector", "Industry"])

The GroupBy object’s size method now returns a MultiIndex Series with a count
of rows for each internal group. This GroupBy object has a length of 82, which means
that fortune has 82 unique combinations of sector and industry:

In  [41] sector_and_industry.size()

Out [41]

Sector               Industry

Aerospace & Defense  Aerospace and Defense                            25
Apparel              Apparel                                          14
Business Services    Advertising, marketing                            2
                     Diversified Outsourcing Services                 14
                     Education                                         2
                                                                      ..
Transportation       Trucking, Truck Leasing                          11
Wholesalers          Wholesalers: Diversified                         24
                     Wholesalers: Electronics and Office Equipment     8
                     Wholesalers: Food and Grocery                     6
                     Wholesalers: Health Care                          6
Length: 82, dtype: int64
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The get_group method requires a tuple of values to extract a nested DataFrame
from the GroupBy collection. The next example targets rows with a sector of
"Business Services" and industry of "Education":

In  [42] sector_and_industry.get_group(("Business Services", "Education"))

Out [42]

          Company  Revenues  Profits  Employees        Sector   Industry

567  Laureate ...    4378.0     91.5      54500  Business ...  Education
810  Graham Ho...    2592.0    302.0      16153  Business ...  Education

For all aggregations, pandas returns a MultiIndex DataFrame with the calculations.
The next example calculates the sum of the three numeric columns in fortune (Rev-
enues, Profits, and Employees), grouped first by sector and then by the industries
within each sector:

In  [43] sector_and_industry.sum().head()

Out [43]

                                          Revenues  Profits  Employees
Sector              Industry

Aerospace & Defense Aerospace and Def...  383835.0  26733.5    1010124
Apparel             Apparel               101157.3   6350.7     355699
Business Services   Advertising, mark...   23156.0   1667.4     127500
                    Diversified Outso...   74175.0   5043.7     858600
                    Education               6970.0    393.5      70653

We can target individual fortune columns for aggregation by using the same syntax as
in section 9.5. Enter the column in square brackets after the GroupBy object; then
invoke the aggregation method. The next example calculates the average revenue for
companies within each sector/industry combo:

In  [44] sector_and_industry["Revenues"].mean().head(5)

Out [44]

Sector               Industry

Aerospace & Defense  Aerospace and Defense               15353.400000
Apparel              Apparel                              7225.521429
Business Services    Advertising, marketing              11578.000000
                     Diversified Outsourcing Services     5298.214286
                     Education                            3485.000000
Name: Revenues, dtype: float64

In summary, a GroupBy object is an optimal data structure for splitting, organizing,
and aggregating a DataFrame’s values. If you need to use multiple columns to iden-
tify buckets, pass the groupby method a list of columns.
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9.7 Coding challenge
This coding challenge’s data set, cereals.csv, is a listing of 80 popular breakfast cereals.
Each row includes a cereal’s name, manufacturer, type, calories, grams of fiber, and
grams of sugar. Let’s take a look:

In  [45] cereals = pd.read_csv("cereals.csv")
         cereals.head()

Out [45]

                  Name    Manufacturer  Type  Calories  Fiber  Sugars

0            100% Bran         Nabisco  Cold        70   10.0       6
1    100% Natural Bran     Quaker Oats  Cold       120    2.0       8
2             All-Bran       Kellogg's  Cold        70    9.0       5
3  All-Bran with Ex...       Kellogg's  Cold        50   14.0       0
4       Almond Delight  Ralston Purina  Cold       110    1.0       8

Good luck!

9.7.1 Problems

Here are the challenges:

1 Group the cereals, using the Manufacturer column’s values.
2 Determine the total number of groups, and the number of cereals per group.
3 Extract the cereals that belong to the manufacturer/group "Nabisco".
4 Calculate the average of values in the Calories, Fiber, and Sugars columns for

each manufacturer.
5 Find the maximum value in the Sugars column for each manufacturer.
6 Find the minimum value in the Fiber column for each manufacturer.
7 Extract the cereal with the lowest amount of grams of sugar per manufacturer

in a new DataFrame.

9.7.2 Solutions

Let’s dive into the solutions:

1 To group the cereals by manufacturer, we can invoke the groupby method on
the cereals DataFrame and pass in the Manufacturer column. Pandas will use
the column’s unique values to organize the groups:

In  [46] manufacturers = cereals.groupby("Manufacturer")

2 To find the total number of groups/manufacturers, we can pass the GroupBy
object into Python’s built-in len function:

In  [47] len(manufacturers)

Out [47] 7
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If you’re curious, the GroupBy object’s size method returns a Series with a
count of cereals per group:

In  [48] manufacturers.size()

Out [48] Manufacturer
         American Home Food Products     1
         General Mills                  22
         Kellogg's                      23
         Nabisco                         6
         Post                            9
         Quaker Oats                     8
         Ralston Purina                  8
         dtype: int64

3 To identify cereals belonging to the "Nabisco" group, we can invoke the
get_group method on our GroupBy object. Pandas will return the nested
DataFrame with "Nabisco" rows:

In  [49] manufacturers.get_group("Nabisco")

Out [49]

                        Name Manufacturer  Type Calories  Fiber Sugars

0                  100% Bran      Nabisco  Cold       70   10.0      6
20    Cream of Wheat (Quick)      Nabisco   Hot      100    1.0      0
63            Shredded Wheat      Nabisco  Cold       80    3.0      0
64    Shredded Wheat 'n'Bran      Nabisco  Cold       90    4.0      0
65  Shredded Wheat spoon ...      Nabisco  Cold       90    3.0      0
68   Strawberry Fruit Wheats      Nabisco  Cold       90    3.0      5

4 To calculate the averages of the numeric columns in cereals, we can invoke
the mean method on the manufacturers GroupBy object. Pandas will aggre-
gate all numeric columns in cereals by default:

In  [50] manufacturers.mean()

Out [50]

                               Calories     Fiber    Sugars
Manufacturer

American Home Food Products  100.000000  0.000000  3.000000
General Mills                111.363636  1.272727  7.954545
Kellogg's                    108.695652  2.739130  7.565217
Nabisco                       86.666667  4.000000  1.833333
Post                         108.888889  2.777778  8.777778
Quaker Oats                   95.000000  1.337500  5.250000
Ralston Purina               115.000000  1.875000  6.125000

5 Next, we are tasked with finding the maximum Sugars value per manufacturer.
We can use square brackets after a GroupBy object to identify which column’s
values to aggregate. Then we provide the correct aggregate method, which is
max in this case:
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In  [51] manufacturers["Sugars"].max()

Out [51] Manufacturer
         American Home Food Products     3
         General Mills                  14
         Kellogg's                      15
         Nabisco                         6
         Post                           15
         Quaker Oats                    12
         Ralston Purina                 11
         Name: Sugars, dtype: int64

6 To find the smallest fiber value per manufacturer, we can swap the column to
Fiber and invoke the min method:

In  [52] manufacturers["Fiber"].min()

Out [52] Manufacturer
         American Home Food Products    0.0
         General Mills                  0.0
         Kellogg's                      0.0
         Nabisco                        1.0
         Post                           0.0
         Quaker Oats                    0.0
         Ralston Purina                 0.0
         Name: Fiber, dtype: float64

7 Finally, we need to identify the cereal row for each manufacturer with the low-
est value in the Sugars column. We can solve this problem by using the apply
method and a custom function. The smallest_sugar_row function uses the
nsmallest method to pull the DataFrame row with the smallest value in the
Sugars column. Then we use apply to invoke the custom function on each
GroupBy group:

In  [53] def smallest_sugar_row(df):
             return df.nsmallest(1, "Sugars")

In  [54] manufacturers.apply(smallest_sugar_row)

Out [54]

                          Name  Manufacturer Type Calories Fiber Sugars
Manufacturer

American H... 43             Maypo  American ...   Hot       100   0.0      3
General Mills 11          Cheerios  General M...  Cold       110   2.0      0
Nabisco       20      Cream of ...       Nabisco   Hot       100   1.0      0
Post          33        Grape-Nuts          Post  Cold       110   3.0      3
Quaker Oats   57      Quaker Oa...   Quaker Oats   Hot       100   2.7     -1
Ralston Pu... 61         Rice Chex  Ralston P...  Cold       110   0.0      2

Congratulations on completing the coding challenge!
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Summary
 A GroupBy object is a container of DataFrames.
 Pandas buckets rows into GroupBy DataFrames by using values across one or

more columns.
 The first and last methods return the first and last rows from each

GroupBy group. The row order in the original DataFrame determines the row
order in each group.

 The head and tail methods extract multiple rows from each group in the
GroupBy object based on the row’s positions in the original DataFrame.

 The nth method extracts a row from each GroupBy group by its index position.
 Pandas can perform aggregate calculations such as sum, average, max, and min

for each group in a GroupBy object.
 The agg method applies different aggregate operations to different columns.

We pass it a dictionary with columns as keys and aggregation as values.
 The apply method invokes a function on each DataFrame in a GroupBy

object.



Merging, joining,
and concatenating
As a business domain grows in complexity, it becomes increasingly difficult to store
all data in a single collection. To solve this problem, data administrators split data
across multiple tables. Then they associate the tables with one another so it is easy
to identify the relationships among them.

 You may have previously worked with a database such as PostgreSQL, MySQL, or
Oracle. Relational database management systems (RDBMS) follow the paradigm
described in the preceding paragraph. A database consists of tables. A table holds
records for one domain model. A table consists of rows and columns. A row stores
information for one record. A column stores an attribute for that record. Tables

This chapter covers
 Concatenating DataFrames on the vertical and 

horizontal axes

 Merging DataFrames with inner joins, outer joins, 
and left joins

 Finding unique and shared values between 
DataFrames

 Joining DataFrames by index labels
239
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connect through column keys. If you haven’t worked with databases before, you can
consider a table to be effectively equivalent to a pandas DataFrame.

 Here’s a real-world example. Imagine that we’re building an e-commerce site and
want to create a users table to store the website’s registered users. Following rela-
tional database conventions, we would assign a unique numeric identifier to each
record. We’ll store the values in an id column. The id column’s values are called pri-
mary keys because they are the primary identifiers for specific rows.

Let’s imagine that our next goal is to keep track of users’ orders on our site. We’ll cre-
ate an orders table to store order details such as item name and price. But how do we
connect each order to the user who placed it? Take a peek at the following table:

To establish a relationship between two tables, database administrators create a col-
umn of foreign keys. A foreign key is a reference to a record in another table. It is
labeled foreign because the key exists outside the current table’s scope.

 Each orders table row stores the ID of the user who placed the order in the
user_id column. Thus, the user_id column stores foreign keys; its values are refer-
ences to records in another table, the users table. Using the established relationship
between the two tables, we can determine that order 1 was placed by the user with an
id of 1, Homer Simpson.

 The advantage of foreign keys is the reduction of data duplication. The orders
table does not need to copy the user’s first name, last name, and email for each order,
for example. Rather, it needs only to store a single reference to the correct users
record. The business entities of users and orders live separately, but we can connect
them when necessary.

 When it comes time to combine tables, we can always turn to pandas. The library
excels at appending, concatenating, joining, merging, and combining DataFrames in
both vertical and horizontal directions. It can identify unique and shared records
between DataFrames. It can perform SQL operations such as inner joins, outer joins,

Users

id first_name last_name email gender

1 Homer Simpson donutfan@simpson.com Male

2 Bart Simpson troublemaker@simpson.com Male

Orders

id item price quantity user_id

1 Donut Box 4.99 4 1

2 Slingshot 19.99 1 2
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left joins, and right joins. In this chapter, we’ll explore the differences among these
joins and the situations in which each one can prove to be advantageous.

10.1 Introducing the data sets
Let’s import the pandas library and assign it an alias of pd:

In  [1] import pandas as pd

This chapter’s data sets come from the online social service Meetup, a website where
users join groups for common interests such as hiking, literature, and board games.
Group organizers schedule remote or in-person events that group members attend.
Meetup’s domain has several data models, including groups, categories, and cities.

 The meetup directory houses all data sets for this chapter. Let’s begin our explora-
tion by importing the groups1.csv and groups2.csv files. These files hold a sample of
Meetup’s registered groups. Each group includes an ID, name, associated category ID,
and associated city ID. Here’s what groups1 looks like:

In  [2] groups1 = pd.read_csv("meetup/groups1.csv")
        groups1.head()

Out [2]

   group_id                           name  category_id  city_id

0      6388         Alternative Health NYC           14    10001
1      6510      Alternative Energy Meetup            4    10001
2      8458              NYC Animal Rights           26    10001
3      8940  The New York City Anime Group           29    10001
4     10104             NYC Pit Bull Group           26    10001

Let’s also import groups2.csv. Notice that both CSVs have the same four columns. We
can imagine that the groups data was somehow split and stored across two files instead
of one:

In  [3] groups2 = pd.read_csv("meetup/groups2.csv")
        groups2.head()

Out [3]

   group_id                                      name  category_id  city_id

0  18879327                              BachataMania            5    10001
1  18880221  Photoshoot Chicago - Photography and ...           27    60601
2  18880426  Chicago Adult Push / Kick Scooter Gro...           31    60601
3  18880495         Chicago International Soccer Club           32    60601
4  18880695          Impact.tech San Francisco Meetup            2    94101

Each group has a category_id foreign key. We can find information on categories in
the categories.csv file. Each row in this file stores the category’s ID and name:

In  [4] categories = pd.read_csv("meetup/categories.csv")

        categories.head()
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Out [4]

   category_id            category_name

0            1           Arts & Culture
1            3       Cars & Motorcycles
2            4  Community & Environment
3            5                  Dancing
4            6     Education & Learning

Each group also has a city_id foreign key. The cities.csv data set stores the city infor-
mation. A city has a unique ID, name, state, and zip code. Let’s take a look:

In  [5] pd.read_csv("meetup/cities.csv").head()

Out [5]

      id            city state    zip

0   7093   West New York    NJ   7093
1  10001        New York    NY  10001
2  13417  New York Mills    NY  13417
3  46312    East Chicago    IN  46312
4  56567  New York Mills    MN  56567

The cities data set has a small issue. Look at the zip value in the first row. 7093 is an
invalid zip code; the value in the CSV is in fact 07093. Zip codes can start with a lead-
ing zero. Unfortunately, pandas assumes that the zip codes are integers and thus strips
the leading zeroes from the values. To solve this problem, we can add the dtype
parameter to the read_csv function. dtype accepts a dictionary in which keys
denote column names and values denote the data type to assign to that column. Let’s
make sure that pandas imports the zip column’s values as strings:

In  [6] cities = pd.read_csv(
            "meetup/cities.csv", dtype = {"zip": "string"}
        )
        cities.head()

Out [6]

      id            city state    zip

0   7093   West New York    NJ  07093
1  10001        New York    NY  10001
2  13417  New York Mills    NY  13417
3  46312    East Chicago    IN  46312
4  56567  New York Mills    MN  56567

Excellent; we’re ready to proceed. To summarize, each group in groups1 and groups2
belongs to a category and a city. The category_id and group_id columns store foreign
keys. The category_id column values map to the category_id column in categories.
The city_id column values map to the id column in cities. With our data tables loaded
into Jupyter, we’re ready to start joining them.



243Concatenating data sets
10.2 Concatenating data sets
The simplest way to combine two data sets is with concatenation—appending one
DataFrame to the end of another.

 The groups1 and groups2 DataFrames both have the same four column names.
Let’s assume that they are two halves of a greater whole. We’d like to combine their
rows into a single DataFrame. Pandas has a convenient concat function at the top
level of the library. We can pass its objs parameter a list of DataFrames. Pandas will
concatenate the objects in the order in which they appear in the objs list. The next
example concatenates the rows in groups2 to the end of groups1:

In  [7] pd.concat(objs = [groups1, groups2])

Out [7]

      group_id                                   name  category_id  city_id

0         6388                 Alternative Health NYC           14    10001
1         6510              Alternative Energy Meetup            4    10001
2         8458                      NYC Animal Rights           26    10001
3         8940          The New York City Anime Group           29    10001
4        10104                     NYC Pit Bull Group           26    10001
   …         …                                      …            …        …
8326  26377464                                Shinect           34    94101
8327  26377698  The art of getting what you want [...           14    94101
8328  26378067            Streeterville Running Group            9    60601
8329  26378128                         Just Dance NYC           23    10001
8330  26378470  FREE Arabic Chicago Evanston North...           31    60601

16330 rows × 4 columns

The concatenated DataFrame has 16,330 rows! As you might have guessed, its length
is equal to the sum of the lengths of the groups1 and groups2 DataFrames:

In  [8] len(groups1)

Out [8] 7999

In  [9] len(groups2)

Out [9] 8331

In  [10] len(groups1) + len(groups2)

Out [10] 16330

Pandas preserves the original index labels from both DataFrames in the concatena-
tion, which is why we see a final index position of 8,330 in the concatenated Data-
Frame even though it has more than 16,000 rows. What we are seeing is the 8,330
index from the end of the groups2 DataFrame. Pandas does not care that the same
index number appears in both groups1 and groups2. As a result, the concatenated
index has duplicate index labels.
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 We can pass the concat function’s ignore_index parameter an argument of
True to generate pandas’ standard numeric index. The concatenated DataFrame will
discard the original index labels:

In  [11] pd.concat(objs = [groups1, groups2], ignore_index = True)

Out [11]

       group_id                                  name  category_id  city_id

0          6388                Alternative Health NYC           14    10001
1          6510             Alternative Energy Meetup            4    10001
2          8458                     NYC Animal Rights           26    10001
3          8940         The New York City Anime Group           29    10001
4         10104                    NYC Pit Bull Group           26    10001
    …         …                                     …            …        …
16325  26377464                               Shinect           34    94101
16326  26377698  The art of getting what you want ...           14    94101
16327  26378067           Streeterville Running Group            9    60601
16328  26378128                        Just Dance NYC           23    10001
16329  26378470  FREE Arabic Chicago Evanston Nort...           31    60601

16330 rows × 4 columns

What if we wanted the best of both worlds: to create a nonduplicate index but also
preserve which DataFrame each row of data came from? One solution is to add a
keys parameter and pass it a list of strings. Pandas will associate each string in the
keys list with the DataFrame at the same index position in the objs list. The keys
and objs lists must be of equal length.

 The next example assigns the groups1 DataFrame a key of "G1" and the groups2
DataFrame a key of "G2". The concat function returns a MultiIndex DataFrame.
The MultiIndex’s first level stores the keys, and its second level stores the index
labels from the respective DataFrame:

In  [12] pd.concat(objs = [groups1, groups2], keys = ["G1", "G2"])

Out [12]

         group_id                                name  category_id  city_id

G1 0         6388              Alternative Health NYC           14    10001
   1         6510           Alternative Energy Meetup            4    10001
   2         8458                   NYC Animal Rights           26    10001
   3         8940       The New York City Anime Group           29    10001
   4        10104                  NYC Pit Bull Group           26    10001
 …    …         …                                   …            …        …
G2 8326  26377464                             Shinect           34    94101
   8327  26377698  The art of getting what you wan...           14    94101
   8328  26378067         Streeterville Running Group            9    60601
   8329  26378128                      Just Dance NYC           23    10001
   8330  26378470  FREE Arabic Chicago Evanston No...           31    60601

16330 rows × 4 columns
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We can extract the original DataFrames by accessing the G1 or G2 keys on the first
level of the MultiIndex. (See chapter 7 for a refresher on using the loc accessor on
MultiIndex DataFrames.) Before we proceed, let’s assign the concatenated Data-
Frame to a groups variable:

In  [13] groups = pd.concat(objs = [groups1, groups2], ignore_index = True)

We’ll come back to groups in section 10.4.

10.3 Missing values in concatenated DataFrames
When concatenating two DataFrames, pandas places NaNs at intersections of row
labels and column labels that the data sets do not share. Consider the following two
DataFrames, both of which have a Football column. The sports_champions_A Data-
Frame has an exclusive Baseball column, and the sports_champions_B DataFrame
has an exclusive Hockey column:

In  [14] sports_champions_A = pd.DataFrame(
             data = [
                 ["New England Patriots", "Houston Astros"],
                 ["Philadelphia Eagles", "Boston Red Sox"]
             ],
             columns = ["Football", "Baseball"],
             index = [2017, 2018]
         )

        sports_champions_A

Out [14]

                  Football        Baseball

2017  New England Patriots  Houston Astros
2018   Philadelphia Eagles  Boston Red Sox

In  [15] sports_champions_B = pd.DataFrame(
             data = [
                 ["New England Patriots", "St. Louis Blues"],
                 ["Kansas City Chiefs", "Tampa Bay Lightning"]
             ],
             columns = ["Football", "Hockey"],
             index = [2019, 2020]
         )

         sports_champions_B

Out [15]

                  Football               Hockey

2019  New England Patriots      St. Louis Blues
2020    Kansas City Chiefs  Tampa Bay Lightning
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If we concatenate the DataFrames, we will create missing values in the Baseball and
Hockey columns. The sports_champions_A DataFrame has no values to place in the
Hockey column, and the sports_champions_B DataFrame has no values to place in
the Baseball column:

In  [16] pd.concat(objs = [sports_champions_A, sports_champions_B])

Out [16]

                  Football        Baseball               Hockey

2017  New England Patriots  Houston Astros                  NaN
2018   Philadelphia Eagles  Boston Red Sox                  NaN
2019  New England Patriots             NaN      St. Louis Blues
2020    Kansas City Chiefs             NaN  Tampa Bay Lightning

By default, pandas concatenates rows on the horizontal axis. Sometimes, we want to
append the rows on the vertical axis instead. Consider the sports_champions_C
DataFrame, which has the same two index labels as sports_champions_A (2017 and
2018) but two different columns, Hockey and Basketball:

In  [17] sports_champions_C = pd.DataFrame(
             data = [
                 ["Pittsburgh Penguins", "Golden State Warriors"],
                 ["Washington Capitals", "Golden State Warriors"]
         ],
             columns = ["Hockey", "Basketball"],
             index = [2017, 2018]
         )

         sports_champions_C

Out [17]

                   Hockey             Basketball

2017  Pittsburgh Penguins  Golden State Warriors
2018  Washington Capitals  Golden State Warriors

When we concatenate sports_champions_A and sports_champions_C, pandas
appends the rows of the second DataFrame to the end of the first. The process cre-
ates duplicate 2017 and 2018 index labels:

In  [18] pd.concat(objs = [sports_champions_A, sports_champions_C])

Out [18]

              Football        Baseball            Hockey        Basketball

2017  New England P...  Houston Astros               NaN               NaN
2018  Philadelphia ...  Boston Red Sox               NaN               NaN
2017               NaN             NaN  Pittsburgh Pe...  Golden State ...
2018               NaN             NaN  Washington Ca...  Golden State ...

This result is not what we want. Rather, we’d like to align the duplicate index labels
(2017 and 2018) so that the columns have no missing values.
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 The concat function includes an axis parameter. We can pass that parameter an
argument of either 1 or "columns" to concatenate the DataFrames across the col-
umn axis:

In  [19] # The two lines below are equivalent
         pd.concat(
             objs = [sports_champions_A, sports_champions_C],
             axis = 1
         )
         pd.concat(
             objs = [sports_champions_A, sports_champions_C],
             axis = "columns"
         )

Out [19]

              Football        Baseball            Hockey        Basketball

2017  New England P...  Houston Astros  Pittsburgh Pe...  Golden State ...
2018  Philadelphia ...  Boston Red Sox  Washington Ca...  Golden State ...

Much better!
 In summary, the concat function combines two DataFrames by appending one to

the end of the other on either the horizontal axis or the vertical axis. I like to describe
the process as "gluing" two data sets together.

10.4 Left joins
Compared with a concatenation, a join uses a logical criterion to determine which
rows or columns to merge between two data sets. A join can target only rows with
shared values between both data sets, for example. The following sections cover three
types of joins: left, inner, and outer. Let’s walk through them one by one.

 A left join uses keys from one data set to pull in values from another. It is equivalent
to a VLOOKUP operation in Excel. A left join is optimal when one data set is the focal
point of the analysis. We pull in the second data set to provide supplemental informa-
tion related to the primary data set. Consider the diagram in figure 10.1. Think of each
circle as being a DataFrame. The DataFrame on the left is the focus of the analysis.

Figure 10.1 Left join diagram
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Here’s a quick reminder of what our groups data set looks like:

In  [20] groups.head(3)

Out [20]

   group_id                       name  category_id  city_id

0      6388     Alternative Health NYC           14    10001
1      6510  Alternative Energy Meetup            4    10001
2      8458          NYC Animal Rights           26    10001

The foreign keys in the category_id column reference the IDs in the categories data
set:

In  [21] categories.head(3)

Out [21]

   category_id            category_name

0            1           Arts & Culture
1            3       Cars & Motorcycles
2            4  Community & Environment

Let’s execute a left join on groups to add category information for each group. We’ll
use the merge method to merge one DataFrame into another. The method’s first
parameter, right, accepts a DataFrame. The terminology comes from the previous
diagram. The right DataFrame is the circle on the right, the “second” data set. We
can pass a string denoting the type of join to the method’s how parameter; we’ll pass
in "left". We also must tell pandas which columns to use to match values between
the two DataFrames. Let’s add an on parameter with a value of "category_id". We
can use the on parameter only when the column name is equal between DataFrames.
In our case, both the groups and categories DataFrames have a category_id column:

In  [22] groups.merge(categories, how = "left", on = "category_id").head()

Out [22]

   group_id                 name  category_id  city_id        category_name

0      6388  Alternative Heal...           14    10001   Health & Wellbeing
1      6510  Alternative Ener...            4    10001  Community & Envi...
2      8458    NYC Animal Rights           26    10001                  NaN
3      8940  The New York Cit...           29    10001     Sci-Fi & Fantasy
4     10104   NYC Pit Bull Group           26    10001                  NaN

There it is! Pandas pulls in the categories table’s columns whenever it finds a match
for the category_id value in groups. The one exception is the category_id column,
which is listed only once. Note that when the library does not find a category_id in cat-
egories, it displays NaN values in the category_name column from categories. We can
see an example on rows 2 and 4 of the previous output.
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10.5 Inner joins
An inner join targets values that exist
across two DataFrames. Consider figure
10.2; an inner join targets the colored
overlap in the middle of the circles.

 In an inner join, pandas excludes
values that exist only in the first Data-
Frame and only in the second Data-
Frame.

 Here’s a reminder of what the
groups and categories data sets look
like:

In  [23] groups.head(3)

Out [23]

   group_id                       name  category_id  city_id

0      6388     Alternative Health NYC           14    10001
1      6510  Alternative Energy Meetup            4    10001
2      8458          NYC Animal Rights           26    10001

In  [24] categories.head(3)

Out [24]

   category_id            category_name

0            1           Arts & Culture
1            3       Cars & Motorcycles
2            4  Community & Environment

Let’s identify the categories that exist in both data sets. From a technical perspective,
we once again want to target the rows from the two DataFrames with equal values in
the category_id columns. In this situation, it doesn’t matter whether we invoke the
merge method on group or categories. An inner join identifies common elements in
both data sets; the results will be the same regardless. For the next example, let’s call
the merge method on groups:

In  [25] groups.merge(categories, how = "inner", on = "category_id")

Out [25]

      group_id               name  category_id  city_id      category_name

0         6388  Alternative He...           14    10001  Health & Wellb...
1        54126  Energy Healers...           14    10001  Health & Wellb...
2        67776  Flourishing Li...           14    10001  Health & Wellb...
3       111855  Hypnosis & NLP...           14    10001  Health & Wellb...
4       129277  The Live Food ...           14    60601  Health & Wellb...
   …         …                  …            …        …                  …

Figure 10.2 Inner join diagram
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8032  25536270  New York Cucko...           17    10001          Lifestyle
8033  25795045  Pagans Paradis...           17    10001          Lifestyle
8034  25856573  Fuck Yeah Femm...           17    94101          Lifestyle
8035  26158102  Chicago Crossd...           17    60601          Lifestyle
8036  26219043  Corporate Goes...           17    10001          Lifestyle

8037 rows × 5 columns

The merged DataFrame includes all columns from both the groups and categories
DataFrames. The values in the category_id column appear in both groups and cate-
gories. The category_id column is listed only once. We don’t need a duplicate column
because the values in category_id are the same for groups and categories in an inner
join.

 Let’s add some context to what pandas did. The first four rows in the merged
DataFrame have a category_id of 14. We can filter for that ID in the groups and cate-
gories DataFrames:

In  [26] groups[groups["category_id"] == 14]

Out [26]

       group_id                                  name  category_id  city_id

0          6388                Alternative Health NYC           14    10001
52        54126                    Energy Healers NYC           14    10001
78        67776               Flourishing Life Meetup           14    10001
121      111855  Hypnosis & NLP NYC - Update Your ...           14    10001
136      129277       The Live Food Chicago Community           14    60601
    …         …                                     …            …        …
16174  26291539  The Transformation Project: Colla...           14    94101
16201  26299876  Cognitive Empathy, How To Transla...           14    10001
16248  26322976         Contemplative Practices Group           14    94101
16314  26366221  The art of getting what you want:...           14    94101
16326  26377698  The art of getting what you want ...           14    94101

870 rows × 4 columns

In  [27] categories[categories["category_id"] == 14]

Out [27]

   category_id       category_name

8           14  Health & Wellbeing

The merged DataFrame creates one row for each group_id match across the two
DataFrames. There are 870 rows in groups and one row in categories with a group_id
of 14. Pandas pairs each of the 870 rows in groups with the single row in categories
and creates a total of 870 rows in the merged DataFrame. Because an inner join cre-
ates a new row for each value match, the merged DataFrame can be significantly
larger than the original ones. If there were three categories with an ID of 14, for
example, pandas would create 2610 rows (870 x 3).
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10.6 Outer joins
An outer join combines all records
across two data sets. Exclusivity does
not matter with an outer join. Figure
10.3 shows the results of an outer join;
pandas includes all values irrespective
of whether they belong in one data set
or both data sets.

 Here’s a reminder of what the
groups and cities DataFrames look like:

In  [28] groups.head(3)

Out [28]

   group_id                       name  category_id  city_id

0      6388     Alternative Health NYC           14    10001
1      6510  Alternative Energy Meetup            4    10001
2      8458          NYC Animal Rights           26    10001

In  [29] cities.head(3)

Out [29]

      id            city state    zip

0   7093   West New York    NJ  07093
1  10001        New York    NY  10001
2  13417  New York Mills    NY  13417

Let’s merge groups and cities with an outer join. We’ll pull in all cities: the ones exclu-
sive to groups, the ones exclusive to cities, and the ones common to both.

 So far, we’ve used only shared column names to merge data sets. When column
names differ between data sets, we must pass different parameters to the merge
method. Instead of the on parameter, we can use the merge method’s left_on and
right_on parameters. We pass left_on the column name in the left DataFrame
and right_on the column name in the right DataFrame. Here, we perform an outer
join to merge city information from cities into the groups DataFrame:

In  [30] groups.merge(
             cities, how = "outer", left_on = "city_id", right_on = "id"
         )

Out [30]

        group_id       name  category_id  city_id       city state    zip

0         6388.0  Altern...       14.0    10001.0   New York    NY  10001
1         6510.0  Altern...        4.0    10001.0   New York    NY  10001
2         8458.0  NYC An...       26.0    10001.0   New York    NY  10001
3         8940.0  The Ne...       29.0    10001.0   New York    NY  10001
4        10104.0  NYC Pi...       26.0    10001.0   New York    NY  10001
    …          …          …          …          …          …     …      …

Figure 10.3 Outer join diagram
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16329  243034...  Midwes...       34.0    60064.0  North ...    IL  60064
16330        NaN        NaN        NaN        NaN  New Yo...    NY  13417
16331        NaN        NaN        NaN        NaN  East C...    IN  46312
16332        NaN        NaN        NaN        NaN  New Yo...    MN  56567
16333        NaN        NaN        NaN        NaN  Chicag...    CA  95712

16334 rows × 8 columns

The final DataFrame has all city IDs from both data sets. If pandas finds a values
match between the city_id and id columns, it merges the columns from the two Data-
Frames in a single row. We can see some examples in the first five rows. The city_id
column stores the common id.

 If one DataFrame has a value that the other does not, pandas places a NaN value in
the city_id column. We can see some examples at the end of the data set. This place-
ment will happen irrespective of whether groups or cities has the exclusive value.

 We can pass True to the merge method’s indicator parameter to identify which
DataFrame a value belongs to. The merged DataFrame will include a _merge col-
umn that stores the values "both", "left_only", and "right_only":

In  [31] groups.merge(
             cities,
             how = "outer",
             left_on = "city_id",
             right_on = "id",
             indicator = True
         )

Out [31]

       group_id    name  category_id  city_id    city state    zip  _merge

0      6388.0    Alt...    14.0       100...   New...    NY  10001    both
1      6510.0    Alt...     4.0       100...   New...    NY  10001    both
2      8458.0    NYC...    26.0       100...   New...    NY  10001    both
3      8940.0    The...    29.0       100...   New...    NY  10001    both
4      101...    NYC...    26.0       100...   New...    NY  10001    both
    …       …         …       …            …        …     …      …       …
16329  243...    Mid...    34.0       600...   Nor...    IL  60064    both
16330     NaN       NaN     NaN          NaN   New...    NY  13417  rig...
16331     NaN       NaN     NaN          NaN   Eas...    IN  46312  rig...
16332     NaN       NaN     NaN          NaN   New...    MN  56567  rig...
16333     NaN       NaN     NaN          NaN   Chi...    CA  95712  rig...

16334 rows × 9 columns

We can use the _merge column to filter rows that belong to either of the DataFrames.
The next example extracts rows with a value of "right_only" in the _merge column
or, equivalently, the city IDs that are present only in cities, the right DataFrame:

In  [32] outer_join = groups.merge(
             cities,
             how = "outer",
             left_on = "city_id",
             right_on = "id",
             indicator = True
         )
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         in_right_only = outer_join["_merge"] == "right_only"

         outer_join[in_right_only].head()

Out [32]

       group_id name  category_id  city_id      city state    zip    _merge

16330       NaN  NaN       NaN         NaN  New Y...    NY  13417  right...
16331       NaN  NaN       NaN         NaN  East ...    IN  46312  right...
16332       NaN  NaN       NaN         NaN  New Y...    MN  56567  right...
16333       NaN  NaN       NaN         NaN  Chica...    CA  95712  right...

With a few lines of code, we can easily filter out exclusive values in each data set.

10.7 Merging on index labels
Imagine that a DataFrame we’d like to join stores its primary keys in its index. Let’s
simulate this scenario. We can invoke the set_index method on cities to set its id col-
umn as its DataFrame index:

In  [33] cities.head(3)

Out [33]

      id            city state    zip

0   7093   West New York    NJ  07093
1  10001        New York    NY  10001
2  13417  New York Mills    NY  13417

In  [34] cities = cities.set_index("id")

In  [35] cities.head(3)

Out [35]

                 city state    zip
id

7093    West New York    NJ  07093
10001        New York    NY  10001
13417  New York Mills    NY  13417

Let’s use a left join to merge cities into groups again. Here’s a quick reminder of what
groups looks like:

In  [36] groups.head(3)

Out [36]

   group_id                       name  category_id  city_id

0      6388     Alternative Health NYC           14    10001
1      6510  Alternative Energy Meetup            4    10001
2      8458          NYC Animal Rights           26    10001

Now we want to compare the values in the city_id column in groups with the index
labels of cities. When we invoke the merge method, we’ll pass the how parameter an
argument of "left" for a left join. We’ll use the left_on parameter to tell pandas to
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look for matches in the city_id column in groups, the left DataFrame. To look for
matches in the index of the right DataFrame, we can provide a different parameter,
right_index, and set it to True. The argument tells pandas to look for city_id
matches in the right DataFrame’s index:

In  [37] groups.merge(
             cities,
             how = "left",
             left_on = "city_id",
             right_index = True
         )

Out [37]

       group_id        name  category_id  city_id        city state    zip

0          6388  Alterna...          14     10001    New York    NY  10001
1          6510  Alterna...           4     10001    New York    NY  10001
2          8458  NYC Ani...          26     10001    New York    NY  10001
3          8940  The New...          29     10001    New York    NY  10001
4         10104  NYC Pit...          26     10001    New York    NY  10001
    …         …           …           …         …           …     …      …
16325  26377464     Shinect          34     94101  San Fra...    CA  94101
16326  26377698  The art...          14     94101  San Fra...    CA  94101
16327  26378067  Streete...           9     60601     Chicago    IL  60290
16328  26378128  Just Da...          23     10001    New York    NY  10001
16329  26378470  FREE Ar...          31     60601     Chicago    IL  60290

16330 rows × 7 columns

The method also supports a complementary left_index parameter. Pass that param-
eter an argument of True to tell pandas to look for matches in the left DataFrame’s
index. The left DataFrame is the one that we invoke the merge method on.

10.8 Coding challenge
We’ve reached the end of our exploration; thanks for joining us (pun intended)! Let’s
practice the concepts introduced in this chapter.

 This coding challenge’s tables summarize sales in a fictional restaurant. The
week_1_sales.csv and week_2_sales.csv files hold listings of weekly transactions. Each
restaurant order includes the ID of a customer who placed an order and the ID of the
food item they purchased. Here’s a preview of the first five rows of week_1_sales:

In  [38] pd.read_csv("restaurant/week_1_sales.csv").head()

Out [38]

   Customer ID  Food ID

0          537        9
1           97        4
2          658        1
3          202        2
4          155        9
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The week_2_sales data set has an identical shape. Let’s import the two CSVs and
assign them to week1 and week2 variables:

In  [39] week1 = pd.read_csv("restaurant/week_1_sales.csv")
         week2 = pd.read_csv("restaurant/week_2_sales.csv")

The Customer ID columns hold foreign keys that reference values in the ID column
in customers.csv. Each record in customers.csv includes a customer’s first name, last
name, gender, company, and occupation. Let’s import that data set with the
read_csv function and set its ID column as the DataFrame index with the
index_col parameter:

In  [40] pd.read_csv("restaurant/customers.csv", index_col = "ID").head()

Out [40]

   First Name Last Name  Gender  Company                     Occupation
ID

1      Joseph   Perkins    Male  Dynazzy  Community Outreach Specialist
2    Jennifer   Alvarez  Female     DabZ        Senior Quality Engineer
3       Roger     Black    Male  Tagfeed              Account Executive
4      Steven     Evans    Male     Fatz               Registered Nurse
5        Judy  Morrison  Female  Demivee                Legal Assistant

In  [41] customers = pd.read_csv(
             "restaurant/customers.csv", index_col = "ID"
         )

There’s another column of foreign keys in the weeks1 and weeks2 DataFrames. The
Food ID foreign key connects to the ID column in foods.csv. A food item includes an
ID, a name, and a price. When we import this data set, let’s set its Food ID column as
the DataFrame index:

In  [42] pd.read_csv("restaurant/foods.csv", index_col = "Food ID")

Out [42]

          Food Item  Price
Food ID

1             Sushi   3.99
2           Burrito   9.99
3              Taco   2.99
4        Quesadilla   4.25
5             Pizza   2.49
6             Pasta  13.99
7             Steak  24.99
8             Salad  11.25
9             Donut   0.99
10            Drink   1.75

In  [43] foods = pd.read_csv("restaurant/foods.csv", index_col = "Food ID")

With the data sets imported, we’re ready to tackle the exercises.
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10.8.1 Problems

Here are the challenges:
1 Concatenate the two weeks of sales data into one DataFrame. Assign the week1

DataFrame a key of "Week 1" and the week2 DataFrame a key of "Week 2".
2 Find the customers who ate at the restaurant both weeks.
3 Find the customers who ate at the restaurant both weeks and ordered the same

item each week.

HINT You can join data sets on multiple columns by passing the on parame-
ter a list of columns.

4 Identify which customers came in only on Week 1 and only on Week 2.
5 Each row in the week1 DataFrame identifies a customer who purchased a food

item. For each row, pull in the customer’s information from the customers
DataFrame.

10.8.2 Solutions

Let’s explore the solutions:

1 Our first challenge is to combine the two weeks of restaurant sales data into a
single DataFrame. The concat function at the top level of pandas offers a per-
fect solution. We can pass the two DataFrames in a list to the function’s objs
parameter. To assign a MultiIndex level to each DataFrame in the result, we’ll
also provide the keys parameter a list with the level labels:

In  [44] pd.concat(objs = [week1, week2], keys = ["Week 1", "Week 2"])

Out [44]

            Customer ID  Food ID

Week 1 0            537        9
       1             97        4
       2            658        1
       3            202        2
       4            155        9
     …   …            …        …
Week 2 245          783       10
       246          556       10
       247          547        9
       248          252        9
       249          249        6

500 rows × 2 columns

2 Next, we want to identify customers who visited the restaurant both weeks.
From a technical perspective, we need to find the Customer IDs present in both
the week1 and week2 DataFrames. An inner join is what we’re looking for here.
Let’s invoke the merge method on week1 and pass in week2 as the right
DataFrame. We’ll declare the join type as "inner" and tell pandas to look for
shared values in the Customer ID columns:
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In  [45] week1.merge(
             right = week2, how = "inner", on = "Customer ID"
         ).head()

Out [45]

   Customer ID  Food ID_x  Food ID_y

0          537          9          5
1          155          9          3
2          155          1          3
3          503          5          8
4          503          5          9

Remember that the inner join shows all matches of customer IDs across the
week1 and week2 DataFramess. Thus, there are duplicates in the result (cus-
tomers 155 and 503). If we wanted to remove duplicates, we could invoke the
drop_duplicates method introduced in chapter 5:

In  [46] week1.merge(
             right = week2, how = "inner", on = "Customer ID"
         ).drop_duplicates(subset = ["Customer ID"]).head()

Out [46]

   Customer ID  Food ID_x  Food ID_y

0          537          9          5
1          155          9          3
3          503          5          8
5          550          6          7
6          101          7          4

3 The third challenge asks to find the customers who visited the restaurant both
weeks and ordered the same item. Once again, an inner join is the right option
for finding values present in both the left and right DataFrames. This time
around, however, we have to pass the on parameter a list with two columns. The
values in both the Customer ID and Food ID columns must match between
week1 and week2:

In  [47] week1.merge(
             right = week2,
             how = "inner",
             on = ["Customer ID", "Food ID"]
         )

Out [47]

   Customer ID  Food ID

0          304        3
1          540        3
2          937       10
3          233        3
4           21        4
5           21        4
6          922        1
7          578        5
8          578        5s
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4 One solution to identify the customers who came in only one week is to use an
outer join. We can match records across the two DataFrames by using values in
the Customer ID column. Let’s pass the indicator parameter a value of True
to add a _merge column. Pandas will indicate whether the Customer ID exists
in only the left table ("left_only"), only the right table ("right_only"),
or both tables ("both"):

In  [48] week1.merge(
             right = week2,
             how = "outer",
             on = "Customer ID",
             indicator = True
         ).head()

Out [48]

   Customer ID  Food ID_x  Food ID_y     _merge

0          537        9.0        5.0       both
1           97        4.0        NaN  left_only
2          658        1.0        NaN  left_only
3          202        2.0        NaN  left_only
4          155        9.0        3.0       both

5 The final challenge asks to pull customer information into the week1 table. A
left join is an optimal solution. Invoke the merge method on the week1 Data-
Frame, passing in the customers DataFrame as the right data set. Pass the how
parameter an argument of "left".

The tricky part of this challenge is that the week1 DataFrame stores the cus-
tomer IDs in its Customer ID column, whereas the customers DataFrame stores
them in its index labels. To solve the problem, we can pass the left_on param-
eter the column name from the week1 DataFrame and the right_index
parameter a value of True:

In  [49] week1.merge(
             right = customers,
             how = "left",
             left_on = "Customer ID",
             right_index = True
         ).head()

Out [49]

   Customer ID  Food ID First Name Last Name  Gender    Company Occupation

0        537          9     Cheryl   Carroll  Female   Zoombeat  Regist...
1         97          4     Amanda   Watkins  Female        Ozu  Accoun...
2        658          1    Patrick      Webb    Male  Browsebug  Commun...
3        202          2      Louis  Campbell    Male  Rhynoodle  Accoun...
4        155          9    Carolyn      Diaz  Female   Gigazoom  Databa...

Congratulations on completing the coding challenge!
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Summary
 A primary key is a unique identifier for a record in a data set.
 A foreign key is a reference to a record in another data set.
 The concat function concatenates DataFrames on either the horizontal or

vertical axis.
 The merge method joins two DataFrames based on some logical criterion.
 An inner join identifies common values between two DataFrames. For any

matches, pandas pulls all columns from the right DataFrame into the left
DataFrame.

 An outer join merges two DataFrames. Pandas includes values whether they are
exclusive to one data set or shared.

 A left join pulls in columns from the right DataFrame when their values exist in
the left DataFrame. The operation is equivalent to a VLOOKUP in Excel.

 A left join is ideal when the second DataFrame contains supplemental informa-
tion that we’d like to attach to the primary DataFrame.



Working with dates
and times
A datetime is a data type for storing date and time. It can model a specific date (such
as October 4, 2021), a particular time (such as 11:50 a.m.), or both (such as Octo-
ber 4, 2021 at 11:50 a.m.). Datetimes are valuable because they allow us to track
trends over time. A financial analyst may use datetimes to determine the weekdays
when a stock performs best. A restaurant owner may use them to discover the peak
hours that customers are patronizing the business. An operations manager may use
them to identify the parts of a process that are creating bottlenecks in production.
The when in a data set can often lead to the why.

 In this chapter, we’ll review Python’s built-in datetime objects and see how pan-
das improves them with its Timestamp and Timedelta objects. We’ll also learn

This chapter covers
 Converting Series of strings to datetimes

 Retrieving date and time information from datetime 
objects

 Rounding dates to week, month, and quarter ends

 Adding and subtracting datetimes to and from each 
other
260
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how to use the library to convert strings to dates, add and subtract offsets of time, cal-
culate durations, and more. There’s no time to waste (pun intended), so let’s dive in.

11.1 Introducing the Timestamp object
A module is a file with Python code. Python's standard library is a collection of more
than 250 modules baked into the language that provide battle-tested solutions to com-
mon problems such as database connections, mathematics, and testing. The standard
library exists so developers can write software that uses core language features rather
than install additional dependencies. It’s often said that Python comes with “batteries
included”; like a toy, the language is ready to be used out of the box.

11.1.1 How Python works with datetimes

To reduce memory consumption, Python does not autoload its standard library mod-
ules by default. Instead, we must explicitly import any desired modules into our proj-
ect. As with an external package (such as pandas), we can import a module with the
import keyword and assign it an alias with the as keyword. The standard library’s
datetime module is our target; it stores classes for working with dates and times. dt is
a popular alias for the datetime module. Let’s spin up a fresh Jupyter Notebook and
import datetime along with the pandas library:

In  [1] import datetime as dt
        import pandas as pd

Let’s review four classes in the module: date, time, datetime, and timedelta. (See
appendix B for more details on classes and objects.)

 A date models a single day in history. The object does not store any time. The
date class constructor accepts sequential year, month, and day parameters. All
parameters expect integers. The next example instantiates a date object for my birth-
day, April 12, 1991:

In  [2] # The two lines below are equivalent
        birthday = dt.date(1991, 4, 12)
        birthday = dt.date(year = 1991, month = 4, day = 12)
        birthday

Out [2] datetime.date(1991, 4, 12)

The date object saves the constructor’s arguments as object attributes. We can access
their values with the year, month, and day attributes:

In  [3] birthday.year

Out [3] 1991

In  [4] birthday.month

Out [4] 4
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In  [5] birthday.day

Out [5] 12

A date object is immutable—we cannot change its internal state after we create it.
Python will raise an AttributeError exception if we attempt to overwrite any date
attributes:

In  [6] birthday.month = 10

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-15-2690a31d7b19> in <module>
----> 1 birthday.month = 10

AttributeError: attribute 'month' of 'datetime.date' objects is not writable

The complementary time class models a specific time of day. The date is irrelevant.
The time constructor’s first three parameters accept integer arguments for hour,
minute, and second. Like a date object, a time object is immutable. The next
example instantiates a time object modeling 6:43:25 a.m.:

In  [7] # The two lines below are equivalent
        alarm_clock = dt.time(6, 43, 25)
        alarm_clock = dt.time(hour = 6, minute = 43, second = 25)
        alarm_clock

Out [7] datetime.time(6, 43, 25)

The default argument for all three parameters is 0. If we instantiate a time object
without arguments, it will represent midnight (12:00:00 a.m.). Midnight is 0 hours, 0
minutes, and 0 seconds into the day:

In  [8] dt.time()

Out [8] datetime.time(0, 0)

The next example passes in 9 for the hour parameter, 42 for the second parameter,
and no value for the minute parameter. The time object substitutes 0 for the min-
utes value. The resulting time is 9:00:42 a.m.:

In  [9] dt.time(hour = 9, second = 42)

Out [9] datetime.time(9, 0, 42)

The time constructor uses a 24-hour clock; we can pass it an hour value greater than
or equal to 12 to represent a time in the afternoon or evening,. The next example
models 19:43:22 or, equivalently, 7:43:22 p.m.:

In  [10] dt.time(hour = 19, minute = 43, second = 22)

Out [10] datetime.time(19, 43, 22)
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The time object saves our constructor arguments as object attributes. We can access
their values with the hour, minute, and second attributes:

In  [11] alarm_clock.hour

Out [11] 6

In  [12] alarm_clock.minute

Out [12] 43

In  [13] alarm_clock.second

Out [13] 25

Next in line is the datetime object, which holds both a date and a time. Its first six
parameters are the year, month, day, hour, minute, and second:

In  [14] # The two lines below are equivalent
         moon_landing = dt.datetime(1969, 7, 20, 22, 56, 20)
         moon_landing = dt.datetime(
             year = 1969,
             month = 7,
             day = 20,
             hour = 22,
             minute = 56,
             second = 20
         )
         moon_landing

Out [14] datetime.datetime(1969, 7, 20, 22, 56, 20)

The year, month, and day parameters are required. The time-related attributes are
optional and default to 0. The next example models midnight on January 1, 2020
(12:00:00 a.m.). We explicitly pass in the year, month, and day parameters; the hour,
minute, and second parameters implicitly fall back to 0:

In  [15] dt.datetime(2020, 1, 1)

Out [15] datetime.datetime(2020, 1, 1, 0, 0)

Our final noteworthy object from the datetime module is timedelta, which models
a duration—a length of time. Its constructor’s parameters include weeks, days, and
hours. All the parameters are optional and default to 0. The constructor adds the
time lengths to calculate the total duration. In the next example, we add 8 weeks and
6 days for a total of 62 days (8 weeks * 7 days + 6 days). Python also adds 3 hours, 58
minutes, and 12 seconds for a grand total of 14,292 seconds (238 minutes * 60 sec-
onds + 12 seconds):

In  [16] dt.timedelta(
             weeks = 8,
             days = 6,
             hours = 3,
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             minutes = 58,
             seconds = 12
         )

Out [16] datetime.timedelta(days=62, seconds=14292)

Now that we’ve familiarized ourselves with how Python models dates, times, and dura-
tions, let’s explore how pandas builds on these concepts.

11.1.2 How pandas works with datetimes

Python’s datetime module has had its share of criticism. Some common complaints
include

 A large number of modules to keep track of. We introduced only datetime in
this chapter, but additional modules are available for calendars, time conver-
sions, utility functions, and more.

 A large number of classes to remember.
 Complex, difficult object APIs for time-zone logic.

Pandas introduces the Timestamp object as a replacement for Python’s datetime
object. We can view the Timestamp and datetime objects as being siblings; they are
often interchangeable in the pandas ecosystem, such as when being passed as method
arguments. Much as the Series expands on a Python list, the Timestamp adds fea-
tures to the more primitive datetime object. We’ll see some of these bells and whis-
tles as we progress through the chapter.

 The Timestamp constructor is available at the top level of pandas; it accepts the
same parameters as a datetime constructor. The three date-related parameters
(year, month, and day) are required. Time-related parameters are optional and
default to 0. Here, we again model April 12, 1991, a glorious day:

In  [17] # The two lines below are equivalent
         pd.Timestamp(1991, 4, 12)
         pd.Timestamp(year = 1991, month = 4, day = 12)

Out [17] Timestamp('1991-04-12 00:00:00')

Pandas considers a Timestamp to be equal to a date/datetime if the two objects
store the same information. We can use the == symbols to compare object equality:

In  [18] (pd.Timestamp(year = 1991, month = 4, day = 12)
            == dt.date(year = 1991, month = 4, day = 12))

Out [18] True

In  [19] (pd.Timestamp(year = 1991, month = 4, day = 12, minute = 2)
            == dt.datetime(year = 1991, month = 4, day = 12, minute = 2))

Out [19] True

The two objects will be unequal if there is any difference in date or time. The next
example instantiates a Timestamp with a minute value of 2 and a datetime with a
minute value of 1. The equality comparison yields False:
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In  [20] (pd.Timestamp(year = 1991, month = 4, day = 12, minute = 2)
            == dt.datetime(year = 1991, month = 4, day = 12, minute = 1))

Out [20] False

The Timestamp constructor is remarkably flexible and accepts a variety of inputs. The
next example passes the constructor a string instead of a sequence of integers. The text
stores a date in the common YYYY-MM-DD format (four-digit year, two-digit month, two-
digit day). Pandas correctly deciphers the month, day, and year from the input:

In  [21] pd.Timestamp("2015-03-31")

Out [21] Timestamp('2015-03-31 00:00:00')

Pandas recognizes many standard datetime string formats. The next example replaces
the dashes in the date string with slashes:

In  [22] pd.Timestamp("2015/03/31")

Out [22] Timestamp('2015-03-31 00:00:00')

The next example passes a string in MM/DD/YYYY format, which is no problem for
pandas:

In  [23] pd.Timestamp("03/31/2015")

Out [23] Timestamp('2015-03-31 00:00:00')

We can also include the time in a variety of written formats:

In  [24] pd.Timestamp("2021-03-08 08:35:15")

Out [24] Timestamp('2021-03-08 08:35:15')

In  [25] pd.Timestamp("2021-03-08 6:13:29 PM")

Out [25] Timestamp('2021-03-08 18:13:29')

Finally, the Timestamp constructor accepts Python’s native date, time, and date-
time objects. The next example parses data from a datetime object:

In  [26] pd.Timestamp(dt.datetime(2000, 2, 3, 21, 35, 22))

Out [26] Timestamp('2000-02-03 21:35:22')

The Timestamp object implements all datetime attributes, such as hour, minute,
and second. The next example saves the previous Timestamp to a variable and then
outputs several attributes:

In  [27] my_time = pd.Timestamp(dt.datetime(2000, 2, 3, 21, 35, 22))
         print(my_time.year)
         print(my_time.month)
         print(my_time.day)
         print(my_time.hour)
         print(my_time.minute)
         print(my_time.second)
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Out [27] 2000
         2
         3
         21
         35
         22

Pandas does its best to ensure that its datetime objects work similarly to Python’s built-
in ones. We can consider the objects to be effectively swappable in pandas operations.

11.2 Storing multiple timestamps in a DatetimeIndex
An index is the collection of identifier labels attached to a pandas data structure. The
most common index we’ve encountered so far is the RangeIndex, a sequence of
ascending or descending numeric values. We can access the index of a Series or a
DataFrame via the index attribute:

In  [28] pd.Series([1, 2, 3]).index

Out [28] RangeIndex(start=0, stop=3, step=1)

Pandas uses an Index object to store a collection of string labels. In the next example,
notice that the index object pandas attaches to a Series changes based on its contents:

In  [29] pd.Series([1, 2, 3], index = ["A", "B", "C"]).index

Out [29] Index(['A', 'B', 'C'], dtype='object')

The DatetimeIndex is an index for storing Timestamp objects. If we pass a list of
Timestamps to the Series constructor’s index parameter, pandas will attach a
DatetimeIndex to the Series:

In  [30] timestamps = [
             pd.Timestamp("2020-01-01"),
             pd.Timestamp("2020-02-01"),
             pd.Timestamp("2020-03-01"),
         ]

         pd.Series([1, 2, 3], index = timestamps).index

Out [30] DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01'],
         dtype='datetime64[ns]', freq=None)

Pandas will also use a DatetimeIndex if we pass a list of Python datetime objects:

In  [31] datetimes = [
             dt.datetime(2020, 1, 1),
             dt.datetime(2020, 2, 1),
             dt.datetime(2020, 3, 1),
         ]

         pd.Series([1, 2, 3], index = datetimes).index

Out [31] DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01'],
         dtype='datetime64[ns]', freq=None)
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We can also create a DatetimeIndex from scratch. Its constructor is available at the
top level of pandas. The constructor’s data parameter accepts any iterable collection
of dates. We can pass the dates as strings, datetimes, Timestamps, or even a mix of
data types. Pandas will convert all values to equivalent Timestamps and store them
within the index:

In  [32] string_dates = ["2018/01/02", "2016/04/12", "2009/09/07"]
         pd.DatetimeIndex(data = string_dates)

Out [32] DatetimeIndex(['2018-01-02', '2016-04-12', '2009-09-07'],
         dtype='datetime64[ns]', freq=None)

In  [33] mixed_dates = [
             dt.date(2018, 1, 2),
             "2016/04/12",
             pd.Timestamp(2009, 9, 7)
         ]

         dt_index = pd.DatetimeIndex(mixed_dates)
         dt_index

Out [33] DatetimeIndex(['2018-01-02', '2016-04-12', '2009-09-07'],
         dtype='datetime64[ns]', freq=None)

Now that we have a DatetimeIndex assigned to a dt_index variable, let’s attach it to
a pandas data structure. The next example connects the index to a sample Series:

In  [34] s = pd.Series(data = [100, 200, 300], index = dt_index)
         s

Out [34] 2018-01-02    100
         2016-04-12    200
         2009-09-07    300
         dtype: int64

Date- and time-related operations become possible in pandas only when we store our
values as Timestamps rather than strings. Pandas can’t deduce a day of the week from
a string like "2018-01-02" because it views it as being a collection of digits and
dashes, not an actual date. That’s why it’s imperative to convert all relevant string col-
umns to datetimes when importing a data set for the first time.

 We can use the sort_index method to sort a DatetimeIndex in ascending or
descending order. The next example sorts the index dates in ascending order (earli-
est to latest):

In  [35] s.sort_index()

Out [35] 2009-09-07    300
         2016-04-12    200
         2018-01-02    100
         dtype: int64

Pandas accounts for both date and time when sorting or comparing datetimes. If two
Timestamps use the same date, pandas will compare their hours, minutes, seconds,
and so on.
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 A variety of sorting and comparison operations are available for Timestamps out
of the box. The less-than symbol ( < ) , for example, checks whether one Timestamp
occurs earlier than another:

In  [36] morning = pd.Timestamp("2020-01-01 11:23:22 AM")
         evening = pd.Timestamp("2020-01-01 11:23:22 PM")

         morning < evening

Out [36] True

In section 11.7, we’ll learn how to apply these types of comparisons to all values in a
Series.

11.3 Converting column or index values to datetimes
Our first data set for this chapter, disney.csv, holds nearly 60 years’ worth of stock
prices for the Walt Disney Company, one of the world’s most recognized entertain-
ment brands. Each row includes a date, the stock’s highest and lowest value through-
out that day, and its opening and closing price:

In  [37] disney = pd.read_csv("disney.csv")
         disney.head()

Out [37]

         Date      High       Low      Open     Close

0  1962-01-02  0.096026  0.092908  0.092908  0.092908
1  1962-01-03  0.094467  0.092908  0.092908  0.094155
2  1962-01-04  0.094467  0.093532  0.094155  0.094155
3  1962-01-05  0.094779  0.093844  0.094155  0.094467
4  1962-01-08  0.095714  0.092285  0.094467  0.094155

The read_csv function defaults to importing all values in non-numeric columns as
strings. We can access the dtypes attribute on the DataFrame to see the columns’
data types. Notice that the Date column has a data type of "object", the pandas des-
ignation for a string:

In  [38] disney.dtypes

Out [38] Date      object
         High     float64
         Low      float64
         Open     float64
         Close    float64
         dtype: object

We must explicitly tell pandas which columns’ values to convert to datetimes. One
option we’ve seen before is the read_csv function’s parse_dates parameter, intro-
duced in chapter 3. We can pass the parameter a list of columns whose values pandas
should convert to datetimes:

In  [39] disney = pd.read_csv("disney.csv", parse_dates = ["Date"])
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An alternative solution is the to_datetime conversion function at the top level of
pandas. The function accepts an iterable object (such as a Python list, tuple, Series,
or index), converts its values to datetimes, and returns the new values in a Dateti-
meIndex. Here’s a small example:

In  [40] string_dates = ["2015-01-01", "2016-02-02", "2017-03-03"]
         dt_index = pd.to_datetime(string_dates)
         dt_index

Out [40] DatetimeIndex(['2015-01-01', '2016-02-02', '2017-03-03'],
         dtype='datetime64[ns]', freq=None)

Let’s pass the Date Series from the disney DataFrame to the to_datetime
function:

In  [41] pd.to_datetime(disney["Date"]).head()

Out [41] 0   1962-01-02
         1   1962-01-03
         2   1962-01-04
         3   1962-01-05
         4   1962-01-08
         Name: Date, dtype: datetime64[ns]

We’ve got a Series of datetimes, so let’s overwrite the original DataFrame. The next
code sample replaces the original Date column with the new datetime Series.
Remember that Python evaluates the right side of an equal sign first:

In  [42] disney["Date"] = pd.to_datetime(disney["Date"])

Let’s check on the Date column again via the dtypes attribute:

In  [43] disney.dtypes

Out [43] Date     datetime64[ns]
         High            float64
         Low             float64
         Open            float64
         Close           float64
         dtype: object

Excellent; we have a datetime column! With our Date values stored correctly, we can
explore the powerful datetime functionalities that pandas provides out of the box.

11.4 Using the DatetimeProperties object
A datetime Series holds a special dt attribute that exposes a DatetimeProperties
object:

In  [44] disney["Date"].dt

Out [44] <pandas.core.indexes.accessors.DatetimeProperties object at
         0x116247950>
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We can access attributes and invoke methods on the DatetimeProperties object to
extract information from the columns’ datetime values. The dt attribute is to date-
times what the str attribute is to strings. (See chapter 6 for a review of str.) Both
attributes specialize in manipulations of a specific type of data.

 Let’s begin our exploration of the DatetimeProperties object with the day attri-
bute, which pulls out the day from each date. Pandas returns the values in a new Series:

In  [45] disney["Date"].head(3)

Out [45] 0   1962-01-02
         1   1962-01-03
         2   1962-01-04
         Name: Date, dtype: datetime64[ns]

In  [46] disney["Date"].dt.day.head(3)

Out [46] 0    2
         1    3
         2    4
         Name: Date, dtype: int64

The month attribute returns a Series with the month numbers. January has a month
value of 1, February has a month value of 2, and so on. It’s important to note that this
is different from how we typically count in Python/pandas, where we assign the first
item a value of 0:

In  [47] disney["Date"].dt.month.head(3)

Out [47] 0    1
         1    1
         2    1
         Name: Date, dtype: int64

The year attribute returns a new Series with the years:

In  [48] disney["Date"].dt.year.head(3)

Out [48] 0    1962
         1    1962
         2    1962
         Name: Date, dtype: int64

The previous attributes are pretty simple. We can ask pandas to extract more-interest-
ing pieces of information. One example is the dayofweek attribute, which returns a
Series of numbers for each date’s day of the week. 0 denotes Monday, 1 denotes
Tuesday, and so on up to 6 for Sunday. In the following output, the value of 1 at index
position 0 indicates that January 2, 1962, fell on a Tuesday:

In  [49] disney["Date"].dt.dayofweek.head()

Out [49] 0    1
         1    2
         2    3
         3    4
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         4    0
         Name: Date, dtype: int64

What if we wanted the weekday’s name instead of its number? The day_name method
does the trick. Be careful with the syntax. We invoke the method on the dt object, not
on the Series itself:

In  [50] disney["Date"].dt.day_name().head()

Out [50] 0      Tuesday
         1    Wednesday
         2     Thursday
         3       Friday
         4       Monday
         Name: Date, dtype: object

We can pair these dt attributes and methods with other pandas features for advanced
analyses. Here’s an example. Let’s calculate the average performance of Disney’s stock
by weekday. We’ll begin by attaching the Series returned from the dt.day_name
method to the disney DataFrame:

In  [51] disney["Day of Week"] = disney["Date"].dt.day_name()

We can group the rows based on the values in the new Day of Week column  (a tech-
nique introduced in chapter 7):

In  [52] group = disney.groupby("Day of Week")

We can invoke the GroupBy object’s mean method to calculate the average of values
for each grouping:

In  [53] group.mean()

Out [53]

                  High        Low       Open      Close
Day of Week

Friday       23.767304  23.318898  23.552872  23.554498
Monday       23.377271  22.930606  23.161392  23.162543
Thursday     23.770234  23.288687  23.534561  23.540359
Tuesday      23.791234  23.335267  23.571755  23.562907
Wednesday    23.842743  23.355419  23.605618  23.609873

In three lines of code, we’ve calculated the average stock performance by day of week.
 Let’s come back to dt object methods. The complementary month_name method

returns a Series with the dates’ month names:

In  [54] disney["Date"].dt.month_name().head()

Out [54] 0    January
         1    January
         2    January
         3    January
         4    January
         Name: Date, dtype: object
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Some attributes on the dt object return Booleans. Suppose that we want to explore
Disney’s stock performance at the start of each quarter in its history. The four quarters
of a business year start on January 1, April 1, July 1, and October 1. The is_quar-
ter_start attribute returns a Boolean Series in which True denotes that the row’s
date fell on a quarter start day:

In  [55] disney["Date"].dt.is_quarter_start.tail()

Out [55] 14722    False
         14723    False
         14724    False
         14725     True
         14726    False
         Name: Date, dtype: bool

We can use the Boolean Series to extract the disney rows that fell at the beginning of
a quarter. The next example uses the familiar square-bracket syntax to pull out the rows:

In  [56] disney[disney["Date"].dt.is_quarter_start].head()

Out [56]

          Date      High       Low      Open     Close Day of Week

189 1962-10-01  0.064849  0.062355  0.063913  0.062355      Monday
314 1963-04-01  0.087989  0.086704  0.087025  0.086704      Monday
377 1963-07-01  0.096338  0.095053  0.096338  0.095696      Monday
441 1963-10-01  0.110467  0.107898  0.107898  0.110467     Tuesday
565 1964-04-01  0.116248  0.112394  0.112394  0.116248   Wednesday

We can use the is_quarter_end attribute to pull out dates that fell at the end of a
quarter:

In  [57] disney[disney["Date"].dt.is_quarter_end].head()

Out [57]

          Date      High       Low      Open     Close Day of Week

251 1962-12-31  0.074501  0.071290  0.074501  0.072253      Monday
440 1963-09-30  0.109825  0.105972  0.108541  0.107577      Monday
502 1963-12-31  0.101476  0.096980  0.097622  0.101476     Tuesday
564 1964-03-31  0.115605  0.112394  0.114963  0.112394     Tuesday
628 1964-06-30  0.101476  0.100191  0.101476  0.100834     Tuesday

The complementary is_month_start and is_month_end attributes confirm that a
date fell at the beginning or end of a month:

In  [58] disney[disney["Date"].dt.is_month_start].head()

Out [58]

          Date      High       Low      Open     Close Day of Week

22  1962-02-01  0.096338  0.093532  0.093532  0.094779    Thursday
41  1962-03-01  0.095714  0.093532  0.093532  0.095714    Thursday
83  1962-05-01  0.087296  0.085426  0.085738  0.086673     Tuesday
105 1962-06-01  0.079814  0.077943  0.079814  0.079814      Friday
147 1962-08-01  0.068590  0.068278  0.068590  0.068590   Wednesday
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In  [59] disney[disney["Date"].dt.is_month_end].head()

Out [59]

          Date      High       Low      Open     Close Day of Week

21  1962-01-31  0.093844  0.092908  0.093532  0.093532   Wednesday
40  1962-02-28  0.094779  0.093220  0.094155  0.093220   Wednesday
82  1962-04-30  0.087608  0.085738  0.087608  0.085738      Monday
104 1962-05-31  0.082308  0.079814  0.079814  0.079814    Thursday
146 1962-07-31  0.069214  0.068278  0.068278  0.068590     Tuesday

The is_year_start attribute returns True if a date falls at the start of a year. The
next example returns an empty DataFrame; the stock market is closed on New Year’s
Day, so no dates in the data set fit the criteria:

In  [60] disney[disney["Date"].dt.is_year_start].head()

Out [60]

          Date      High       Low      Open     Close Day of Week

The complementary is_year_end attribute returns True if a date falls at the end of
a year:

In  [61] disney[disney["Date"].dt.is_year_end].head()

Out [61]

           Date      High       Low      Open     Close Day of Week

251  1962-12-31  0.074501  0.071290  0.074501  0.072253      Monday
502  1963-12-31  0.101476  0.096980  0.097622  0.101476     Tuesday
755  1964-12-31  0.117853  0.116890  0.116890  0.116890    Thursday
1007 1965-12-31  0.154141  0.150929  0.153498  0.152214      Friday
1736 1968-12-31  0.439301  0.431594  0.434163  0.436732     Tuesday

Regardless of the attribute, the filtering process remains the same: create a Boolean
Series and then pass it inside square brackets after the DataFrame.

11.5 Adding and subtracting durations of time
We can add or subtract consistent durations of time with the DateOffset object. Its
constructor is available at the top level of pandas. The constructor accepts parameters
for years, months, days, and more. The next example models a time of three years,
four months, and three days:

In  [62] pd.DateOffset(years = 3, months = 4, days = 5)

Out [62] <DateOffset: days=5, months=4, years=3>

Here’s a reminder of the first five rows of the disney DataFrame:

In  [63] disney["Date"].head()

Out [63] 0   1962-01-02
         1   1962-01-03
         2   1962-01-04
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         3   1962-01-05
         4   1962-01-08
         Name: Date, dtype: datetime64[ns]

For the sake of example, let’s imagine that our recordkeeping system malfunctioned,
and the dates in the Date column are off by five days. We can add a consistent amount
of time to each date in a datetime Series with a plus sign (+) and a DateOffset
object. The plus sign means “move forward” or “into the future.” The next example
adds five days to each date in the Date column:

In  [64] (disney["Date"] + pd.DateOffset(days = 5)).head()

Out [64] 0   1962-01-07
         1   1962-01-08
         2   1962-01-09
         3   1962-01-10
         4   1962-01-13
         Name: Date, dtype: datetime64[ns]

When paired with a DateOffset, the minus sign (-) subtracts a duration from each
date in a datetime Series. The minus sign means “move backward” or “into the
past.” The next example moves each date back three days:

In  [65] (disney["Date"] - pd.DateOffset(days = 3)).head()

Out [65] 0   1961-12-30
         1   1961-12-31
         2   1962-01-01
         3   1962-01-02
         4   1962-01-05
         Name: Date, dtype: datetime64[ns]

Although the previous output does not show it, the Timestamp objects do store a time
internally. When we converted the Date column’s values to datetimes, pandas assumed
a time of midnight for each date. The next example adds an hours parameter to the
DateOffset constructor to add a consistent time to each datetime in Date. The
resulting Series displays the date and time:

In  [66] (disney["Date"] + pd.DateOffset(days = 10, hours = 6)).head()

Out [66] 0   1962-01-12 06:00:00
         1   1962-01-13 06:00:00
         2   1962-01-14 06:00:00
         3   1962-01-15 06:00:00
         4   1962-01-18 06:00:00
         Name: Date, dtype: datetime64[ns]

Pandas applies the same logic when subtracting a duration. The next example sub-
tracts one year, three months, ten days, six hours, and three minutes from each date:

In  [67] (
             disney["Date"]
             - pd.DateOffset(
                 years = 1, months = 3, days = 10, hours = 6, minutes = 3
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             )
         ).head()

Out [67] 0   1960-09-21 17:57:00
         1   1960-09-22 17:57:00
         2   1960-09-23 17:57:00
         3   1960-09-24 17:57:00
         4   1960-09-27 17:57:00
         Name: Date, dtype: datetime64[ns]

The DateOffset constructor supports additional keyword parameters for seconds,
microseconds, and nanoseconds. See the pandas documentation for more info.

11.6 Date offsets
The DateOffset object is optimal for adding or subtracting a consistent amount of
time to or from each date. Real-world analyses often demand a more dynamic calcula-
tion. Let’s say we want to round each date to the end of its current month. Each date
is a different number of days from the end of its month, so a consistent DateOffset
addition won’t suffice.

 Pandas ships with prebuilt offset objects for dynamic time-based calculations.
These objects are defined in offsets.py, a module within the library. In our code,
we have to prefix these offsets with their complete path: pd.offsets.

 One sample offset is MonthEnd, which rounds each date to the next month-end.
Here’s a refresher on the last five rows in the Date column:

In  [68] disney["Date"].tail()

Out [68] 14722   2020-06-26
         14723   2020-06-29
         14724   2020-06-30
         14725   2020-07-01
         14726   2020-07-02
         Name: Date, dtype: datetime64[ns]

We can apply the addition and subtraction syntax from section 11.5 to pandas’ offset
objects. The next example returns a new Series that rounds each datetime to the
month-end. The plus sign moves forward in time, so we move to the next month-end:

In  [69] (disney["Date"] + pd.offsets.MonthEnd()).tail()

Out [69] 14722   2020-06-30
         14723   2020-06-30
         14724   2020-07-31
         14725   2020-07-31
         14726   2020-07-31
         Name: Date, dtype: datetime64[ns]

There has to be some movement in the intended direction. Pandas cannot round a
date to the same date. Thus, if a date falls at the end of a month, the library rounds it
to the end of the following month. Pandas rounds 2020-06-30 at index position 14724
to 2020-07-31, the next available month-end.
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 The minus sign moves each date backward in time. The next example uses the
MonthEnd offset to round the dates to the previous month-end. Pandas rounds the
first three dates (2020-06-26, 2020-06-29, and 2020-06-30) to 2020-05-31, the last day in
May. It rounds the final two dates (2020-07-01 and 2020-07-02) to 2020-06-30, the last
day in June:

In  [70] (disney["Date"] - pd.offsets.MonthEnd()).tail()

Out [70] 14722   2020-05-31
         14723   2020-05-31
         14724   2020-05-31
         14725   2020-06-30
         14726   2020-06-30
         Name: Date, dtype: datetime64[ns]

The complementary MonthBegin offset rounds to the first date of a month. The next
example uses a + sign to round each date to the next month’s beginning. Pandas
rounds the first three dates (2020-06-26, 2020-06-29, and 2020-06-30) to 2020-07-01,
the beginning of July. Pandas rounds the two remaining July dates (2020-07-01 and
2020-07-02) to 2020-08-01, the first day of August:

In  [71] (disney["Date"] + pd.offsets.MonthBegin()).tail()

Out [71] 14722   2020-07-01
         14723   2020-07-01
         14724   2020-07-01
         14725   2020-08-01
         14726   2020-08-01
         Name: Date, dtype: datetime64[ns]

We can pair the MonthBegin offset with the minus sign to round dates backward to
the beginning of a month. In the next example, pandas rounds the first three dates
(2020-06-26, 2020-06-29, and 2020-06-30) to the start of June, 2020-06-01. It rounds the
last date, 2020-07-02, to the beginning of July, 2020-07-01. The curious case is 2020-07-
01 at index position 14725. As we mentioned earlier, pandas cannot round a date to
the same date. There has to be some movement backward, so pandas rounds to the
previous month’s start, 2020-06-01:

In  [72] (disney["Date"] - pd.offsets.MonthBegin()).tail()

Out [72] 14722   2020-06-01
         14723   2020-06-01
         14724   2020-06-01
         14725   2020-06-01
         14726   2020-07-01
         Name: Date, dtype: datetime64[ns]

A special group of offsets is available for business time calculations; their names begin
with a capital "B". The Business Month End (BMonthEnd) offset, for example, rounds
to the month’s last business day. The five business days are Monday, Tuesday, Wednes-
day, Thursday, and Friday.
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 Consider the following Series of three datetimes. The three dates fall on Thurs-
day, Friday, and Saturday, respectively:

In  [73] may_dates = ["2020-05-28", "2020-05-29", "2020-05-30"]
         end_of_may = pd.Series(pd.to_datetime(may_dates))
         end_of_may

Out [73] 0   2020-05-28
         1   2020-05-29
         2   2020-05-30
         dtype: datetime64[ns]

Let’s compare the MonthEnd and BMonthEnd offsets. When we pair the MonthEnd
offset with a plus sign, pandas rounds all three dates to the last day of May, 2020-05-31.
Whether that date falls on a business day or the weekend is irrelevant:

In  [74] end_of_may + pd.offsets.MonthEnd()

Out [74] 0   2020-05-31
         1   2020-05-31
         2   2020-05-31
         dtype: datetime64[ns]

The BMonthEnd offset returns a different set of results. The last business day of May
2020 is Friday, May 29. Pandas rounds the first date in the Series, 2020-05-28, to the
29th. The next date, 2020-05-29, falls on the month’s last business date. Pandas cannot
round a date to the same date, so it rounds 2020-05-29 to June’s last business day,
2020-06-30, a Tuesday. The last date in the Series, 2020-05-30, is a Saturday. No busi-
ness days are left in May, so pandas similarly rounds the date to June’s last business
day, 2020-06-30:

In  [75] end_of_may + pd.offsets.BMonthEnd()

Out [75] 0   2020-05-29
         1   2020-06-30
         2   2020-06-30
         dtype: datetime64[ns]

The pd.offsets module includes additional offsets for rounding to the starts and
ends of quarters, business quarters, years, business years, and more. Feel free to
explore them in your free time.

11.7 The Timedelta object
You may recall Python’s native timedelta object from earlier in the chapter. A time-
delta models duration—the distance between two times. A duration such as one
hour represents a length of time; it does not have a specific date or time attached.
Pandas models a duration with its own Timedelta object.

NOTE It’s easy to confuse the two objects. timedelta is built into Python,
whereas Timedelta is built into pandas. The two are interchangeable when
used with pandas operations.
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The Timedelta constructor is available at the top level of pandas. It accepts keyword
parameters for units of time such as days, hours, minutes, and seconds. The next
example instantiates a Timedelta modeling eight days, seven hours, six minutes, and
five seconds:

In  [76] duration = pd.Timedelta(
            days = 8,
            hours = 7,
            minutes = 6,
            seconds = 5
        )

         duration

Out [76] Timedelta('8 days 07:06:05')

The to_timedelta function at the top level of pandas converts its argument to a
Timedelta object. We can pass in a string, as in the next example:

In  [77] duration = pd.to_timedelta("3 hours, 5 minutes, 12 seconds")

Out [77] Timedelta('0 days 03:05:12')

We can also pass an integer to the to_timedelta function along with a unit param-
eter. The unit parameter declares the unit of time that the number represents.
Accepted arguments include "hour", "day", and "minute". The next example’s
Timedelta models a five-hour duration:

In  [78] pd.to_timedelta(5, unit = "hour")

Out [78] Timedelta('0 days 05:00:00')

We can pass an iterable object such as a list to the to_timedelta function to convert
its values to Timedeltas. Pandas will store the Timedeltas in a TimedeltaIndex, a
pandas index for storing durations:

In  [79] pd.to_timedelta([5, 10, 15], unit = "day")

Out [79] TimedeltaIndex(['5 days', '10 days', '15 days'],
         dtype='timedelta64[ns]', freq=None)

Usually, Timedelta objects are derived rather than created from scratch. The
subtraction of one Timestamp from another, for example, returns a Timedelta
automatically:

In  [80] pd.Timestamp("1999-02-05") - pd.Timestamp("1998-05-24")

Out [80] Timedelta('257 days 00:00:00')

Now that we’ve gotten acquainted with Timedeltas, let’s import our second data set
for the chapter: deliveries.csv. The CSV tracks product shipments for a fictional com-
pany. Each row includes an order date and a delivery date:
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In  [81] deliveries = pd.read_csv("deliveries.csv")
         deliveries.head()

Out [81]

  order_date delivery_date

0    5/24/98        2/5/99
1    4/22/92        3/6/98
2    2/10/91       8/26/92
3    7/21/92      11/20/97
4     9/2/93       6/10/98

Let’s practice converting the values in the two columns to datetimes. Yes, we can use
the parse_dates parameter, but let’s try another approach. One option is invoking
the to_datetime function twice, once for the order_date column and once for the
delivery_date column, and overwriting the existing DataFrame columns:

In  [82] deliveries["order_date"] = pd.to_datetime(
             deliveries["order_date"]
         )

         deliveries["delivery_date"] = pd.to_datetime(
             deliveries["delivery_date"]
         )

A more scalable solution is to iterate over the column names with a for loop. We can
reference a deliveries column dynamically, use to_datetime to create a Datetime-
Index of Timestamps from it, and then overwrite the original column:

In  [83] for column in ["order_date", "delivery_date"]:
             deliveries[column] = pd.to_datetime(deliveries[column])

Let’s take a look at deliveries. The new column format confirms that we’ve converted
the strings to datetimes:

In  [84] deliveries.head()

Out [84]

  order_date delivery_date

0 1998-05-24    1999-02-05
1 1992-04-22    1998-03-06
2 1991-02-10    1992-08-26
3 1992-07-21    1997-11-20
4 1993-09-02    1998-06-10

Let’s calculate the duration of each shipment. With pandas, this calculation is as sim-
ple as subtracting the order_date column from the delivery_date column:

In  [85] (deliveries["delivery_date"] - deliveries["order_date"]).head()

Out [85] 0    257 days
         1   2144 days
         2    563 days



280 CHAPTER 11 Working with dates and times
         3   1948 days
         4   1742 days
         dtype: timedelta64[ns]

Pandas returns a Series of timedeltas. Let’s attach the new Series to the end of
the deliveries DataFrame:

In  [86] deliveries["duration"] = (
             deliveries["delivery_date"] - deliveries["order_date"]
         )
         deliveries.head()

Out [86]

  order_date delivery_date  duration

0 1998-05-24    1999-02-05  257 days
1 1992-04-22    1998-03-06 2144 days
2 1991-02-10    1992-08-26  563 days
3 1992-07-21    1997-11-20 1948 days
4 1993-09-02    1998-06-10 1742 days

Now we have two Timestamp columns and one Timedelta column:

In  [87] deliveries.dtypes

Out [87] order_date        datetime64[ns]
         delivery_date     datetime64[ns]
         duration         timedelta64[ns]
         dtype: object

We can add or subtract Timedeltas from Timestamp objects. The next example sub-
tracts each row’s duration from the delivery_date column. Predictably, the values in
the new Series are identical to the values in the order_date column:

In  [88] (deliveries["delivery_date"] - deliveries["duration"]).head()

Out [88] 0   1998-05-24
         1   1992-04-22
         2   1991-02-10
         3   1992-07-21
         4   1993-09-02
         dtype: datetime64[ns]

A plus symbol adds a Timedelta to a Timestamp. Let’s say we wanted to find the date
of delivery if each package took twice as long to arrive. We can add the Timedelta
values in the duration column to the Timestamp values in the delivery_date column:

In  [89] (deliveries["delivery_date"] + deliveries["duration"]).head()

Out [89] 0   1999-10-20
         1   2004-01-18
         2   1994-03-12
         3   2003-03-22
         4   2003-03-18
         dtype: datetime64[ns]
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The sort_values method works with Timedelta Series. The next example sorts
the duration column in ascending order, from the shortest delivery to the longest one:

In  [90] deliveries.sort_values("duration")

Out [90]

    order_date delivery_date  duration

454 1990-05-24    1990-06-01    8 days
294 1994-08-11    1994-08-20    9 days
10  1998-05-10    1998-05-19    9 days
499 1993-06-03    1993-06-13   10 days
143 1997-09-20    1997-10-06   16 days
  …          …             …         …
152 1990-09-18    1999-12-19 3379 days
62  1990-04-02    1999-08-16 3423 days
458 1990-02-13    1999-11-15 3562 days
145 1990-03-07    1999-12-25 3580 days
448 1990-01-20    1999-11-12 3583 days

501 rows × 3 columns

Mathematical methods are also available on Timedelta Series. The next few exam-
ples highlight three methods we’ve used throughout the book: max for the largest
value, min for the smallest value, and mean for the average:

In  [91] deliveries["duration"].max()

Out [91] Timedelta('3583 days 00:00:00')

In  [92] deliveries["duration"].min()

Out [92] Timedelta('8 days 00:00:00')

In  [93] deliveries["duration"].mean()

Out [93] Timedelta('1217 days 22:53:53.532934')

Here’s the next challenge. Let’s filter the DataFrame for packages that took more
than a year to deliver. We can use the greater-than symbol (>) to compare each dura-
tion column value to a fixed duration. We can specify the length of time as a Time-
delta or as a string. The next example uses "365 days":

In  [94] # The two lines below are equivalent
         (deliveries["duration"] > pd.Timedelta(days = 365)).head()
         (deliveries["duration"] > "365 days").head()

Out [94] 0      False
         1       True
         2       True
         3       True
         4       True
         Name: Delivery Time, dtype: bool
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Let’s use the Boolean Series to filter for the deliveries rows with a delivery time
greater than 365 days:

In  [95] deliveries[deliveries["duration"] > "365 days"].head()

Out [95]

  order_date delivery_date  duration

1 1992-04-22    1998-03-06 2144 days
2 1991-02-10    1992-08-26  563 days
3 1992-07-21    1997-11-20 1948 days
4 1993-09-02    1998-06-10 1742 days
6 1990-01-25    1994-10-02 1711 days

We can get as granular as needed with the comparison duration. The next example
includes the days, hours, and minutes in the string, separating the units of time with
commas:

In  [96] long_time = (
             deliveries["duration"] > "2000 days, 8 hours, 4 minutes"
         )

         deliveries[long_time].head()

Out [96]

   order_date delivery_date  duration

1  1992-04-22    1998-03-06 2144 days
7  1992-02-23    1998-12-30 2502 days
11 1992-10-17    1998-10-06 2180 days
12 1992-05-30    1999-08-15 2633 days
15 1990-01-20    1998-07-24 3107 days

As a reminder, Pandas can sort Timedelta columns. To discover the longest or short-
est durations, we can invoke the sort_values method on the duration Series.

11.8 Coding challenge
Here’s your chance to practice the concepts introduced in this chapter.

11.8.1 Problems

Citi Bike NYC is New York City’s official bike-sharing program. Residents and tourists
can pick up and drop off bicycles at hundreds of locations around the city. Ride data is
publicly available and released monthly by the city at https://www.citibikenyc.com/
system-data. citibike.csv is a collection of ~1.9 million rides that cyclists took in June
2020. For simplicity’s sake, the data set has been modified from its original version
and includes only two columns: each ride’s start time and end time. Let’s import the
data set and assign it to a citi_bike variable:

In  [97] citi_bike = pd.read_csv("citibike.csv")
         citi_bike.head()

Out [97]

https://www.citibikenyc.com/system-data
https://www.citibikenyc.com/system-data
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                 start_time                 stop_time

0  2020-06-01 00:00:03.3720  2020-06-01 00:17:46.2080
1  2020-06-01 00:00:03.5530  2020-06-01 01:03:33.9360
2  2020-06-01 00:00:09.6140  2020-06-01 00:17:06.8330
3  2020-06-01 00:00:12.1780  2020-06-01 00:03:58.8640
4  2020-06-01 00:00:21.2550  2020-06-01 00:24:18.9650

The datetime entries in the start_time and stop_time columns include the year,
month, day, hour, minute, second, and microsecond. (A microsecond is a unit of time
equal to one millionth of a second.)

 We can use the info method to print a summary that includes the DataFrame’s
length, the columns’ data types, and the memory use. Notice that pandas has
imported the two columns’ values as strings:

In  [98] citi_bike.info()

Out [98]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1882273 entries, 0 to 1882272
Data columns (total 2 columns):
 #   Column      Dtype
---  ------      -----
 0   start_time  object
 1   stop_time   object
dtypes: object(2)
memory usage: 28.7+ MB

Here are the challenges for this section:

1 Convert the start_time and stop_time columns to store datetime (Timestamp)
values instead of strings.

2 Count the rides that occurred on each day of the week (Monday, Tuesday, and
so on). Which weekday is the most popular for a bike ride? Use the start_time
column as your starting point.

3 Count the rides per week for each week within the month. To do so, round
each date in the start_time column to its previous or current Monday. Assume
that each week starts on a Monday and ends on a Sunday. Thus, the first week of
June would be Monday, June 1 through Sunday, June 7.

4 Calculate the duration of each ride, and save the results to a new duration
column.

5 Find the average duration of a bike ride.
6 Extract the five longest bike rides by duration from the data set.

11.8.2 Solutions

Let’s tackle the problems one by one:

1 The to_datetime conversion function at the top level of pandas works well to
convert the start_time and end_time columns’ values to Timestamps. The next
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code sample iterates over a list of the column names with a for loop, passes
each column into the to_datetime function, and overwrites the existing
string column with the new datetime Series:

In  [99] for column in ["start_time", "stop_time"]:
             citi_bike[column] = pd.to_datetime(citi_bike[column])

Let’s invoke the info method again to confirm that the two columns store date-
time values:

In  [100] citi_bike.info()

Out [100]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1882273 entries, 0 to 1882272
Data columns (total 2 columns):
 #   Column      Dtype
---  ------      -----
 0   start_time  datetime64[ns]
 1   stop_time   datetime64[ns]
dtypes: datetime64[ns](2)
memory usage: 28.7 MB

2 We’ll have to take two steps to count the number of bike rides per weekday.
First, we extract the weekday from each datetime in the start_time column; then
we count the weekdays’ occurrences. The dt.day_name method returns a
Series with the weekday names for each date:

In  [101] citi_bike["start_time"].dt.day_name().head()

Out [101] 0    Monday
          1    Monday
          2    Monday
          3    Monday
          4    Monday
          Name: start_time, dtype: object

Then we can invoke the trusty value_counts method on the returned Series
to count the weekdays. In June 2020, Tuesday was the most popular day for a
bike ride:

In  [102] citi_bike["start_time"].dt.day_name().value_counts()

Out [102] Tuesday      305833
          Sunday       301482
          Monday       292690
          Saturday     285966
          Friday       258479
          Wednesday    222647
          Thursday     215176
          Name: start_time, dtype: int64
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3 The next challenge requires us to group each date into its corresponding week
bucket. We can do so by rounding the date to its previous or current Monday.
Here’s a clever solution: we can use the dayofweek attribute to return a
Series of numbers. 0 denotes Monday, 1 denotes Tuesday, 6 denotes Sunday,
and so on:

In  [103] citi_bike["start_time"].dt.dayofweek.head()

Out [103] 0    0
          1    0
          2    0
          3    0
          4    0
             Name: start_time, dtype: int64

The weekday number also represents the distance in days from the closest Mon-
day. Monday, June 1, for example, has a dayofweek value of 0. The date is 0
days away from the closest Monday. Similarly, Tuesday, June 2, has a dayofweek
value of 1. The date is one day away from the closest Monday (June 1). Let’s
save this Series to a days_away_from_monday variable:

In  [104] days_away_from_monday = citi_bike["start_time"].dt.dayofweek

If we subtract a date’s dayofweek value from the date itself, we’ll effectively
round each date to its previous Monday. We can pass the dayofweek Series
into the to_timedelta function to convert it to a Series of durations. We’ll
pass a unit parameter set to "day" to tell pandas to treat the numeric values as
the number of days:

In  [105] citi_bike["start_time"] - pd.to_timedelta(
              days_away_from_monday, unit = "day"
          )

Out [105] 0         2020-06-01 00:00:03.372
          1         2020-06-01 00:00:03.553
          2         2020-06-01 00:00:09.614
          3         2020-06-01 00:00:12.178
          4         2020-06-01 00:00:21.255
                              ...
          1882268   2020-06-29 23:59:41.116
          1882269   2020-06-29 23:59:46.426
          1882270   2020-06-29 23:59:47.477
          1882271   2020-06-29 23:59:53.395
          1882272   2020-06-29 23:59:53.901
          Name: start_time, Length: 1882273, dtype: datetime64[ns]

Let’s save the new Series to a dates_rounded_to_monday variable:

In  [106] dates_rounded_to_monday = citi_bike[
              "start_time"
          ] - pd.to_timedelta(days_away_from_monday, unit = "day")
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We’re halfway there. We’ve rounded the dates to the correct Mondays, but the
value_counts method won’t work yet. The differences in times between the
dates will lead pandas to deem them unequal:

In  [107] dates_rounded_to_monday.value_counts().head()

Out [107] 2020-06-22 20:13:36.208    3
          2020-06-08 17:17:26.335    3
          2020-06-08 16:50:44.596    3
          2020-06-15 19:24:26.737    3
          2020-06-08 19:49:21.686    3
          Name: start_time, dtype: int64

Let’s use the dt.date attribute to return a Series with the dates from each
datetime:

In  [108] dates_rounded_to_monday.dt.date.head()

Out [108] 0    2020-06-01
          1    2020-06-01
          2    2020-06-01
          3    2020-06-01
          4    2020-06-01
          Name: start_time, dtype: object

Now that we’ve isolated the dates, we can invoke the value_counts method to
count each value’s occurrences. The week of Monday, June 15 to Sunday, June
21 saw the highest number of bike rides throughout the month:

In  [109] dates_rounded_to_monday.dt.date.value_counts()

Out [109] 2020-06-15    481211
          2020-06-08    471384
          2020-06-22    465412
          2020-06-01    337590
          2020-06-29    126676
          Name: start_time, dtype: int64

4 To calculate each ride’s duration, we can subtract the start_time column from
the stop_time column. Pandas will return a Series of Timedeltas. We’ll need
to save this Series for the next example, so let’s attach it to the DataFrame as
a new column called duration:

In  [110] citi_bike["duration"] = (
              citi_bike["stop_time"] - citi_bike["start_time"]
          )

          citi_bike.head()

Out [110]

               start_time               stop_time               duration

0 2020-06-01 00:00:03.372 2020-06-01 00:17:46.208 0 days 00:17:42.836000
1 2020-06-01 00:00:03.553 2020-06-01 01:03:33.936 0 days 01:03:30.383000
2 2020-06-01 00:00:09.614 2020-06-01 00:17:06.833 0 days 00:16:57.219000
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3 2020-06-01 00:00:12.178 2020-06-01 00:03:58.864 0 days 00:03:46.686000
4 2020-06-01 00:00:21.255 2020-06-01 00:24:18.965 0 days 00:23:57.710000

Note that the previous subtraction would raise an error if the columns were
storing strings; that’s why it’s imperative to convert them to datetimes first.

5 Next up, we have to find the average duration of all bike rides. This process is a
simple one: we can invoke the mean method on the new duration column for
the calculation. The average ride was 27 minutes and 19 seconds:

In  [111] citi_bike["duration"].mean()

Out [111] Timedelta('0 days 00:27:19.590506853')

6 The final question asks to identify the five longest bike rides in the data set.
One solution is to sort the duration column values in descending order with the
sort_values method and then use the head method to view the first five
rows. These sessions likely belonged to people who forgot to check their bikes
in after finishing their ride:

In  [112] citi_bike["duration"].sort_values(ascending = False).head()

Out [112] 50593    32 days 15:01:54.940000
          98339    31 days 01:47:20.632000
          52306    30 days 19:32:20.696000
          15171    30 days 04:26:48.424000
          149761   28 days 09:24:50.696000
          Name: duration, dtype: timedelta64[ns]

Another option is the nlargest method. We can invoke this method on either
the duration Series or the DataFrame as a whole. Let’s go with the latter
approach:

In  [113] citi_bike.nlargest(n = 5, columns = "duration")

Out [113]

                   start_time              stop_time               duration

50593  2020-06-01 21:30:17... 2020-07-04 12:32:12... 32 days 15:01:54.94...
98339  2020-06-02 19:41:39... 2020-07-03 21:29:00... 31 days 01:47:20.63...
52306  2020-06-01 22:17:10... 2020-07-02 17:49:31... 30 days 19:32:20.69...
15171  2020-06-01 13:01:41... 2020-07-01 17:28:30... 30 days 04:26:48.42...
149761 2020-06-04 14:36:53... 2020-07-03 00:01:44... 28 days 09:24:50.69...

There you have it: the five longest bike rides in the data set. Congratulations on com-
pleting the coding challenge!

Summary
 The pandas Timestamp object is a flexible, powerful replacement for Python’s

native datetime object.
 The dt accessor on a datetime Series reveals a DatetimeProperties object

with attributes and methods for extracting the day, month, weekday name, and
more.



288 CHAPTER 11 Working with dates and times
 The Timedelta object models a duration.
 Pandas creates a Timedelta object when we subtract two Timestamp objects

from each other.
 The offsets in the pd.offsets package dynamically round dates to the closest

week, month, quarter, and more. We can round forward with the plus sign and
backward with the minus sign.

 A DatetimeIndex is a container for Timestamp values. We can add it as an
index or column to a pandas data structure.

 The TimedeltaIndex is a container for Timedelta objects.
 The top-level to_datetime function converts an iterable of values to a Date-

timeIndex of Timestamps.



Imports and exports
Data sets come in a variety of file formats: comma-separated values (CSV), tab-sepa-
rated values (TSV), Excel workbooks (XLSX), and more. Some data formats do not
store data in tabular format; instead, they nest collections of related data inside a
key-value store. Consider the following two examples. Figure 12.1 stores data in a
table, and figure 12.2 stores the same data in a Python dictionary. 

This chapter covers
 Importing JSON data

 Flattening a nested collection of records

 Downloading a CSV from an online website

 Reading from and writing to Excel workbooks

Figure 12.1 A table 
of Oscar winners
289
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Python’s dictionary is an example of a key-value data structure:

{
    2000: [
        {
            "Award": "Best Actor",
            "Winner": "Russell Crowe"
        },
        {
            "Award": "Best Actress",
            "Winner": "Julia Roberts"
        }
    ],
    2001: [
        {
            "Award": "Best Actor",
            "Winner": "Denzel Washington"
        },
        {
            "Award": "Best Actress",
            "Winner": "Halle Berry"
        }
    ]
}

Figure 12.2 A Python dictionary (key-value store) with the same data

Pandas ships with utility functions to manipulate key-value data into tabular data and
vice versa. When we have the data in a DataFrame, we can apply all our favorite tech-
niques to it. But contorting the data into the right shape often proves to be the most
challenging part of an analysis. In this chapter, we’ll learn how to resolve common
problems in data imports. We’ll also explore the other side of the equation: exporting
DataFrames to various file types and data structures.

12.1 Reading from and writing to JSON files
Let’s kick things off by talking about JSON, perhaps the most popular key-value stor-
age format available today. JavaScript Object Notation (JSON) is a format for storing and
transferring text data. Although the JavaScript programming language inspires its syn-
tax, JSON itself is language-independent. Most languages today, including Python, can
generate and parse JSON.

 A JSON response consists of key-value pairs, in which a key serves as a unique iden-
tifier for a value. The colon symbol ( : ) connects a key to a value:

"name":"Harry Potter"

Keys must be strings. Values can be of any data type, including strings, numbers, and
Booleans. JSON is similar to Python’s dictionary object.
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 JSON is a popular response format for many modern application programming
interfaces (APIs), such as website servers. A raw JSON response from an API looks like
a plain string. Here’s what a response might look like:

{"name":"Harry Potter","age":17,"wizard":true}

Software programs called linters format JSON responses by placing each key-value pair
on a separate line. One popular example is JSONLint (https://jsonlint.com). Run-
ning the previous JSON through JSONLint produces the following output:

{
    "name": "Harry Potter",
    "age": 17,
    "wizard": true,
}

There is no technical difference between the two preceding code samples, but the lat-
ter is more readable.

 The JSON response holds three key-value pairs:

 The "name" key has a string value of "Harry Potter".
 The "age" key has an integer value of 17.
 The "wizard" key has a Boolean value of true. In JSON, Booleans are spelled

in lowercase. The concept is identical to a Python Boolean.

A key can also point to an array, an ordered collection of elements equivalent to a
Python list. The "friends" key in the next JSON example maps to an array of two
strings:

{
    "name": "Harry Potter",
    age": 17,
    "wizard": true,
    "friends": ["Ron Weasley", "Hermione Granger"],
}

JSON can store additional key-value pairs within nested objects, such as "address" in
the following example. In Pythonic terms, we can think of "address" as a dictionary
nested within another dictionary:

{
    "name": "Harry Potter",
    "age": 17,
    "wizard": true,    
    "friends": ["Ron Weasley", "Hermione Granger"],
    "address": {
        "street": "4 Privet Drive",
        "town": "Little Whinging"
    }
}

Nested stores of key-value pairs help simplify the data by grouping related fields.

https://jsonlint.com/
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12.1.1 Loading a JSON file Into a DataFrame

Let’s create a new Jupyter Notebook and import the pandas library. Make sure to cre-
ate the Notebook in the same directory as this chapter’s data files:

In  [1] import pandas as pd

JSON can be stored in a plain-text file with a .json extension. This chapter’s prizes.json
file is a saved JSON response from the Nobel Prize API. The API stores Nobel Prize
laureates dating back to 1901. You can view the raw JSON response in your web
browser by navigating to http://api.nobelprize.org/v1/prize.json. Here’s a preview of
the JSON shape:

{
  "prizes": [
    {
      "year": "2019",
      "category": "chemistry",
      "laureates": [
        {
          "id": "976",
          "firstname": "John",
          "surname": "Goodenough",
          "motivation": "\"for the development of lithium-ion batteries\"",
          "share": "3"
        },
        {
          "id": "977",
          "firstname": "M. Stanley",
          "surname": "Whittingham",
          "motivation": "\"for the development of lithium-ion batteries\"",
          "share": "3"
        },
        {
          "id": "978",
          "firstname": "Akira",
          "surname": "Yoshino",
          "motivation": "\"for the development of lithium-ion batteries\"",
          "share": "3"
        }
      ]
    },

The JSON consists of a top-level prizes key that maps to an array of dictionaries, one
for each combination of year and category ("chemistry", "physics", "litera-
ture", and so on). The "year" and "category" keys are present for all winners,
whereas the "laureates" and "overallMotivation" keys are present for only
some. Here’s a sample dictionary with an "overallMotivation" key:

{
    year: "1972",
    category: "peace",
    overallMotivation: "No Nobel Prize was awarded this year. The prize
    money for 1972 was allocated to the Main Fund."
}

http://api.nobelprize.org/v1/prize.json
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The "laureates" key connects to an array of dictionaries, each with its own "id",
"firstname", "surname", "motivation", and "share" keys. The "laureates"
key stores an array to accommodate years in which multiple people were awarded a
Nobel Prize in the same category. The "laureates" key uses a list even if a year had
only one winner. Here is an example:

{
    year: "2019",
    category: "literature",
    laureates: [
        {
             id: "980",
             firstname: "Peter",
             surname: "Handke",
             motivation: "for an influential work that with linguistic
             ingenuity has explored the periphery and the specificity of
             human experience",
             share: "1"
        }
    ]
},

Import functions in pandas have a consistent naming scheme; each one consists of a
read prefix followed by a file type. We’ve used the read_csv function many times
throughout the book, for example. To import a JSON file, we’ll use the complemen-
tary read_json function. Its first argument is the file path. The next example passes
the nobel.json file. Pandas returns a one-column DataFrame with a prizes column:

In  [2] nobel = pd.read_json("nobel.json")
        nobel.head()

Out [2]

                                                                  prizes

0  {'year': '2019', 'category': 'chemistry', 'laureates': [{'id': '97...
1  {'year': '2019', 'category': 'economics', 'laureates': [{'id': '98...
2  {'year': '2019', 'category': 'literature', 'laureates': [{'id': '9...
3  {'year': '2019', 'category': 'peace', 'laureates': [{'id': '981', ...
4  {'year': '2019', 'category': 'physics', 'overallMotivation': '"for...

We’ve successfully imported the file into pandas, but unfortunately, not in a format
that’s ideal for analysis. Pandas set the JSON’s top-level prizes key as the column
name and created a Python dictionary for each key-value pair it parsed from the
JSON. Here’s a sample row value:

In  [3] nobel.loc[2, "prizes"]

Out [3] {'year': '2019',
         'category': 'literature',
         'laureates': [{'id': '980',
           'firstname': 'Peter',
           'surname': 'Handke',
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           'motivation': '"for an influential work that with linguistic
             ingenuity has explored the periphery and the specificity of
             human experience"',
           'share': '1'}]}

The next example passes the row value into Python’s built-in type function. We
indeed have a Series of dictionaries:

In  [4] type(nobel.loc[2, "prizes"])

Out [4] dict

Our goal is to convert the data to tabular format. To do so, we’ll need to extract the
JSON’s top-level key-value pairs (year, category) to separate DataFrame columns.
We’ll also need to iterate over each dictionary in the "laureates" list and extract its
nested information. Our goal is a separate row for each Nobel laureate, connected to
their year and category. The DataFrame we’re aiming for looks like this:

    id   firstname      surname           motivation share  year   category

0  976        John   Goodenough  "for the develop...     3  2019  chemistry
1  977  M. Stanley  Whittingham  "for the develop...     3  2019  chemistry
2  978       Akira      Yoshino  "for the develop...     3  2019  chemistry

The process of moving nested records of data into a single, one-dimensional list is
called flattening or normalizing. The pandas library includes a built-in json_normalize
function to take care of the heavy lifting. Let’s try it on a small example: a sample dic-
tionary from the nobel DataFrame. We’ll use the loc accessor to access the first row’s
dictionary and assign it to a chemistry_2019 variable:

In  [5] chemistry_2019 = nobel.loc[0, "prizes"]
        chemistry_2019

Out [5] {'year': '2019',
         'category': 'chemistry',
         'laureates': [{'id': '976',
           'firstname': 'John',
           'surname': 'Goodenough',
           'motivation': '"for the development of lithium-ion batteries"',
           'share': '3'},
          {'id': '977',
           'firstname': 'M. Stanley',
           'surname': 'Whittingham',
           'motivation': '"for the development of lithium-ion batteries"',
           'share': '3'},
          {'id': '978',
           'firstname': 'Akira',
           'surname': 'Yoshino',
           'motivation': '"for the development of lithium-ion batteries"',
           'share': '3'}]}

Let’s pass the chemistry_2019 dictionary to the json_normalize function’s data
parameter. The good news is that pandas extracts the three top-level dictionary keys
("year", "category", and "laureates") to separate columns in a new
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DataFrame. Unfortunately, the library still keeps the nested dictionaries from the
"laureates" list. Ultimately, we’d like to store the data in separate columns.

In  [6] pd.json_normalize(data = chemistry_2019)

Out [6]

   year   category                                          laureates

0  2019  chemistry  [{'id': '976', 'firstname': 'John', 'surname':...

We can use the json_normalize function’s record_path parameter to normalize
the nested "laureates" records. We pass the parameter a string denoting which key
in the dictionary holds the nested records. Let’s pass it "laureates":

In  [7] pd.json_normalize(data = chemistry_2019, record_path = "laureates")

Out [7]

    id   firstname      surname                     motivation share

0  976        John   Goodenough  "for the development of li...     3
1  977  M. Stanley  Whittingham  "for the development of li...     3
2  978       Akira      Yoshino  "for the development of li...     3

One step forward, one step back. Pandas expanded the nested "laureates" dictio-
naries into new columns, but now we’ve lost the original year and category columns.
To preserve these top-level key-value pairs, we can pass a list with their names to a
parameter called meta:

In  [8] pd.json_normalize(
            data = chemistry_2019,
            record_path = "laureates",
            meta = ["year", "category"],
        )

Out [8]

    id   firstname      surname           motivation share  year   category

0  976        John   Goodenough  "for the develop...     3  2019  chemistry
1  977  M. Stanley  Whittingham  "for the develop...     3  2019  chemistry
2  978       Akira      Yoshino  "for the develop...     3  2019  chemistry

That’s exactly the DataFrame we want. Our normalization strategy has worked suc-
cessfully on a single dictionary from the prizes column. Luckily, the json_normalize
function is smart enough to accept a Series of dictionaries and repeat the extraction
logic for each entry. Let’s see what happens when we pass it the prizes Series:

In  [9] pd.json_normalize(
            data = nobel["prizes"],
            record_path = "laureates",
            meta = ["year", "category"]
        )

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-49-e09a24c19e5b> in <module>
      2     data = nobel["prizes"],
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      3     record_path = "laureates",
----> 4     meta = ["year", "category"]
      5 )

KeyError: 'laureates'

Unfortunately, Pandas raises a KeyError exception. Some dictionaries in the prizes
Series do not have a "laureates" key. The json_normalize function is unable to
extract nested laureates information from a nonexistent list. One way we can solve this
problem is to identify the dictionaries that lack a "laureates" key and manually
assign them the key. In those situations, we can provide the "laureates" key a value
of an empty list.

 Let’s take a second to review the setdefault method on a Python dictionary.
Consider this dictionary:

In  [10] cheese_consumption = {
             "France": 57.9,
             "Germany": 53.2,
             "Luxembourg": 53.2
         }

The setdefault method assigns a key-value pair to a dictionary, but only if the dic-
tionary does not have the key. If the key exists, the method returns its existing value.
The method’s first argument is the key, and its second argument is the value.

 The following example attempts to add the key "France" to the cheese_con-
sumption dictionary with a value of 100. The key exists, so nothing changes. Python
keeps the original value of 57.9:

In  [11] cheese_consumption.setdefault("France", 100)

Out [11] 57.9

In  [12] cheese_consumption["France"]

Out [12] 57.9

By comparison, the next example invokes setdefault with an argument of
"Italy". The key "Italy" does not exist in the dictionary, so Python adds it and
assigns it a value of 48:

In  [13] cheese_consumption.setdefault("Italy", 48)

Out [13] 48

In  [14] cheese_consumption

Out [14] {'France': 57.9, 'Germany': 53.2, 'Luxembourg': 53.2, 'Italy': 48}

Let’s apply this technique to each nested dictionary within prizes. If a dictionary does
not have a laureates key, we’ll use the setdefault method to add the key with a
value of an empty list. As a reminder, we can use the apply method to iterate individ-
ually over each Series element. This method, introduced in chapter 3, accepts a
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function as an argument and passes each Series row to the function in sequence.
The next example defines an add_laureates_key function to update a single dic-
tionary and then passes the function to the apply method as an argument:

In  [15] def add_laureates_key(entry):
             entry.setdefault("laureates", [])

         nobel["prizes"].apply(add_laureates_key)

Out [15] 0      [{'id': '976', 'firstname': 'John', 'surname':...
         1      [{'id': '982', 'firstname': 'Abhijit', 'surnam...
         2      [{'id': '980', 'firstname': 'Peter', 'surname'...
         3      [{'id': '981', 'firstname': 'Abiy', 'surname':...
         4      [{'id': '973', 'firstname': 'James', 'surname'...
                                      ...
         641    [{'id': '160', 'firstname': 'Jacobus H.', 'sur...
         642    [{'id': '569', 'firstname': 'Sully', 'surname'...
         643    [{'id': '462', 'firstname': 'Henry', 'surname'...
         644    [{'id': '1', 'firstname': 'Wilhelm Conrad', 's...
         645    [{'id': '293', 'firstname': 'Emil', 'surname':...
         Name: prizes, Length: 646, dtype: object

The setdefault method mutates the dictionaries within prizes, so there is no need
to overwrite the original Series.

 Now that all nested dictionaries have a laureates key, we can reinvoke the
json_normalize function. Once again, we’ll pass a list to the meta parameter with
the two top-level dictionary keys we’d like to keep. We’ll also use record_path to
specify the top-level attribute with a nested list of records:

In  [16] winners = pd.json_normalize(
             data = nobel["prizes"],
             record_path = "laureates",
             meta = ["year", "category"]
         )

         winners

Out [16]

      id     firstname      surname      motivation share  year    category

0    976          John   Goodenough  "for the de...     3  2019   chemistry
1    977    M. Stanley  Whittingham  "for the de...     3  2019   chemistry
2    978         Akira      Yoshino  "for the de...     3  2019   chemistry
3    982       Abhijit     Banerjee  "for their ...     3  2019   economics
4    983        Esther        Duflo  "for their ...     3  2019   economics
  …    …             …            …               …     …     …           …
945  569         Sully    Prudhomme  "in special...     1  1901  literature
946  462         Henry       Dunant  "for his hu...     2  1901       peace
947  463      Frédéric        Passy  "for his li...     2  1901       peace
948    1  Wilhelm Con…      Röntgen  "in recogni...     1  1901     physics
949  293          Emil  von Behring  "for his wo...     1  1901    medicine

950 rows × 7 columns
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Success! We’ve normalized the JSON data, converted it to tabular format, and stored it
in a two-dimensional DataFrame.

12.1.2 Exporting a DataFrame to a JSON file

Now let’s attempt the process in reverse: converting a DataFrame to a JSON represen-
tation and writing it to a JSON file. The to_json method creates a JSON string from
a pandas data structure; its orient parameter customizes the format in which pandas
returns the data. The next example uses an argument of "records" to return a JSON
array of key-value objects. Pandas stores the column names as dictionary keys that
point to the row’s respective values. Here’s an example with the first two rows of win-
ners, the DataFrame we created in section 12.1.1:

In  [17] winners.head(2)

Out [17]

    id   firstname      surname           motivation share  year   category

0  976        John   Goodenough  "for the develop...     3  2019  chemistry
1  977  M. Stanley  Whittingham  "for the develop...     3  2019  chemistry

In  [18] winners.head(2).to_json(orient = "records")

Out [18]
  

'[{"id":"976","firstname":"John","surname":"Goodenough","motivation":"\\
"for the development of lithium-ion 
batteries\\"","share":"3","year":"2019","category":"chemistry"},{"id":"9
77","firstname":"M. 
Stanley","surname":"Whittingham","motivation":"\\"for the development of 
lithium-ion 
batteries\\"","share":"3","year":"2019","category":"chemistry"}]'

By comparison, we can pass an argument of "split" to return a dictionary with sepa-
rate columns, index, and data keys. This option prevents the duplication of column
names for each row entry:

In  [19] winners.head(2).to_json(orient = "split")

Out [19]

'{"columns":["id","firstname","surname","motivation","share","year","category
"],"index":[0,1],"data":[["976","John","Goodenough","\\"for the 
development of lithium-ion 
batteries\\"","3","2019","chemistry"],["977","M. 
Stanley","Whittingham","\\"for the development of lithium-ion 
batteries\\"","3","2019","chemistry"]]}'

Additional arguments available for the orient parameter include "index", "col-
umns", "values", and "table".

 When the JSON format fits your expectations, pass the JSON file name as the first
argument to the to_json method. Pandas will write the string to a JSON file in the
same directory as the Jupyter Notebook:
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In  [20] winners.to_json("winners.json", orient = "records")

WARNING Be mindful when executing the same cell twice. If a win-
ners.json file exists in the directory, pandas will overwrite it when we exe-
cute the previous cell. The library will not warn us that it is replacing the file.
For this reason, I strongly recommend giving output files a different name
from input files.

12.2 Reading from and writing to CSV files
Our next data set is a collection of baby names in New York City. Each row includes the
name, birth year, gender, ethnicity, count, and popularity rank. The CSV file is hosted
on New York City’s government website and is available at http://mng.bz/MgzQ.

 We can access the website in our web browser and download the CSV file to our
computer for local storage. As an alternative, we can pass the URL as the first argu-
ment to the read_csv function. Pandas will automatically fetch the data set and
import it into a DataFrame. Hardcoded URLs are helpful when we have real-time
data that changes frequently because they save us the manual work of downloading
the data set each time we rerun our analysis:

In  [21] url = "https://data.cityofnewyork.us/api/views/25th-nujf/rows.csv"
         baby_names = pd.read_csv(url)
         baby_names.head()

Out [21]

   Year of Birth  Gender Ethnicity Child's First Name  Count  Rank

0           2011  FEMALE  HISPANIC          GERALDINE     13    75
1           2011  FEMALE  HISPANIC                GIA     21    67
2           2011  FEMALE  HISPANIC             GIANNA     49    42
3           2011  FEMALE  HISPANIC            GISELLE     38    51
4           2011  FEMALE  HISPANIC              GRACE     36    53

Note that pandas will raise an HTTPError exception if the link is invalid.
 Let’s try writing the baby_names DataFrame to a plain CSV file with the to_csv

method. Without an argument, the method outputs the CSV string directly in our
Jupyter Notebook. Following CSV conventions, pandas separates rows with line breaks
and row values with commas. As a reminder, a \n character marks a line break in
Python. Here’s a small preview of the method’s output for the first ten rows of
baby_names:

In  [22] baby_names.head(10).to_csv()

Out [22]

",Year of Birth,Gender,Ethnicity,Child's First 
Name,Count,Rank\n0,2011,FEMALE,HISPANIC,GERALDINE,13,75\n1,2011,FEMALE,H
ISPANIC,GIA,21,67\n2,2011,FEMALE,HISPANIC,GIANNA,49,42\n3,2011,FEMALE,HI
SPANIC,GISELLE,38,51\n4,2011,FEMALE,HISPANIC,GRACE,36,53\n5,2011,FEMALE,
HISPANIC,GUADALUPE,26,62\n6,2011,FEMALE,HISPANIC,HAILEY,126,8\n7,2011,FE
MALE,HISPANIC,HALEY,14,74\n8,2011,FEMALE,HISPANIC,HANNAH,17,71\n9,2011,F
EMALE,HISPANIC,HAYLEE,17,71\n"

http://mng.bz/MgzQ
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By default, pandas includes the DataFrame index in the CSV string. Notice the comma
at the beginning of the string and the numeric values (0, 1, 2, and so on) after each \n
symbol. Figure 12.3 highlights the commas in the output from the to_csv method.

Figure 12.3 The CSV output with arrows highlighting the index labels

We can exclude the index by passing the index parameter an argument of False:

In  [23] baby_names.head(10).to_csv(index = False)

Out [23]

"Year of Birth,Gender,Ethnicity,Child's First 
Name,Count,Rank\n2011,FEMALE,HISPANIC,GERALDINE,13,75\n2011,FEMALE,HISPA
NIC,GIA,21,67\n2011,FEMALE,HISPANIC,GIANNA,49,42\n2011,FEMALE,HISPANIC,G
ISELLE,38,51\n2011,FEMALE,HISPANIC,GRACE,36,53\n2011,FEMALE,HISPANIC,GUA
DALUPE,26,62\n2011,FEMALE,HISPANIC,HAILEY,126,8\n2011,FEMALE,HISPANIC,HA
LEY,14,74\n2011,FEMALE,HISPANIC,HANNAH,17,71\n2011,FEMALE,HISPANIC,HAYLE
E,17,71\n"

To write the string to a CSV file, we can pass the desired filename as the first argument
to the to_csv method. Make sure to include the .csv extension in the string. If we do
not provide a specific path, pandas will write the file to the same directory as the Jupy-
ter Notebook:

In  [24] baby_names.to_csv("NYC_Baby_Names.csv", index = False)

The method produces no output below the Notebook cell. If we flip back to the Jupy-
ter Notebook navigation interface, however, we see that pandas has created the CSV
file. Figure 12.4 shows the saved NYC_Baby_Names.csv file.

Figure 12.4 The NYC_Baby_Names.csv 
file saved to the same directory as the 
Jupyter Notebook
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By default, pandas writes all DataFrame columns to the CSV file. We can choose which
columns to export by passing a list of names to the columns parameter. The next exam-
ple creates a CSV with only the Gender, Child’s First Name, and Count columns:

In  [25] baby_names.to_csv(
             "NYC_Baby_Names.csv",
             index = False,
             columns = ["Gender", "Child's First Name", "Count"]
         )

Please note that if a NYC_Baby_Names.csv file exists in the directory, pandas will over-
write the existing file.

12.3 Reading from and writing to Excel workbooks
Excel is the most popular spreadsheet application in use today. Pandas makes it easy
to read from and write to Excel workbooks and even specific worksheets. But first,
we’ll need to do a little housekeeping to integrate the two pieces of software.

12.3.1 Installing the xlrd and openpyxl libraries in an Anaconda 
environment

Pandas needs the xlrd and openpyxl libraries to interact with Excel. These packages
are the glue that connects Python to Excel.

 Here’s a refresher on installing a package in an Anaconda environment. For a
more in-depth overview, see appendix A. If you’ve already installed these libraries in
your Anaconda environment, feel free to skip to section 12.3.2.

1 Launch the Terminal (macOS) or Anaconda Prompt (Windows) application.
2 Use the conda info --envs command to see your available Anaconda

environments:

$ conda info --envs

# conda environments:
#
base                  *  /opt/anaconda3
pandas_in_action         /opt/anaconda3/envs/pandas_in_action

3 Activate the Anaconda environment in which you’d like to install the libraries.
Appendix A shows how to create a pandas_in_action environment for this
book. If you chose a different environment name, replace pandas_in_action
with it in the following command:

$ conda activate pandas_in_action

4 Install the xlrd and openpyxl libraries with the conda install command:

(pandas_in_action) $ conda install xlrd openpyxl

5 When Anaconda lists the required package dependencies, enter "Y" and press
Enter to start the installation.
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6 When the installation completes, execute jupyter notebook to start the Jupy-
ter server again, and navigate back to the Jupyter Notebook for the chapter.

Don’t forget to execute the cell with the import pandas as pd command at
the top.

12.3.2 Importing Excel workbooks

The read_excel function at the top level of pandas imports an Excel workbook into
a DataFrame. Its first parameter, io, accepts a string with the workbook’s path. Make
sure to include the .xlsx extension in the filename. By default, pandas will import only
the first worksheet in the workbook.

 The Single Worksheet.xlsx Excel workbook is a good place to start because it con-
tains a single Data worksheet:

In  [26] pd.read_excel("Single Worksheet.xlsx")

Out [26]

  First Name Last Name           City Gender

0    Brandon     James          Miami      M
1       Sean   Hawkins         Denver      M
2       Judy       Day    Los Angeles      F
3     Ashley      Ruiz  San Francisco      F
4  Stephanie     Gomez       Portland      F

The read_excel function supports many of the same parameters as read_csv,
including index_col to set the index columns, usecols to select the columns, and
squeeze to coerce a one-column DataFrame into a Series object. The next exam-
ple sets the City column as the index and keeps only three of the data set’s four col-
umns. Note that if we pass a column to the index_col parameter, we must also
include the column in the usecols list:

In  [27] pd.read_excel(
             io = "Single Worksheet.xlsx",
             usecols = ["City", "First Name", "Last Name"],
             index_col = "City"
         )

Out [27]

              First Name Last Name
City

Miami            Brandon     James
Denver              Sean   Hawkins
Los Angeles         Judy       Day
San Francisco     Ashley      Ruiz
Portland       Stephanie     Gomez

The complexity increases slightly when a workbook contains multiple worksheets. The
Multiple Worksheets.xlsx workbook holds three worksheets: Data 1, Data 2, and Data
3. By default, pandas imports only the first worksheet in the workbook:
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In  [28] pd.read_excel("Multiple Worksheets.xlsx")

Out [28]

  First Name Last Name           City Gender

0    Brandon     James          Miami      M
1       Sean   Hawkins         Denver      M
2       Judy       Day    Los Angeles      F
3     Ashley      Ruiz  San Francisco      F
4  Stephanie     Gomez       Portland      F

During import, pandas assigns each worksheet an index position starting at 0. We can
import a specific worksheet by passing the worksheet’s index position or its name to
the sheet_name parameter. The parameter’s default argument is 0 (the first work-
sheet). Therefore, the following two statements return the same DataFrame:

In  [29] # The two lines below are equivalent
         pd.read_excel("Multiple Worksheets.xlsx", sheet_name = 0)
         pd.read_excel("Multiple Worksheets.xlsx", sheet_name = "Data 1")

Out [29]

  First Name Last Name           City Gender

0    Brandon     James          Miami      M
1       Sean   Hawkins         Denver      M
2       Judy       Day    Los Angeles      F
3     Ashley      Ruiz  San Francisco      F
4  Stephanie     Gomez       Portland      F

To import all worksheets, we can pass an argument of None to the sheet_name
parameter. Pandas will store each worksheet in a separate DataFrame. The read_ex-
cel function returns a dictionary with the worksheets’ names as keys and the respec-
tive DataFrames as values:

In  [30] workbook = pd.read_excel(
             "Multiple Worksheets.xlsx", sheet_name = None
         )

         workbook

Out [30] {'Data 1':   First Name Last Name           City Gender
          0    Brandon     James          Miami      M
          1       Sean   Hawkins         Denver      M
          2       Judy       Day    Los Angeles      F
          3     Ashley      Ruiz  San Francisco      F
          4  Stephanie     Gomez       Portland      F,
          'Data 2':   First Name Last Name           City Gender
          0     Parker     Power        Raleigh      F
          1    Preston  Prescott   Philadelphia      F
          2    Ronaldo   Donaldo         Bangor      M
          3      Megan   Stiller  San Francisco      M
          4     Bustin    Jieber         Austin      F,
          'Data 3':   First Name  Last Name     City Gender
          0     Robert     Miller  Seattle      M
          1       Tara     Garcia  Phoenix      F
          2    Raphael  Rodriguez  Orlando      M}
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In  [31] type(workbook)

Out [31] dict

To access a DataFrame/worksheet, we access a key in the dictionary. Here, we access
the DataFrame for the Data 2 worksheet:

In  [32] workbook["Data 2"]

Out [32]

  First Name Last Name           City Gender

0     Parker     Power        Raleigh      F
1    Preston  Prescott   Philadelphia      F
2    Ronaldo   Donaldo         Bangor      M
3      Megan   Stiller  San Francisco      M
4     Bustin    Jieber         Austin      F

To specify a subset of worksheets to import, we can pass the sheet_name parameter a
list of index positions or worksheet names. Pandas still returns a dictionary. The dic-
tionary’s keys will match the strings in the sheet_name list. The next example
imports only the Data 1 and Data 3 worksheets:

In  [33] pd.read_excel(
             "Multiple Worksheets.xlsx",
             sheet_name = ["Data 1", "Data 3"]
         )

Out [33] {'Data 1':   First Name Last Name           City Gender
          0    Brandon     James          Miami      M
          1       Sean   Hawkins         Denver      M
          2       Judy       Day    Los Angeles      F
          3     Ashley      Ruiz  San Francisco      F
          4  Stephanie     Gomez       Portland      F,
          'Data 3':   First Name  Last Name     City Gender
          0     Robert     Miller  Seattle      M
          1       Tara     Garcia  Phoenix      F
          2    Raphael  Rodriguez  Orlando      M}

The next example targets index positions 1 and 2 or, equivalently, the second and
third worksheets:

In  [34] pd.read_excel("Multiple Worksheets.xlsx", sheet_name = [1, 2])

Out [34] {1:   First Name Last Name           City Gender
          0     Parker     Power        Raleigh      F
          1    Preston  Prescott   Philadelphia      F
          2    Ronaldo   Donaldo         Bangor      M
          3      Megan   Stiller  San Francisco      M
          4     Bustin    Jieber         Austin      F,
          2:   First Name  Last Name     City Gender
          0     Robert     Miller  Seattle      M
          1       Tara     Garcia  Phoenix      F
          2    Raphael  Rodriguez  Orlando      M}
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After we’ve imported the DataFrame, we’re free to invoke whatever methods we like
on it. The original source of the data has no impact on our available operations.

12.3.3 Exporting Excel workbooks

Let’s return to the baby_names DataFrame that we downloaded from the city of New
York. Here’s a reminder of what it looks like:

In  [35] baby_names.head()

Out [35]

   Year of Birth  Gender Ethnicity Child's First Name  Count  Rank

0           2011  FEMALE  HISPANIC          GERALDINE     13    75
1           2011  FEMALE  HISPANIC                GIA     21    67
2           2011  FEMALE  HISPANIC             GIANNA     49    42
3           2011  FEMALE  HISPANIC            GISELLE     38    51
4           2011  FEMALE  HISPANIC              GRACE     36    53

Let’s say we want to split the data set into two DataFrames, one for each gender. Then
we’d like to write each DataFrame to a separate worksheet in a new Excel workbook.
We can begin by filtering the baby_names DataFrame, using the values in the Gender
column. Chapter 5 introduced the following syntax:

In  [36] girls = baby_names[baby_names["Gender"] == "FEMALE"]
         boys = baby_names[baby_names["Gender"] == "MALE"]

Writing to an Excel workbook requires a few more steps than writing to a CSV. First
up, we need to create an ExcelWriter object. This object serves as the foundation of
the workbook. We’ll attach individual worksheets to it in a moment.

 The ExcelWriter constructor is available as a top-level attribute of the pandas
library. Its first parameter, path, accepts the new workbook’s filename as a string. If
we do not provide a path to a directory, pandas will create the Excel file in the same
directory as the Jupyter Notebook. Make sure to save the ExcelWriter object to a
variable. The following example uses excel_file:

In  [37] excel_file = pd.ExcelWriter("Baby_Names.xlsx")
         excel_file

Out [37] <pandas.io.excel._openpyxl._OpenpyxlWriter at 0x118a7bf90>

Next, we need to connect our girls and boys DataFrames to individual worksheets in
the workbook. Let’s start with the former.

 A DataFrame includes a to_excel method for writing to an Excel workbook. The
method’s first parameter, excel_writer, accepts an ExcelWriter object, like the
one we created in the preceding example. The method’s sheet_name parameter
accepts the worksheet name as a string. Finally, we can pass the index parameter a
value of False to exclude the DataFrame index:

In  [38] girls.to_excel(
             excel_writer = excel_file, sheet_name = "Girls", index = False
         )
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Note that we have not created the Excel workbook yet. Rather, we’ve wired up the Excel-
Writer object to include the girls DataFrame when we do create the workbook.

 Next, let’s connect our boys DataFrame to the Excel workbook. We’ll invoke the
to_excel method on boys, passing the excel_writer parameter the same Excel-
Writer object. Now pandas knows that it should write both data sets to the same work-
book. Let’s also alter the string argument to the sheet_name parameter. To export
only a subset of columns, let’s pass a custom list to the columns parameter. The next
example instructs pandas to include only the Child’s First Name, Count, and Rank col-
umns when writing the boys DataFrame to the “Boys” worksheet in the workbook:

In  [39] boys.to_excel(
             excel_file,
             sheet_name = "Boys",
             index = False,
             columns = ["Child's First Name", "Count", "Rank"]
         )

Now that we’ve configured the Excel workbook’s plumbing, we’re clear to write it to
disk. Invoke the save method on the excel_file ExcelWriter object to complete
the process:

In  [40] excel_file.save()

Check out the Jupyter Note-
book interface to see the
result. Figure 12.5 shows the
new Baby_Names.xlsx file in
the same folder.
   And there you have it. Now
you know how to export

JSON, CSV, and XLSX files from pandas. The library offers additional functions for
exporting its data structures to other file formats.

12.4 Coding challenge
Let’s practice the concepts introduced in this chapter. The tv_shows.json file is an
aggregate collection of TV show episodes pulled from the Episodate.com API (see
https://www.episodate.com/api). The JSON includes data for three TV shows: The X-
Files, Lost, and Buffy the Vampire Slayer.

In  [41] tv_shows_json = pd.read_json("tv_shows.json")
         tv_shows_json

Out [41]

                                                         shows

0  {'show': 'The X-Files', 'runtime': 60, 'network': 'FOX',...
1  {'show': 'Lost', 'runtime': 60, 'network': 'ABC', 'episo...
2  {'show': 'Buffy the Vampire Slayer', 'runtime': 60, 'net...

Figure 12.5 The XLSX Excel file saved to the same directory 
as the Jupyter Notebook

https://www.episodate.com/api
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The JSON consists of a top-level "shows" key that connects to a list of three dictionar-
ies, one for each of the three shows:

{
    "shows": [{}, {}, {}]
}

Each nested show dictionary includes "show", "runtime", "network", and "epi-
sodes" keys. Here’s a truncated preview of the first row’s dictionary:

In  [42] tv_shows_json.loc[0, "shows"]

Out [42] {'show': 'The X-Files',
          'runtime': 60,
          'network': 'FOX',
          'episodes': [{'season': 1,
            'episode': 1,
            'name': 'Pilot',
            'air_date': '1993-09-11 01:00:00'},
           {'season': 1,
            'episode': 2,
            'name': 'Deep Throat',
            'air_date': '1993-09-18 01:00:00'},

The "episodes" key maps to a list of dictionaries. Each dictionary holds data for one
show episode. In the previous example, we see the data for the first two episodes of
season 1 of The X-Files.

12.4.1 Problems

Your challenges are

1 Normalize the nested episode data for each dictionary in the shows column.
The goal is a DataFrame with a separate row for each episode. Each row
should include the episode’s relevant metadata (season, episode, name, and
air_date) as well as the show’s top-level information (show, runtime, and
network).

2 Filter the normalized data set into three separate DataFrames, one for each of
the shows ("The X-Files", "Lost", and "Buffy the Vampire Slayer").

3 Write the three DataFrames to an episodes.xlsx Excel workbook, and save each
TV show’s episode data to a separate worksheet. (The worksheet names are up
to you.)

12.4.2 Solutions

Let’s tackle the problems:

1 We can use the json_normalize function to extract each TV show’s nested
batch of episodes. The episodes are available under the "episodes" key, which
we can pass to the method’s record_path parameter. To preserve the top-level
show data, we can pass the meta parameter a list of the top-level keys to keep:
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In  [43] tv_shows = pd.json_normalize(
             data = tv_shows_json["shows"],
             record_path = "episodes",
             meta = ["show", "runtime", "network"]
         )

         tv_shows

Out [43]

  season  episode          name      air_date          show runtime network

0      1        1         Pilot  1993-09-1...   The X-Files      60     FOX
1      1        2   Deep Throat  1993-09-1...   The X-Files      60     FOX
2      1        3       Squeeze  1993-09-2...   The X-Files      60     FOX
3      1        4       Conduit  1993-10-0...   The X-Files      60     FOX
4      1        5  The Jerse...  1993-10-0...   The X-Files      60     FOX
  …    …        …             …             …             …       …       …
477    7       18   Dirty Girls  2003-04-1...  Buffy the...      60     UPN
478    7       19  Empty Places  2003-04-3...  Buffy the...      60     UPN
479    7       20       Touched  2003-05-0...  Buffy the...      60     UPN
480    7       21   End of Days  2003-05-1...  Buffy the...      60     UPN
481    7       22        Chosen  2003-05-2...  Buffy the...      60     UPN

482 rows × 7 columns

2 Our next challenge is to split the data set into three DataFrames, one for each
TV show. We can filter the rows in tv_shows based on the values in the show
column:

In  [44] xfiles = tv_shows[tv_shows["show"] == "The X-Files"]
         lost = tv_shows[tv_shows["show"] == "Lost"]
         buffy = tv_shows[tv_shows["show"] == "Buffy the Vampire Slayer"]

3 Finally, let’s write the three DataFrames to an Excel workbook. We’ll begin by
instantiating an ExcelWriter object and saving it to a variable. We can pass in
the workbook name as the first argument. I’ve chosen to call it episodes.xlsx:

In  [45] episodes = pd.ExcelWriter("episodes.xlsx")
         episodes

Out [45] <pandas.io.excel._openpyxl._OpenpyxlWriter at 0x11e5cd3d0>

Next, we must invoke the to_excel method on the three DataFrames to con-
nect them to individual worksheets in the workbook. We’ll pass the same epi-
sodes ExcelWriter object to the excel_writer parameter in each
invocation. We’ll make sure to provide a unique name for each worksheet via
the sheet_name parameter. Finally, we’ll pass the index parameter a value of
False to exclude the DataFrame index:

In  [46] xfiles.to_excel(
             excel_writer = episodes, sheet_name = "X-Files", index = False
         )
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In  [47] lost.to_excel(
             excel_writer = episodes, sheet_name = "Lost", index = False
         )

In  [48] buffy.to_excel(
             excel_writer = episodes,
             sheet_name = "Buffy the Vampire Slayer",
             index = False
         )

With the worksheets wired up, we can invoke the save method on the epi-
sodes ExcelWriter object to create the episodes.xlsx workbook:

In  [49] episodes.save()

Congratulations on completing the coding challenge!

Summary
 The read_json function parses a JSON file into a DataFrame.
 The json_normalize function converts nested JSON data to a tabular Data-

Frame.
 We can pass URLs to import functions such as read_csv, read_json, and

read_excel. Pandas will download the data set from the provided link.
 The read_excel function imports an Excel workbook. The method’s

sheet_name parameter sets the worksheets to import. When we import multi-
ple worksheets, pandas stores the resulting DataFrames in a dictionary.

 To write one or more DataFrames to an Excel workbook, instantiate an
ExcelWriter object, attach the DataFrames to it via the to_excel method,
and then invoke the save method on the ExcelWriter object.



Configuring pandas
As we’ve worked through the book’s data sets, we’ve seen how pandas improves our
user experience by making sensible decisions on data presentation. When we out-
put a 1,000-row DataFrame, for example, the library assumes that we’d prefer to
see 30 rows from the beginning and end rather than the whole data set, which can
clutter the screen. Sometimes, we may want to break from pandas’ assumptions and
alter its settings to fit our custom display needs. Luckily, the library exposes many of
its internal settings for us to alter. In this chapter, we’ll learn how to configure
options such as row and column limits, floating-point precision, and value round-
ing. Let’s get our hands dirty and see how we can switch things up.

This chapter covers
 Configuring pandas display settings for both the 

Notebook and single cells

 Limiting the number of printed DataFrame rows and 
columns

 Altering the precision of decimal-point numbers

 Truncating a cell’s text content

 Rounding numeric values when they fall below a floor
310
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13.1 Getting and setting pandas options
We’ll begin by importing the pandas library and assigning it an alias of pd:

In  [1] import pandas as pd

This chapter’s data set, happiness.csv, is a ranking of the world’s nations by happiness.
The polling firm Gallup gathers the data with support from the United Nations. Each
row includes a nation’s aggregate happiness score alongside individual scores for
gross domestic product (GDP) per capita, social support, life expectancy, and gener-
osity. The data set holds 6 columns and 156 rows:

In  [2] happiness = pd.read_csv("happiness.csv")
        happiness.head()

Out [2]

       Country  Score  GDP per cap…  Social sup…  Life expect…   Generosity

0      Finland  7.769         1.340        1.587         0.986        0.153
1      Denmark  7.600         1.383        1.573         0.996        0.252
2       Norway  7.554         1.488        1.582         1.028        0.271
3      Iceland  7.494         1.380        1.624         1.026        0.354
4  Netherlands  7.488         1.396        1.522         0.999        0.322

Pandas stores its settings in a single options object at the top level of the library.
Each option belongs to a parent category. Let’s start with the display category,
which holds settings for the printed representation of pandas’ data structures.

 The top-level describe_option function returns the documentation for a given
setting. We can pass it a string with the setting’s name. Let’s look into the max_rows
option, which is nested within the display parent category. The max_rows setting
configures the maximum number of rows that pandas prints before it truncates a
DataFrame:

In  [3] pd.describe_option("display.max_rows")

Out [3]

        display.max_rows : int
            If max_rows is exceeded, switch to truncate view. Depending on
            `large_repr`, objects are either centrally truncated or printed
            as a summary view. 'None' value means unlimited.

            In case python/IPython is running in a terminal and
            `large_repr` equals 'truncate' this can be set to 0 and pandas
            will auto-detect the height of the terminal and print a
            truncated object which fits the screen height. The IPython
            notebook, IPython qtconsole, or IDLE do not run in a terminal
            and hence it is not possible to do correct auto-detection.
           [default: 60] [currently: 60]

Notice that the end of the documentation includes the setting’s default value and its
current value.



312 CHAPTER 13 Configuring pandas
 Pandas will print all library options that match the string argument. The library
uses regular expressions to compare describe_option’s argument with its available
settings. As a reminder, a regular expression is a search pattern for text; see appendix E
for a detailed overview. The next example passes an argument of "max_col". Pandas
prints documentation for the two settings that match the term:

In  [4] pd.describe_option("max_col")

Out [4]

display.max_columns : int
    If max_cols is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the width of the terminal and print a truncated object which fits
    the screen width. The IPython notebook, IPython qtconsole, or IDLE
    do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 20] [currently: 5]
display.max_colwidth : int or None
    The maximum width in characters of a column in the repr of
    a pandas data structure. When the column overflows, a "..."
    placeholder is embedded in the output. A 'None' value means unlimited.
    [default: 50] [currently: 9]

Although regular expressions are appealing, I recommend writing out the full name of
the setting, including its parent category. Explicit code tends to lead to fewer errors.

 There are two ways to get a setting’s current value. The first way is the get_option
function at the top level of pandas; like describe_option, it accepts a string argu-
ment with the setting’s name. The second approach is to access the parent category
and the specific setting as attributes on the top-level pd.options object.

 The following example shows the syntax for both strategies. Both lines of code
return 60 for the max_rows setting, which means that pandas will truncate any Data-
Frame output greater than 60 rows in length:

In  [5] # The two lines below are equivalent
        pd.get_option("display.max_rows")
        pd.options.display.max_rows

Out [5] 60

Similarly, there are two ways to set a new value for a configuration setting. The set_
option function at the top level of pandas accepts the setting as its first argument and
its new value as the second argument. Alternatively, we can access the option via attri-
butes on the pd.options object and assign the new value with an equal sign:

In  [6] # The two lines below are equivalent
        pd.set_option("display.max_rows", 6)
        pd.options.display.max_rows = 6
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We’ve instructed pandas to truncate the DataFrame output if it is longer than six
rows:

In  [7] pd.options.display.max_rows

Out [7] 6

Let’s see the change in action. The next example asks pandas to print the first six rows
of happiness. The threshold of six maximum rows is not crossed, so pandas outputs
the DataFrame without truncation:

In  [8] happiness.head(6)

Out [8]

       Country  Score  GDP per cap…  Social sup…  Life expect…   Generosity

0      Finland  7.769         1.340        1.587         0.986        0.153
1      Denmark  7.600         1.383        1.573         0.996        0.252
2       Norway  7.554         1.488        1.582         1.028        0.271
3      Iceland  7.494         1.380        1.624         1.026        0.354
4  Netherlands  7.488         1.396        1.522         0.999        0.322
5  Switzerland  7.480         1.452        1.526         1.052        0.263

Now let’s cross the threshold and ask pandas to print the first seven rows of happiness.
The library always aims to print an equal number of rows before and after the trunca-
tion. In the next example, it prints three rows from the beginning of the output and
three rows from the end of the output, truncating the middle row (index 3):

In  [9] happiness.head(7)

Out [9]

       Country  Score  GDP per cap…  Social sup…  Life expect…   Generosity

0      Finland  7.769         1.340        1.587         0.986        0.153
1      Denmark  7.600         1.383        1.573         0.996        0.252
2       Norway  7.554         1.488        1.582         1.028        0.271
…            …      …             …            …             …            …
4  Netherlands  7.488         1.396        1.522         0.999        0.322
5  Switzerland  7.480         1.452        1.526         1.052        0.263
6       Sweden  7.343         1.387        1.487         1.009        0.267

7 rows × 6 columns

The max_rows setting declares the number of printed rows. The complementary
display.max_columns option sets the maximum number of printed columns. The
default value is 20:

In  [10] # The two lines below are equivalent
         pd.get_option("display.max_columns")
         pd.options.display.max_columns

Out [10] 20
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Again, to assign a new value, we can use the set_option function or access the
nested max_columns attribute directly:

In  [11] # The two lines below are equivalent
         pd.set_option("display.max_columns", 2)
         pd.options.display.max_columns = 2

If we set an even number of max columns, pandas will exclude the truncation column
from its max column count. The happiness DataFrame has six columns, but the fol-
lowing output displays only two of them. Pandas includes the first and last columns,
Country and Generosity, and places a truncation column between the two:

In  [12] happiness.head(7)

Out [12]

       Country  …  Generosity

0      Finland          0.153
1      Denmark  …       0.252
2       Norway  …       0.271
…            …  …           …
4  Netherlands  …       0.322
5  Switzerland  …       0.263
6       Sweden  …       0.267

7 rows × 6 columns

If we set an odd number of max columns, pandas will include the truncation column
in its column count. An odd number ensures that pandas can pack an equal number
of columns on both sides of the truncation. The next example sets the max_columns
value to 5. The happiness output displays the two leftmost columns (Country and
Score), the truncation column, and the two rightmost columns (Life expectancy and
Generosity). Pandas prints four of the original six columns:

In  [13] # The two lines below are equivalent
         pd.set_option("display.max_columns", 5)
         pd.options.display.max_columns = 5

In  [14] happiness.head(7)

Out [14]

       Country  Score  …  Life expectancy   Generosity

0      Finland  7.769  …            0.986        0.153
1      Denmark  7.600  …            0.996        0.252
2       Norway  7.554  …            1.028        0.271
…            …      …  …                …            …
4  Netherlands  7.488  …            0.999        0.322
5  Switzerland  7.480  …            1.052        0.263
6       Sweden  7.343  …            1.009        0.267

5 rows × 6 columns
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To return a setting to its original value, pass its name to the reset_option function
at the top level of pandas. The next example resets the max_rows setting:

In  [15] pd.reset_option("display.max_rows")

We can confirm the change by invoking the get_option function again:

In  [16] pd.get_option("display.max_rows")

Out [16] 60

Pandas has reset the max_rows setting to its default value of 60.

13.2 Precision
Now that we’re comfortable with pandas’ API for changing settings, let’s walk through
a few popular configuration options.

 The display.precision option sets the number of digits after a floating-point
number. The default value is 6:

In  [17] pd.describe_option("display.precision")

Out [17]

         display.precision : int
             Floating point output precision (number of significant
             digits). This is only a suggestion
             [default: 6] [currently: 6]

The next example sets the precision to 2. The setting affects values in all four of the
floating-point columns in happiness:

In  [18] # The two lines below are equivalent
         pd.set_option("display.precision", 2)
         pd.options.display.precision = 2

In  [19] happiness.head()

Out [19]

       Country  Score  …  Life expectancy  Generosity

0      Finland   7.77  …             1.34        0.15
1      Denmark   7.60  …             1.38        0.25
2       Norway   7.55  …             1.49        0.27
3      Iceland   7.49  …             1.38        0.35
4  Netherlands   7.49  …             1.40        0.32

5 rows × 6 columns

The precision setting alters only the presentation of floating-point numbers. Pan-
das preserves the original values within the DataFrame, which we can prove by using
the loc accessor to extract a sample value from a floating-point column like Score:

In  [20] happiness.loc[0, "Score"]

Out [20] 7.769
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The Score column’s original value, 7.769, is still present. Pandas changes the presen-
tation of the value to 7.77 when it prints the DataFrame.

13.3 Maximum column width
The display.max_colwidth setting sets the maximum number of characters pan-
das prints before truncating a cell’s text:

In  [21] pd.describe_option("display.max_colwidth")

Out [21]

         display.max_colwidth : int or None
             The maximum width in characters of a column in the repr of
             a pandas data structure. When the column overflows, a "..."
             placeholder is embedded in the output. A 'None' value means
             unlimited.
            [default: 50] [currently: 50]

The next example asks pandas to truncate text if its length is greater than nine
characters:

In  [22] # The two lines below are equivalent
         pd.set_option("display.max_colwidth", 9)
         pd.options.display.max_colwidth = 9

Let’s see what happens when we output happiness:

In  [23] happiness.tail()

Out [23]

            Country  Score  …  Life expectancy  Generosity

151          Rwanda   3.33  …             0.61        0.22
152        Tanzania   3.23  …             0.50        0.28
153          Afgha…   3.20  …             0.36        0.16
154    Central Afr…   3.08  …             0.10        0.23
155          South…   2.85  …             0.29        0.20

5 rows × 6 columns

Pandas shortens the last three Country values (Afghanistan, Central African Republic,
and South Sudan). The first two values in the output (Rwanda at six characters and
Tanzania at eight characters) remain unaffected.

13.4 Chop threshold
In some analyses, we may consider values to be insignificant if they are reasonably
close to 0. Your business domain, for example, may consider the value 0.10 to be “as
good as 0” or “effectively 0”. The display.chop_threshold option sets the floor
that a floating-point value must cross to be printed. Pandas will display any value
below the threshold as 0:
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In  [24] pd.describe_option("display.chop_threshold")

Out [24]

         display.chop_threshold : float or None
             if set to a float value, all float values smaller then the
             given threshold will be displayed as exactly 0 by repr and
             friends.
            [default: None] [currently: None]

This example sets 0.25 as the chop threshold:

In  [25] pd.set_option("display.chop_threshold", 0.25)

In the next output, notice that pandas prints the values in the Life expectancy and Gen-
erosity columns for index 154 (0.105 and 0.235, respectively) as 0.00 in the output:

In  [26] happiness.tail()

Out [26]

            Country  Score  …  Life expectancy  Generosity

151          Rwanda   3.33  …             0.61        0.00
152        Tanzania   3.23  …             0.50        0.28
153     Afghanistan   3.20  …             0.36        0.00
154  Central Afr...   3.08  …             0.00        0.00
155     South Sudan   2.85  …             0.29        0.00

5 rows × 6 columns

Much like the precision setting, chop_threshold does not change the underlying
values in the DataFrame—only their printed representation.

13.5 Option context
The settings we’ve altered so far have been global. When we change them, we alter the
output of all Jupyter Notebook cells executed afterward. A global setting persists until
we assign a new value to it. If we set display.max_columns to 6, for example, Jupyter
will output DataFrames with a maximum of six columns for all future cell executions.

 Sometimes, we want to customize presentation options for a single cell. We can
accomplish this task with pandas’ top-level option_context function. We pair the
function with Python’s built-in with keyword to create a context block. Think of a con-
text block as being a temporary execution environment. The option_context func-
tion sets temporary values for pandas options while the code inside the block
executes; global pandas settings are not affected.

 We pass settings to the option_context function as sequential arguments. The
next example prints the happiness DataFrame with

 display.max_columns set to 5
 display.max_rows set to 10
 display.precision set to 3



318 CHAPTER 13 Configuring pandas
Jupyter does not recognize the with block’s contents as the final statement of a Note-
book cell. Thus, we need to use a Notebook function called display to output the
DataFrame manually:

In  [27] with pd.option_context(
             "display.max_columns", 5,
             "display.max_rows", 10,
             "display.precision", 3
         ):
            display(happiness)

Out [27]

            Country  Score  …  Life expectancy  Generosity

0           Finland  7.769  …            0.986       0.153
1           Denmark  7.600  …            0.996       0.252
2            Norway  7.554  …            1.028       0.271
3           Iceland  7.494  …            1.026       0.354
4       Netherlands  7.488  …            0.999       0.322
…                 …      …  …                …           …
151          Rwanda  3.334  …            0.614       0.217
152        Tanzania  3.231  …            0.499       0.276
153     Afghanistan  3.203  …            0.361       0.158
154  Central Afr...  3.083  …            0.105       0.235
155     South Sudan  2.853  …            0.295       0.202

156 rows × 6 columns

Because we used the with keyword, we did not alter global Notebook settings for
these three options; they retain their original values.

 The option_context function is helpful for assigning different options to differ-
ent cell executions. If you’d like a uniform presentation for all output, I recommend
setting the options once in a cell at the top of your Jupyter Notebook.

Summary
 The describe_option function returns documentation for a pandas setting.
 The set_option function sets a new value for a setting.
 We can also change a setting by accessing and overwriting attributes on the

pd.options object.
 The reset_option function changes a pandas setting back to its default value.
 The display.max_rows and display.max_columns options set the maxi-

mum rows/columns that pandas shows in the output.
 The display.precision setting alters the number of digits after a decimal

point.
 The display.max_colwidth option sets the numeric threshold at which pan-

das truncates printed characters.
 The display.chop_threshold option sets a numeric floor. If values do not

cross the threshold, pandas will print them as zeroes.
 Pair the option_context function and the with keyword to create a tempo-

rary execution context for a block completely.



Visualization
Text-based DataFrame summaries are helpful, but many times, a story can best be
told by a visualization. A line chart can quickly communicate a trend over time; a
bar graph can distinctly identify unique categories and their counts; a pie chart can
represent proportions in an easily digestible manner, and so on. Fortunately, pan-
das seamlessly integrates with many popular Python data visualization libraries,
including Matplotlib, seaborn, and ggplot. In this chapter, we’ll learn how to use
Matplotlib to render dynamic charts from our Series and DataFrames. I hope
that these visualizations help you add that little spark to your data presentations.

This chapter covers
 Installing the Matplotlib library for data 

visualization

 Rendering graphs and charts with pandas and 
Matplotlib

 Applying color templates to visualizations
319
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14.1 Installing matplotlib
By default, pandas relies on the open source Matplotlib package to render charts and
graphs. Let’s install it in our Anaconda environment.

 Begin by launching the Terminal (macOS) or Anaconda Prompt (Windows) appli-
cation for your operating system. The default Anaconda environment, base, should
be listed in parentheses to the left. base is the currently active environment.

 When we installed Anaconda (see appendix A), we created an environment called
pandas_in_action. Let’s execute the conda activate command to activate it. If
you chose a different environment name, replace pandas_in_action with that
name, as follows:

(base) ~$ conda activate pandas_in_action

The parentheses should change to reflect the active environment. Execute the com-
mand conda install matplotlib to install the Matplotlib library within the
pandas_in_action environment:

(pandas_in_action) ~$ conda install matplotlib

When the prompt asks you to confirm, enter 'Y' for yes and press Enter. When instal-
lation completes, execute jupyter notebook and create a new Notebook.

14.2 Line charts
As always, let’s begin by importing the pandas library. We’ll also import the pyplot
package from within the Matplotlib library. In this context, a package means a nested
folder within the top library. We can access the pyplot package using dot syntax, the
same way we access any library attribute. A common community alias for pyplot is plt.

 By default, Jupyter Notebook renders each Matplotlib visualization in a separate
browser window, like a pop-up window on a website. The windows can be a bit jarring,
especially when there are multiple charts on the screen. We can add an extra line—
%matplotlib inline—to force Jupyter to render visualizations directly below the
code in a cell. %matplotlib inline is an example of a magic function, a syntactical
shortcut for setting a configuration option in the Notebook:

In  [1] import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline

Now on to the data! This chapter’s data set, space_missions.csv, includes more than
100 space flights throughout 2019 and 2020. Each record consists of a mission’s date,
sponsoring company, location, cost, and status ("Success" or "Failure"):

In  [2] pd.read_csv("space_missions.csv").head()

Out [2]
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      Date Company Name Location    Cost   Status

0   2/5/19  Arianespace   France  200.00  Success
1  2/22/19       SpaceX      USA   50.00  Success
2   3/2/19       SpaceX      USA   50.00  Success
3   3/9/19         CASC    China   29.15  Success
4  3/22/19  Arianespace   France   37.00  Success

Let’s adjust two settings before we assign the imported DataFrame to a space vari-
able. First, we’ll use the parse_dates parameter to import the values in the Date col-
umn as datetimes. Next, we’ll set the Date column as the index of the DataFrame:

In  [3] space = pd.read_csv(
            "space_missions.csv",
            parse_dates = ["Date"],
            index_col = "Date"
        )

        space.head()

Out [3]

           Company Name Location    Cost   Status
Date

2019-02-05  Arianespace   France  200.00  Success
2019-02-22       SpaceX      USA   50.00  Success
2019-03-02       SpaceX      USA   50.00  Success
2019-03-09         CASC    China   29.15  Success
2019-03-22  Arianespace   France   37.00  Success

Suppose that we want to plot the flight costs over the two years in this data set. A time-
series graph is an optimal chart for observing a trend over time. We can plot time on
the x-axis and values on the y-axis. First, let’s extract the Cost column from the space
DataFrame. The result is a Series with numeric values and a datetime index:

In  [4] space["Cost"].head()

Out [4] Date
        2019-02-05    200.00
        2019-02-22     50.00
        2019-03-02     50.00
        2019-03-09     29.15
        2019-03-22     37.00
        Name: Cost, dtype: float64

To render a visualization, invoke the plot method on a pandas data structure. By
default, Matplotlib draws a line graph. Jupyter also prints the location of the graph
object in the computer’s memory. The location will be different with each cell execu-
tion, so feel free to ignore it:

In  [5] space["Cost"].plot()

Out [5] <matplotlib.axes._subplots.AxesSubplot at 0x11e1c4650>
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Pretty fancy! We have rendered a line chart with Matplotlib using values from pandas.
By default, the library plots the index labels (in this case, the datetimes) on the x-axis
and the Series’ values on the y-axis. Matplotlib also calculates reasonable intervals
for the range of values on both axes.

 We can also invoke the plot method on the space DataFrame itself. In this sce-
nario, pandas produces the same output, but only because the data set has only one
numeric column:

In  [6] space.plot()

Out [6] <matplotlib.axes._subplots.AxesSubplot at 0x11ea18790>
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 If a DataFrame holds multiple numeric columns, Matpotlib will draw a separate
line for each one. Be careful: if there is a large gap in the magnitude of values
between columns (if one numeric column has values in the millions and another has
values in the hundreds, for example), the larger values can easily dwarf the smaller
ones. Consider this DataFrame:

In  [7] data = [
            [2000, 3000000],
            [5000, 5000000]
        ]

        df = pd.DataFrame(data = data, columns = ["Small", "Large"])
        df

Out [7]

   Small    Large

0   2000  3000000
1   5000  5000000

When we plot the df DataFrame, Matplotlib adjusts the graph scale to accommodate
the Large column’s values. The trend in the Small column’s values becomes impossi-
ble to see:

In  [8] df.plot()

Out [8] <matplotlib.axes._subplots.AxesSubplot at 0x7fc48279b6d0>

Let’s come back to space. The plot method accepts a y parameter to identify the
DataFrame column whose values Matplotlib should plot. The next example passes
the Cost column and is another way to render the same time-series graph:
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In  [9] space.plot(y = "Cost")

Out [9] <matplotlib.axes._subplots.AxesSubplot at 0x11eb0b990>

We can use the colormap parameter to alter the aesthetics of the visualization. Think
of this process as setting the color theme of the graph. The parameter accepts a string
with a predefined color palette from the Matplotlib library. The following example
uses a "gray" theme that renders the line chart in black and white:

In  [10] space.plot(y = "Cost", colormap = "gray")

Out [10] <matplotlib.axes._subplots.AxesSubplot at 0x11ebef350>
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To see a list of valid inputs for the colormaps parameter, invoke the colormaps
method on the pyplot library (aliased to plt in our Notebook). Note that we can
apply some of these themes only if certain criteria are met, such as a minimum num-
ber of graph lines:

In  [11] print(plt.colormaps())

Out [11] ['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r',
          'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r',
          'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r',
          'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r',
          'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r',
          'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn',
          'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r',
          'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r',
          'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r',
          'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3',
          'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn',
          'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd',
          'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary',
          'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r',
          'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm',
          'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r',
          'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray',
          'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar',
          'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern',
          'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot',
          'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot',
          'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r',
          'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean',
          'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism',
          'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r',
          'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r',
          'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r',
          'terrain', 'terrain_r', 'twilight', 'twilight_r',
          'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r',
          'winter', 'winter_r']

Matplotlib has more than 150 available color maps to choose among. The library also
offers ways to customize the graphs manually.

14.3 Bar graphs
The plot method’s kind parameter alters the type of chart that Matplotlib renders. A
bar graph is an excellent choice to display the counts of unique values in a data set, so
let’s use it to visualize how many space flights each company sponsored.

 First, we’ll target the Company Name column and invoke the value_counts
method to return a Series of mission counts by company:

In  [12] space["Company Name"].value_counts()

Out [12] CASC            35
         SpaceX          25
         Roscosmos       12
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         Arianespace     10
         Rocket Lab       9
         VKS RF           6
         ULA              6
         Northrop         5
         ISRO             5
         MHI              3
         Virgin Orbit     1
         JAXA             1
         ILS              1
         ExPace           1
         Name: Company Name, dtype: int64

Next, let’s invoke the plot method on the Series, passing an argument of "bar" to
the kind parameter. Matplotlib once again plots the index labels on the x-axis and the
values on the y-axis. It looks as though CASC has the most entries in the data set, fol-
lowed by SpaceX:

In  [13] space["Company Name"].value_counts().plot(kind = "bar")

Out [13] <matplotlib.axes._subplots.AxesSubplot at 0x11ecd6310>

The graph is a good start, but we have to twist our heads to read the labels. Ouch.
Let’s change the kind argument to "barh" to render a horizontal bar graph instead:

In  [14] space["Company Name"].value_counts().plot(kind = "barh")

Out [14] <matplotlib.axes._subplots.AxesSubplot at 0x11edf0190>
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That’s a lot better! Now we can easily identify which companies had the greatest num-
ber of space flights in the data set.

14.4 Pie charts
A pie chart is a visualization in which colored slices add up to form a whole circular pie
(much like slices of a pizza). Each piece visually represents the proportion it contrib-
utes to the total amount.

 Let’s use a pie chart to compare the ratio of successful missions to failed missions.
The Status column has only two unique values: "Success" and "Failure". First,
we’ll use the value_counts method to count the number of occurrences of each:

In  [15] space["Status"].value_counts()

Out [15] Success    114
         Failure      6
         Name: Status, dtype: int64

Let’s invoke the plot method again. This time around, we’ll pass the kind parameter
an argument of "pie":

In  [16] space["Status"].value_counts().plot(kind = "pie")

Out [16] <matplotlib.axes._subplots.AxesSubplot at 0x11ef9ea90>
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Good news! It looks as though the majority of space flights were successful.
 To add a legend to a visualization like this one, we can pass the legend parameter

an argument of True:

In  [17] space["Status"].value_counts().plot(kind = "pie", legend = True)

Out [17] <matplotlib.axes._subplots.AxesSubplot at 0x11eac1a10>

Matplotlib supports a wide variety
of additional charts and graphs,
including histograms, scatterplots,
and boxplots. We can include addi-
tional parameters to customize the
aesthetics, labels, legends, and
interactivity of these visualizations.
We’ve only scratched the surface
of what this powerful library can
render.

Summary
 Pandas seamlessly integrates with the Matplotlib library for data visualization. It

also plays well with additional plotting libraries within Python’s data science
ecosystem.

 The plot method on a Series or DataFrame renders a visualization with data
from the pandas data structure.

 The default Matplotlib chart is a line graph.
 The kind parameter to the plot method alters the type of the rendered visual-

ization. Options include line graphs, bar graphs, and pie charts.
 The colormap parameter changes the color scheme of the rendered graphic.

Matplotlib has dozens of predefined templates, and users can also create their
own by adjusting method parameters.



appendix A
Installation and setup

Welcome to the supplementary material! This appendix walks you through install-
ing the Python programming language and the pandas library for the macOS and
Windows operating systems. A library (also called a package) is a toolbox of features
that expands a core programming language’s functionalities—an expansion pack
or add-on that offers solutions to common challenges that developers face when
working with the language. The Python ecosystem includes thousands of packages
for domains such as statistics, HTTP requests, and database management.

 A dependency is a piece of software that we need to install to run another piece of
software. Pandas is not a stand-alone package; it has a set of dependencies includ-
ing the libraries NumPy and pytz. These libraries may require their own dependen-
cies. We don’t have to understand what all these other packages do, but we need to
install them for pandas to function.

A.1 The Anaconda distribution
Open source libraries are often developed by independent teams of contributors on
different timelines. Unfortunately, the isolated development cycles can introduce
compatibility issues between library versions. Installing the latest version of a library
without upgrading its dependencies may render it dysfunctional, for example.

 To simplify the installation and management of pandas and its dependencies,
we’ll rely on a Python distribution called Anaconda. A distribution is a collection of
software that bundles multiple applications and their dependencies in one straight-
forward installer. With a user base of more than 20 million, Anaconda is the most
popular distribution for getting up and running with data science in Python.

 Anaconda installs Python and a powerful environment management system
called conda. An environment is an independent sandbox for code execution—a
playground of sorts where we can install Python and a selection of packages. To
experiment with a different version of Python, a different version of pandas, a dif-
ferent combination of packages, or anything in between, we create a new conda
329
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environment. Figure A.1 depicts three hypothetical conda environments, each with a
different version of Python.

 The advantage of environments is isolation. Changes in one environment do not
affect any other environment, as conda stores them in different folders. Thus, we can
easily work on multiple projects, each of which requires a different configuration.
When you’re installing packages to an environment, conda also installs the appropri-
ate dependencies and ensures compatibility between different library versions. In
short, conda is an effective way to enable multiple installations and configurations of
Python tools on your computer.

 That’s a big-picture introduction! Now let’s get down to business and install Ana-
conda. Head to www.anaconda.com/products/individual, and find the section of the
page with installer downloads for your operating system. You’ll likely see multiple ver-
sions of the Anaconda installer:

 If you’re given a choice between a Graphical Installer and a Command Line
Installer, choose the Graphical Installer.

 If you’re given a choice of Python versions, target the most up-to-date one. As
with most software, a larger version number denotes a more recent release.
Python 3 is newer than Python 2, and Python 3.9 is newer than Python 3.8.
When you’re learning a new technology, it’s best to get started with the latest
release. Don’t worry; conda permits you to create environments with earlier
versions of Python if you need them.

 If you’re a Windows user, you may be given a choice between a 64-bit and a 32-
bit installer. We’ll discuss which one to select in section A.3.

At this point, the setup process diverges for the macOS and Windows operating sys-
tems. Find the appropriate subsection in this appendix, and continue from there.

A.2 The macOS setup process
Let’s walk through installing Anaconda on a macOS computer.

A.2.1 Installing Anaconda in macOS

Your Anaconda download will consist of a single .pkg installer file. The filename will
likely include the Anaconda version number and the operating system (such as

Figure A.1 Three Anaconda environments with different Python versions and different packages

http://www.anaconda.com/products/individual
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Anaconda3-2021.05-MacOSX-x86_64). Locate the installer in your file system, and
double-click it to start the installation.

 Click the Continue button on the first screen. On the README screen, the installer
provides a quick overview of Anaconda that is worth perusing (see figure A.2).

Figure A.2 Anaconda installation screen on a macOS computer

The installation creates a starter conda environment called base with a collection of
more than 250 preselected data analysis packages. You will be able to create additional
environments later. The installer also informs you that it will activate this base environ-
ment whenever you start your shell; we’ll discuss how this process works in section A.2.2.
For now, trust that this part of the installation process is required, and proceed onward.

 Continue through any remaining screens. Accept the license agreement and the
space requirements. You’ll be given the option to customize your installation direc-
tory; whether you do is entirely up to you. Note that the distribution is self-contained;
Anaconda installs itself within one directory on your computer. Thus, if you’d ever
like to uninstall Anaconda, you can delete that directory.

 Installation may take up to a few minutes. When it completes, click Next until you
exit the installer.

A.2.2 Launching Terminal

Anaconda ships with a graphical program called Navigator that makes it easy to create
and manage conda environments. Before we launch it, though, we’ll use the more tra-
ditional Terminal application to issue commands to the conda environment manager. 



332  APPENDIX A Installation and setup
 Terminal is an application for issuing commands to the macOS operating system.
Before modern graphical user interfaces (GUIs) existed, users relied exclusively on
text-based applications to interact with the computer. In Terminal, you enter text and
then press the Enter key to execute it. I’d like us to master Terminal before Anaconda
Navigator because it’s important to understand the complexity that a piece of software
abstracts from us before we rely on its shortcuts.

 Open a Finder window, and navigate to the Applications directory, where you’ll
find the Terminal application within the Utilities folder. Launch the application. I also
recommend dragging the Terminal app’s icon to the Dock for easy access.

 Terminal should list the active conda environment inside a pair of parentheses
before its flashing prompt. As a reminder, Anaconda created a base starter environ-
ment during installation. Figure A.3 shows a sample Terminal window with the base
environment activated.

Figure A.3 Terminal on a macOS machine. The active conda environment is base.

Anaconda will activate the conda environment manager and this base environment
whenever we start Terminal.

A.2.3 Common Terminal commands

We need to memorize only a few commands to work effectively with Terminal. In Ter-
minal, we can navigate through our computer’s directories the same way that we do in
the Finder. The pwd (print working directory) command outputs the folder we are in:

(base) ~$ pwd
/Users/boris

The ls (list) command lists the files and folders inside the current directory:

(base) ~$ ls
Applications Documents    Google Drive Movies       Pictures     anaconda3
Desktop      Downloads    Library      Music        Public

Some commands accept flags. A flag is a configuration option we add after a com-
mand to modify how it executes. Its syntax consists of a sequence of dashes and text
characters. Here’s one example. The ls command by itself shows only public files and
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folders. We can add the --all flag to the command to display the hidden files as well.
Some flags support multiple syntax options. ls -a , for example, is a shortcut for ls
--all. Try both commands for yourself.

 The cd (change directory) command navigates into a specified directory. Enter
the directory name immediately after the command, making sure to include a space.
In the next example, we navigate into the Desktop directory:

(base) ~$ cd Desktop

We can output our current location with the pwd command:

(base) ~/Desktop$ pwd
/Users/boris/Desktop

A pair of dots after cd navigates upward in the folder hierarchy:

(base) ~/Desktop$ cd ..

(base) ~$ pwd
/Users/boris

Terminal has a powerful autocomplete feature. Inside your user directory, enter cd
Des and press the Tab key to autocomplete it to cd Desktop. Terminal looks at the
list of available files and folders, and determines that only Desktop matches the Des
pattern we typed. If there are multiple matches, Terminal will complete a portion of
the name. If a directory contains two folders, Anaconda and Analytics, and you
enter the letter A, Terminal will autocomplete Ana, the common letters in the two
options. You’ll have to type an additional letter and press the Tab key again for Termi-
nal to autocomplete the remainder of the name.

 At this point, we’ve acquired all the knowledge we need to start working with the
conda environment manager. Skip to section A.4, where we’ll meet up with our Win-
dows friends and set up our first conda environment!

A.3 The Windows setup process
Let’s walk through installing Anaconda on a Windows computer.

A.3.1 Installing Anaconda in Windows

The Anaconda installer for Windows is available in both 32-bit and 64-bit versions.
These options describe the type of processor installed with your computer. If you are
unsure which option to download, open the Start menu, and choose the System Infor-
mation app. On the app’s main screen, you will see a table consisting of Item and
Value columns. Look for the System Type item; its value will include x64 if your com-
puter runs a 64-bit version of Windows or x86 if your computer runs a 32-bit version
of Windows. Figure A.4 shows the System Information app on a Windows computer
with the System Type row highlighted.
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Figure A.4 The System Information app on a 64-bit Windows computer

Your Anaconda download will consist of a single .exe installer file. The filename will
include the Anaconda version number and the operating system (such as Anaconda3-
2021.05-Windows-x86_64). Locate the file on your file system and double-click it to
launch the installer.

 Proceed through the first few installation screens. You will be prompted to accept
the license agreement, choose whether to install Anaconda for one or all users, and
select the installation directory. Selecting the default options is fine.

 When you reach the Advanced Installation Options screen, it might be a good idea
to deselect the Register Anaconda As My Default Python check box if you already have
Python installed on your computer. Deselecting the item prevents the installation
from setting Anaconda as the default Python version on your computer. If you’re
installing Python for the first time, keeping the option selected should be fine.

 The installation creates a starter conda environment called base with a collection
of more than 250 preselected data analysis packages. You will be able to create addi-
tional environments later.

    Installation can take up to a
few minutes. Figure A.5 shows a
sample of the installation pro-
cess. When installation is com-
plete, exit the installer.
 
 
 
 
 
 

Figure A.5 In-progress Anaconda 
installation on a Windows computer
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If you ever want to uninstall Anaconda, launch the Start menu, and choose Add or
Remove Programs. Locate the Anaconda program, click the Uninstall button, and fol-
low the steps in the prompt to remove the distribution from your computer. Note that
this process will remove all conda environments as well as their installed packages and
Python versions.

A.3.2 Launching Anaconda Prompt

Anaconda ships with a graphical program called Navigator that makes it easy to create
and manage conda environments. Before we launch it, though, we’ll use a more tradi-
tional command-line application to issue commands to the conda environment man-
ager. It’s important to understand the problems that Navigator solves for us before we
rely on its shortcuts.

 Anaconda Prompt is an application for issuing text commands to the Windows oper-
ating system. We enter a command and then press the Enter key to execute it. Before
modern GUIs existed, users relied exclusively on command-based applications like
this one to interact with the computer. Open the Start menu, find Anaconda Prompt,
and launch the application.

 Anaconda Prompt should always list the active conda environment in a pair of
parentheses before its flashing prompt. Right now, you should see base, the starter
environment that Anaconda created during installation. Figure A.6 displays Anaconda
Prompt with an active base environment.

Figure A.6 Anaconda Prompt on a Windows machine. The active conda environment is base.

Anaconda Prompt will activate the base environment when it launches. In section
A.3.4, we’ll walk through how to create and activate new environments with conda.

A.3.3 Common Anaconda Prompt commands

We need to memorize only a few commands to work effectively with Anaconda
Prompt. We can navigate through our computer’s directories the same way that we do
in Windows Explorer. The dir (directory) command lists all files and folders in the
current directory:

(base) C:\Users\Boris>dir
 Volume in drive C is OS
 Volume Serial Number is 6AAC-5705

 Directory of C:\Users\Boris
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08/15/2019 03:16 PM <DIR> .
08/15/2019 03:16 PM <DIR> ..
09/20/2017 02:45 PM <DIR> Contacts
08/18/2019 11:21 AM <DIR> Desktop
08/13/2019 03:50 PM <DIR> Documents
08/15/2019 02:51 PM <DIR> Downloads
09/20/2017 02:45 PM <DIR> Favorites
05/07/2015 09:56 PM <DIR> Intel
06/25/2018 03:35 PM <DIR> Links
09/20/2017 02:45 PM <DIR> Music
09/20/2017 02:45 PM <DIR> Pictures
09/20/2017 02:45 PM <DIR> Saved Games
09/20/2017 02:45 PM <DIR> Searches
09/20/2017 02:45 PM <DIR> Videos
              1 File(s) 91 bytes
             26 Dir(s) 577,728,139,264 bytes free

The cd (change directory) command navigates into a specified directory. Enter the
directory name immediately after the command, making sure to include a space. In
the next example, we navigate into the Desktop directory:

(base) C:\Users\Boris>cd Desktop

(base) C:\Users\Boris\Desktop>

A pair of dots after cd navigates upward in the folder hierarchy:

(base) C:\Users\Boris\Desktop>cd ..

(base) C:\Users\Boris>

Anaconda Prompt has a powerful autocomplete feature. Inside your user directory,
enter cd Des and press the Tab key to autocomplete it to cd Desktop. Anaconda
Prompt looks at the list of available files and folders, and determines that only Desktop
matches the Des pattern we typed. If there are multiple matches, Anaconda Prompt will
complete a portion of the name. If a directory contains two folders, Anaconda and
Analytics, and you enter the letter A, Anaconda Prompt will autocomplete Ana, the
common letters in the two options. You’ll have to type an additional letter and press the
Tab key again for Prompt to autocomplete the remainder of the name.

 At this point, we have all the knowledge we need to start working with the conda
environment manager. Let’s create our first conda environment!

A.4 Creating a new Anaconda environment
Congratulations—you’ve successfully installed the Anaconda distribution on your
macOS or Windows machine. Now let’s create a sample conda environment that we’ll
use as we work through the book. Please note that the code samples in this section are
from a macOS computer. Although outputs may vary slightly between the two operat-
ing systems, the Anaconda commands remain the same.

 Open Terminal (macOS) or Anaconda Prompt (Windows). Anaconda’s default
base environment should be active. Look for the presence of parentheses with the
word base to the left of the prompt.
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 First, let’s confirm that we successfully installed the conda environment manager
by issuing a sample command. Here’s an easy one: ask conda for its version number.
Note that your version may differ from the one in the following output, but as long as
the command returns any number at all, conda is successfully installed:

(base) ~$ conda –-version
conda 4.10.1

The conda info command returns a list of technical details about conda. The out-
put includes the currently active environment and its location on your hard drive.
Here is an abbreviated version of the output:

(base) ~$ conda info

     active environment : base
    active env location : /opt/anaconda3
            shell level : 1
       user config file : /Users/boris/.condarc
 populated config files : /Users/boris/.condarc
          conda version : 4.10.1
    conda-build version : 3.18.9
         python version : 3.7.4.final.0

We can use flags to customize and configure conda commands. A flag is a configura-
tion option we add after a command to modify how it executes. Its syntax consists of a
sequence of dashes and text characters. The --envs flag to the info command lists
all environments and their locations on the computer. An asterisk (*) marks the active
environment:

(base) ~$ conda info --envs
# conda environments:
#
base                  *  /Users/boris/anaconda3

Every conda command supports the --help flag, which outputs documentation for
the command. Let’s add the flag to the conda info command:

(base) ~$ conda info --help
usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
                  [--unsafe-channels]

Display information about current conda install.

Options:

optional arguments:
  -h, --help         Show this help message and exit.
  -a, --all          Show all information.
  --base             Display base environment path.
  -e, --envs         List all known conda environments.
  -s, --system       List environment variables.
  --unsafe-channels  Display list of channels with tokens exposed.
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Output, Prompt, and Flow Control Options:
  --json             Report all output as json. Suitable for using conda
                     programmatically.
  -v, --verbose      Use once for info, twice for debug, three times for
                     trace.
  -q, --quiet        Do not display progress bar.

Let’s create a new playground to play in. The conda create command generates a
new conda environment. We have to use the ––name flag to provide a name for the
environment. I’ve chosen a fitting title of pandas_in_action; you’re welcome to
choose whatever environment name you like. When conda prompts for confirmation,
enter y (for yes) and press Enter to confirm:

(base) ~$ conda create --name pandas_in_action
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /opt/anaconda3/envs/pandas_in_action

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate pandas_in_action
#
# To deactivate an active environment, use
#
#     $ conda deactivate

By default, conda installs the latest version of Python in the new environment. To cus-
tomize the language version, add the keyword python at the end of the command,
enter an equal sign, and declare the desired version. The next example shows how to
create an environment called sample with Python 3.7:

(base) ~$ conda create --name sample python=3.7

Use the conda env remove command to delete an environment. Provide the
--name flag with the environment you’d like to remove. The next code sample
deletes the sample environment we created:

(base) ~$ conda env remove --name sample

Now that the pandas_in_action environment exists, we can activate it. The conda
activate command sets the active environment in Terminal or Anaconda Prompt. The
text in parentheses before the prompt will change to reflect the new active environment:
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(base) ~$ conda activate pandas_in_action

(pandas_in_action) ~$

All conda commands execute in the context of the active environment. If we ask
conda to install a Python package, for example, conda will now install it within pan-
das_in_action. We want to install the following packages:

 The core pandas library
 The jupyter development environment where we’ll be writing our code
 The bottleneck and numexpr libraries for speed accelerations

The conda install command downloads and install packages in the active conda
environment. Add the four packages immediately after the command, separated by
spaces:

(pandas_in_action) ~$ conda install pandas jupyter bottleneck numexpr

As mentioned earlier, these four libraries have dependencies. The conda environ-
ment manager will output a list of all packages that it needs to install. Following is a
shortened version of the output. It’s OK if you see a different list of libraries or version
numbers; conda takes care of compatibility.

Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /opt/anaconda3/envs/pandas_in_action

  added / updated specs:
    - bottleneck
    - jupyter
    - numexpr
    - pandas

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    appnope-0.1.2              |py38hecd8cb5_1001          10 KB
    argon2-cffi-20.1.0         |   py38haf1e3a3_1          44 KB
    async_generator-1.10       |             py_0          24 KB
    certifi-2020.12.5          |   py38hecd8cb5_0         141 KB
    cffi-1.14.4                |   py38h2125817_0         217 KB
    ipython-7.19.0             |   py38h01d92e1_0         982 KB
    jedi-0.18.0                |   py38hecd8cb5_0         906 KB
    #... more libraries

Type y for yes and press Enter to install all packages and their dependencies.
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 If you ever forget the packages installed in an environment, use the conda list
command to see a complete list. The output includes each library’s version:

(pandas_in_action) ~$ conda list

# packages in environment at /Users/boris/anaconda3/envs/pandas_in_action:
#
# Name                    Version             Build  Channel
jupyter                   1.0.0           py39hecd8cb5_7
pandas                    1.2.4           py39h23ab428_0

If you ever want to remove a package from an environment, use the conda unin-
stall command. Here’s what that command would look like with pandas:

(pandas_in_action) ~$ conda uninstall pandas

We’re ready to explore our development environment. We can launch the Jupyter
Notebook application with the command jupyter notebook:

(pandas_in_action) ~$ jupyter notebook

Jupyter Notebook starts a local server on your computer to run the core Jupyter appli-
cation. We need a server running continually so that it can observe the Python code
we write and execute it immediately.

 The Jupyter Notebook application should open in your system’s default web
browser. You can also access the application by navigating to localhost:8888/ in the
address bar; localhost refers to your computer, and 8888 is the port on which the app
is running. Much as a dock includes multiple ports to welcome multiple ships, your
computer (localhost) has multiple ports to allow multiple programs to run on your
computer’s local server. Figure A.7 shows the main interface of the Jupyter Notebook
interface, listing the files and folders in the current directory.

 The Jupyter Notebook interface is similar to the Finder (macOS) or Windows
Explorer (Windows). Folders and files are organized in alphabetical order. You can
click through folders to navigate into the next directory and use the breadcrumbs on

Figure A.7 Jupyter Notebook’s main interface
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top to navigate upward. Poke around for a few seconds. When you get the hang of nav-
igation, close the browser.

 Note that closing the browser does not shut down the running Jupyter server. We
need to press the keyboard shortcut Ctrl-C twice in Terminal or Anaconda Prompt to
terminate the Jupyter server.

 Note that every time you launch Terminal (macOS) or Anaconda Prompt (Win-
dows), you’ll have to activate the pandas_in_action environment again. Although
Anaconda’s base environment includes pandas, I recommend creating a new envi-
ronment for every Python book or tutorial you work through. Multiple environments
ensure separation between Python dependencies across different projects. One tuto-
rial may use pandas 1.1.3, for example, and another may use pandas 1.2.0. There are
fewer chances for technical errors when you install, upgrade, and work with depen-
dencies in isolation.

 Here’s a reminder of what to do each time you launch Terminal or Anaconda Prompt:

(base) ~$ conda activate pandas_in_action

(pandas_in_action) ~$ jupyter notebook

The first command activates the conda environment, and the second command
launches Jupyter Notebook.

A.5 Anaconda Navigator
Anaconda Navigator is a graphical program for managing conda environments.
Although its feature set is not as comprehensive as that of the conda command-line
tool, Anaconda Navigator offers a visual, beginner-friendly way to create and manage
environments with conda. You can find Anaconda Navigator inside the Applications
folder in the Finder (macOS) or on the Start menu (Windows). Figure A.8 shows the
home screen of the Anaconda Navigator app.

Figure A.8
Anaconda 
Navigator 
home screen
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Click the Environments tab on the left menu to display a list of all environments.
Select a conda environment to see its installed packages, including their descriptions
and version numbers.

 On the bottom pane, click the Create button to launch a new environment-creation
prompt. Give the environment a name, and select a version of Python to install. The
resulting dialog box displays the location where conda will create the environment
(figure A.9).

To install a package, select an environment in the left list.
Above the list of packages, click the drop-down menu and
choose All to see all packages (figure A.10).

 In the search box on the right, search for a sample library,
such as pandas. Locate it in the search results, and select the
corresponding check box (figure A.11).

 Finally, click the green Apply button in the bottom-right cor-
ner to install the library.

 

 

Figure A.11 Searching for and selecting the pandas package in Anaconda Navigator

Figure A.9 Creating a new 
Anaconda environment

Figure A.10
Anaconda package 
search
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Let’s delete the pandas_playbox
environment we created. We don’t
need it because we already created
a pandas_in_action environ-
ment in Terminal or Anaconda
Prompt. Make sure to select
pandas_playbox in the left-side
environment list. Then click the
Remove button on the bottom
panel and again in the confirma-
tion dialog box (figure A.12).

 To launch Jupyter Notebook
from Anaconda Navigator, click
the Home tab of the left naviga-
tion menu. On this screen, you’ll see tiles for the applications installed in the current
environment. The top of the screen has a drop-down menu from which you can
choose the active conda environment. Make sure to select the pandas_in_action
environment we created for this book. Then you can launch Jupyter Notebook by
clicking its application tile. This action is equivalent to executing jupyter notebook
from Terminal or Anaconda Prompt.

A.6 The basics of Jupyter Notebook
Jupyter Notebook is an interactive development environment for Python, consisting of
one or more cells, each of which holds Python code or Markdown. Markdown is a text
formatting standard that we can use to add headers, text paragraphs, bulleted lists,
embedded images, and more to the Notebook. We use Python to write our logic and
Markdown to organize our thoughts. As you proceed through the book, feel free to
use Markdown to take notes on the material. The complete documentation for Mark-
down is available at https://daringfireball.net/projects/markdown/syntax.

 On the Jupyter launch screen, click the New button on the right menu, and
choose Python 3 to create a new Notebook (figure A.13).

Figure A.13 Creating a Jupyter Notebook

Figure A.12 Deleting the environment we created in 
Anaconda Navigator

https://daringfireball.net/projects/markdown/syntax


344  APPENDIX A Installation and setup
To give the Notebook a name, click the Untitled text at the top and enter a name in
the dialog box. Jupyter Notebook saves its files with the .ipynb extension, short for IPy-
thon Notebooks, the predecessor of Jupyter Notebooks. You can navigate back to your
Jupyter Notebook tab to see the new .ipynb file in the directory.

 A Notebook operates in two modes: Command and Edit. Clicking a cell or pressing
Enter while the cell is focused triggers Edit mode. Jupyter highlights the cell with a
green border. In Edit mode, Jupyter interprets your keyboard presses literally. We use
this mode to type characters in a selected cell. Figure A.14 displays a sample Jupyter
cell in Edit mode.

Figure A.14 Empty Jupyter Notebook cell in Edit mode

Below the Notebook’s navigation menu, you’ll find a toolbar for common shortcuts. A
drop-down menu at the right end of the toolbar displays the focused cell’s type. Click
the drop-down menu to reveal a list of available cell options, and choose Code or
Markdown to change a cell to that type (figure A.15).

Figure A.15 Changing the type of a Jupyter Notebook cell

One of the best features of Jupyter Notebooks is its trial-and-error approach to devel-
opment. We enter Python code in a Code cell and then execute it. Jupyter outputs the
result below the cell. We check whether the result matches what we expect and con-
tinue the process. This approach encourages active experimentation; we’re always a
keyboard press away from seeing the difference that a line of code makes.

 Let’s execute some basic Python code. Enter the following mathematical expres-
sion inside the Notebook’s first cell and then click the Run button on the toolbar to
execute it:

In  [1]: 1 + 1

Out [1]: 2

The box to the left of the code (displaying the number 1 in the preceding example)
marks the cell’s execution order relative to the launch or restart of the Jupyter
Notebook. You can execute the cells in any order, and you can execute the same cell
multiple times.
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 As you read through the book, I encourage you to experiment by executing differ-
ent snippets of code in your Jupyter cells. Thus, it is OK if your execution numbers do
not match those in the text.

 If a cell contains multiple lines of code, Jupyter will output the evaluation of the
last expression. Note that Python still runs all the code in the cell; we see only the last
expression.

In  [2]: 1 + 1
         3 + 2

Out [2]: 5

The interpreter is the software that parses
your Python source code and executes it.
Jupyter Notebook relies on IPython (Inter-
active Python), an enhanced interpreter
with extra features for developer productiv-
ity. As one example, you can use the Tab key
to reveal available methods and attributes
on any Python object. The next example
shows the available methods on a Python
string. Type any string and a dot; then press
Tab to see the dialog box. Figure A.16
shows an example with a string. If you’re
unfamiliar with Python’s core data structures, see appendix B for a comprehensive
introduction to the language.

 You can enter any amount of Python in a Code cell, but it’s best to keep a cell’s size
reasonably small to improve readability and comprehension. If your logic is complex,
split the operations across several cells.

 You can use either of two keyboard shortcuts to execute a cell in Jupyter Notebook.
Press Shift-Enter to execute a cell and move focus to the next cell, and press Ctrl-Enter
to execute a cell and maintain focus on the original cell. Practice reexecuting the first
two cells to see this difference in action.

 Press the Esc key to activate Command mode, a management mode for the Note-
book. The available operations in this mode are more global; they affect the Note-
book as a whole rather than one specific cell. In this mode, keyboard characters serve
as shortcuts. Here are some helpful keyboard shortcuts to use when the Notebook is
in Command mode:

Keyboard shortcut Description

Up- and down-arrow keys Navigate through Notebook cells.

a Create a new cell above the selected cell.

b Create a new cell below the selected cell.

Figure A.16 Jupyter Notebook’s 
autocomplete features
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To clear everything from the Notebook’s memory, choose Kernel from the top-level
menu and then choose Restart. Additional options are available to clear cell outputs
and rerun all cells in the Notebook.

 Let’s say that we’ve had enough fun with our Notebook for the day and decide it’s
time to exit. A Notebook continues running in the background even when we close its
browser tab. To close it, navigate to the Running tab on the top menu of the Jupyter
launch screen, and click the Shutdown button next to the Notebook (figure A.17).

Figure A.17 Shutting down a Jupyter Notebook

After we shut down all Notebooks, we have to terminate the Jupyter Notebook applica-
tion. Close the browser tab with the Jupyter application. In Terminal or Anaconda
Prompt, press Ctrl+C twice to terminate the local Jupyter server.

 At this point, you’re all set to start writing Python and pandas code in Jupyter.
Good luck!

c Copy the contents of a cell.

x Cut the contents of a cell.

v Paste a copied or cut cell into the cell below the selected one.

d+d Delete a cell.

z Reverse a deletion.

y Change the cell type to Code.

m Change the cell type to Markdown.

h Show the help menu, which has a complete list of keyboard shortcuts.

Command-S (macOS) or 
Ctrl-S (Windows)

Save the Notebook. Note that Jupyter Notebook also has autosave 
functionality.

Keyboard shortcut Description
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Python crash course

The pandas library is built on top of Python, a popular programming language first
released in 1991 by Dutch developer Guido van Rossum. A library (also called a
package) is a toolbox of features that expands the core functionalities of a program-
ming language. Libraries accelerate developer productivity by providing solutions
to everyday problems such as database connections, code quality, and testing. Most
Python projects use libraries. After all, why solve a problem from scratch if some-
body has already solved it? More than 300,000 libraries are available to download
from the Python Package Index (PyPi), a centralized online repository of Python
packages. Pandas is one of those 300,000 libraries; it implements complex data
structures that excel at storing and manipulating multidimensional data. Before we
explore what pandas adds to Python, it’s important to see what’s available in the
base language.

 Python is an object-oriented programming (OOP) language. The OOP para-
digm views a software program as being a collection of objects that talk to one
another. An object is a digital data structure that stores information and provides
ways for it to be accessed and manipulated. Each object has a responsibility or pur-
pose for existing. We can think of each object as being an actor in a play and the
software program as being a performance.

 A helpful way to think of objects is as digital building blocks. Consider a spread-
sheet software like Excel. As users, we can discern the differences among a work-
book, a worksheet, and a cell. A workbook holds worksheets, a worksheet holds
cells, and cells hold values. We view these three entities as three distinct containers
of business logic, each with a designated responsibility, and we interact with them
in different ways. When building object-oriented computer programs, developers
think in the same manner, identifying and building the “blocks” that need to exist
for a program to run.

 You’ll often hear the expression “Everything is an object” in the Python commu-
nity. The statement means that the language implements all its data types, even
347
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simple ones such as numbers and text, as objects. Libraries like pandas add a new col-
lection of objects—an additional set of building blocks—to the language.

 As a data analyst turned software engineer, I’ve witnessed the Python proficiency
requirements for many roles in the industry. I can state from experience that you do
not need to be an advanced programmer to be productive with pandas. Basic under-
standing of Python’s core mechanics, however, will significantly accelerate the speed
at which you can pick up the library. This appendix highlights the key language essen-
tials you need to know to be successful.

B.1 Simple data types
Data comes in a variety of types. A whole number like 5 is of a different type than a
decimal number like 8.46. Both 5 and 8.46 are different from a text value like "Bob".

 Let’s begin with an exploration of the core data types built into Python. Make sure
that you’ve installed the Anaconda distribution and set up a conda environment that
includes the Jupyter Notebook coding environment. If you need help, see the installa-
tion instructions in appendix A. Activate the conda environment you created for this
book, execute the command jupyter notebook, and create a new Notebook.

 A quick note before we start: in Python, the hashtag symbol (#) creates a comment.
A comment is a line of text that Python ignores when it processes the code. Developers
use comments to provide inline documentation for their code. Here’s an example:

# Adds two numbers together
1 + 1

We can also add a comment after a piece of code. Python ignores everything after the
hashtag symbol. The rest of the line executes normally:

1 + 1 # Adds two numbers together

Although the previous example evaluates to 2, the next example produces no output.
The comment effectively disables the line, so Python ignores the addition:

# 1 + 1

I’ve used comments in code cells throughout the book to provide supplemental com-
mentary on the operations at hand. You do not need to copy the comments into your
Jupyter Notebook.

B.1.1 Numbers

An integer is a whole number; it has no fractional or decimal component. An example
is 20:

In  [1] 20

Out [1] 20

An integer can be any positive number, negative number, or zero. Negative numbers
are prefixed by a minus sign (-):
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In  [2] -13

Out [2] -13

A floating-point number (colloquially called a float) is a number with a fractional or deci-
mal component. We use a dot to declare a decimal point. 7.349 is an example of a
float:

In  [3] 7.349

Out [3] 7.349

Integers and floating-point numbers represent different data types in Python or,
equivalently, different objects. Look for the presence of a decimal point to distinguish
between the two. The value 5.0 is a floating-point object, for example, whereas 5 is an
integer object.

B.1.2 Strings

A string is a collection of zero or more text characters. We declare a string by wrapping
a piece of text in a pair of single, double, or triple quotes. There are differences
among the three options, but they are insignificant for beginners. We’ll be sticking
with double quotes throughout the book. Jupyter Notebook’s output for the three syn-
tax options is identical:

In  [4] 'Good morning'

Out [4] 'Good morning'

In  [5] "Good afternoon"

Out [5] 'Good afternoon'

In  [6] """Good night"""

Out [6] 'Good night'

Strings are not limited to alphabetic characters; they can include digits, spaces, and
symbols. Consider the next example, which includes seven alphabetic characters, a
dollar sign, two digits, a space, and an exclamation point:

In  [7] "$15 dollars!"

Out [7] '$15 dollars!'

Use the presence of quotes to identify a string visually. Many beginners are confused
by a value like "5", which is a string that holds a single numeric character. "5" is not
an integer.

 An empty string has no characters. We create it with a pair of quotes with nothing
between them:

In  [8] ""

Out [8] ''
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The length of a string refers to the count of its characters. The string "Monkey
business", for example, has a length of 15 characters; there are six characters in
Monkey, eight characters in business, and one space between the two words.

 Python assigns a number to every string character based on its order in line. The
number is called the index, and it starts counting from 0. In the string "car",

 "c" is at index position 0.
 "a" is at index position 1.
 "r" is at index position 2.

A string’s final index position is always one less than its length. The string "car" has a
length of 3, so its final index position is 2. Zero-based indexes tend to confuse new
developers; it’s a difficult mental shift to make because we have been taught since
grade school to start counting from 1. 

 We can extract any character from a string by its index position. After the string,
enter a pair of square brackets with the index value. The next example pulls out the
"h" character in "Python". The "h" character is the fourth character in sequence, so
it has an index of 3:

In  [9] "Python"[3]

Out [9] 'h'

To pull from the end of the string, provide a negative value within the square brackets.
A value of -1 extracts the last character, -2 extracts the second-to-last character, and
so on. The next example targets the fourth-to-last character in Python, the "t":

In  [10] "Python"[-4]

Out [10] 't'

In the preceding example, "Python"[2] would yield the same "t" output.
 We can use a special syntax to extract multiple characters from a string. The process

is called slicing. Place two numbers inside the square brackets, separated by a colon. The
left-side value sets the starting index. The right-side value sets the final index. The start-
ing index is inclusive; Python includes the character at that index. The ending index is
exclusive; Python excludes the character at that index. Tricky, I know.

 The next example pulls all characters from index position 2 (inclusive) up to
index position 5 (exclusive). The slice includes the characters "t" at index 2, "h" at
index 3, and "o" at index 4:

In  [11] "Python"[2:5]

Out [11] 'tho'

If 0 is the starting index, we can remove it from the square brackets and get the same
result. Choose whatever syntax option fits you better:

In  [12] # The two lines below are equivalent
         "Python"[0:4]
         "Python"[:4]

Out [12] 'Pyth'



351Simple data types
Here’s another shortcut: to extract characters from an index to the string’s end,
remove the ending index. The following example shows two options for pulling out
the characters from "h" (index 3) to the end of the "Python" string:

In  [13] # The two lines below are equivalent
         "Python"[3:6]
         "Python"[3:]

Out [13] 'hon'

We can also remove both numbers. A single colon tells Python “Go from the begin-
ning to the end.” The result is a copy of the string:

In  [14] "Python"[:]

Out [14] 'Python'

We can mix and match positive and negative index positions in a string slice. Let’s pull
from index 1 ("y") up to the last character in the string ("n"):

In  [15] "Python"[1:-1]

Out [15] 'ytho'

We can also pass an optional third number to set the step interval—the gap to jump
between every two index positions. The next example pulls out the characters from
index positions 0 (inclusive) up to 6 (exclusive) in intervals of 2. This slice includes
the characters "P", "t", and "o", which are at index positions 0, 2, and 4:

In  [16] "Python"[0:6:2]

Out [16] 'Pto'

Here’s a cool trick: we can pass in -1 as the third number to proceed backward from
the end of the list to the beginning. The result is a reversed string:

In  [17] "Python"[::-1]

Out [17] 'nohtyP'

Slicing comes in handy for extracting snippets of text from larger strings—a topic we
cover extensively in chapter 6.

B.1.3 Booleans

The Boolean data type represents the logical idea of truth. It can be only one of two val-
ues: True or False. The Boolean is named after English mathematician and philoso-
pher George Boole. It usually models an either-or relationship: yes or no, on or off,
valid or invalid, active or inactive, and so on.

In  [18] True

Out [18] True

In  [19] False

Out [19] False
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We often arrive at a Boolean data type through a calculation or comparison, which
we’ll see in section B.2.2.

B.1.4 The None object

The None object represents nothingness or the absence of a value. Like a Boolean, it’s
a tricky type to wrap our heads around because it’s more abstract than a concrete
value such as an integer.

 Suppose that we decide to measure our town’s daily temperature for a week but
forget to take a reading on Friday. The temperatures for six of the seven days would be
integers. How could we log the temperature for the missing day? We might enter
something like “missing” or “unknown” or “null”. The None object models the same
idea in Python. The language needs something to communicate the absence of a
value. It requires an object that stands in and announces that a value is missing, does
not exist, or is not needed. Jupyter Notebook outputs nothing when we execute a cell
with None:

In  [20] None

As with a Boolean, we’ll usually arrive at a None value rather than create it manually.
We’ll explore the object in greater detail as we work through the book.

B.2 Operators
An operator is a symbol that performs an operation. One classic example from elemen-
tary school is the addition operator: the plus sign (+). The values that an operator
works on are called operands. In the expression 3 + 5,

 + is the operator.
 3 and 5 are the operands.

In this section, we’ll explore the various mathematical and logical operators built into
Python.

B.2.1 Mathematical operators

Let’s write out the mathematical expression from the introduction. Jupyter will output
the calculation directly below the cell:

In  [21] 3 + 5

Out [21] 8

It is conventional to add a space on both sides of an operator to make the code easier
to read. The next two examples illustrate subtraction (-) and multiplication (*):

In  [22] 3 - 5

Out [22] -2

In  [23] 3 * 5

Out [23] 15
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** is the exponentiation operator. The next example raises 3 to the power of 5 (3
multiplied by itself 5 times):

In  [24] 3 ** 5

Out [24] 243

The / symbol performs division. The next example divides 3 by 5:

In  [25] 3 / 5

Out [25] 0.6

In mathematical terminology, the quotient is the result of dividing one number by
another. Division with the / operator always returns a floating-point quotient, even if
the divisor fits evenly into the dividend:

In  [26] 18 / 6

Out [26] 3.0

Floor division is an alternative type of division that removes the decimal remainder
from a quotient. It requires two forward slashes (//) and returns an integer quotient.
The next example demonstrates the differences between the two operators:

In  [27] 8 / 3

Out [27] 2.6666666666666665

In  [28] 8 // 3

Out [28] 2

The modulo operator (%) returns the remainder of a division. 2 is the remainder when
5 is divided by 3:

In  [29] 5 % 3

Out [29] 2

We can also use the addition and multiplication operators with strings. The plus sign
joins two strings. The technical word for this process is concatenation.

In  [30] "race" + "car"

Out [30] 'racecar'

The multiplication sign repeats a string a given number of times:

In  [31] "Mahi" * 2

Out [31] 'MahiMahi'

An object’s type determines the operations and operators that it supports. We can
divide integers, for example, but we cannot divide strings. The primary skill in OOP is
identifying the object you’re working with and the actions it can perform.
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 We can concatenate a string to another string, and we can add a number to
another number. But what happens when we try to add a string and a number?

In  [32] 3 + "5"

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-9-d4e36ca990f8> in <module>
----> 1 3 + "5"

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Uh-oh. This example is our first exposure to a Python error—one of several dozen
built into the language. The technical name for an error is an exception. Like every-
thing else in Python, an exception is an object. Whenever we make a syntactical or log-
ical mistake, Jupyter Notebook displays an analysis that includes the name of the error
and the line number that triggered it. The technical term raise is often used to indi-
cate that Python encountered an exception. We could say, “I tried to add a number
and a string, and Python raised an exception.”

 Python raises a TypeError exception when we use a wrong data type in an opera-
tion. In the preceding example, Python observed a number and a plus sign, and
assumed that another number would follow. Instead, it received a string, which it can-
not add to an integer. We’ll see how we can convert an integer to a string (and vice
versa) in section B.4.1.

B.2.2 Equality and inequality operators

Python considers two objects to be equal if they hold the same value. We can compare
the equality of two objects by placing them on opposite sides of the equality operator
(==). The operator returns True if the two objects are equal. As a reminder, True is a
Boolean value.

In  [33] 10 == 10

Out [33] True

Be careful: the equality operator has two equal signs. Python reserves a single equal
sign for a completely different operation that we’ll cover in section B.3.

 The equality operator returns False if the two objects are unequal. True and
False are the only valid values for Booleans:

In  [34] 10 == 20

Out [34] False

Here are some examples of the equality operator with strings:

In  [35] "Hello" == "Hello"

Out [35] True

In  [36] "Hello" == "Goodbye"

Out [36] False
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Case sensitivity matters when comparing two strings. In the next example, one string
starts with a capital "H", and the other starts with a lowercase "h", so Python considers
the two strings to be unequal:

In  [37] "Hello" == "hello"

Out [37] False

The inequality operator (!=) is the inverse of the equality operator; it returns True if
two objects are unequal. It is True, for example, that 10 is not equal to 20:

In  [38] 10 != 20

Out [38] True

Similarly, the string "Hello" is not equal to the string "Goodbye":

In  [39] "Hello" != "Goodbye"

Out [39] True

The inequality operator returns False if the two objects are equal:

In  [40] 10 != 10

Out [40] False

In  [41] "Hello" != "Hello"

Out [41] False

Python supports mathematical comparisons between numbers. The < operator checks
whether the operand on the left side is smaller than the operand on the right side.
The next example checks whether -5 is less than 3:

In  [42] -5 < 3

Out [42] True

The > operator checks whether the operand on the left side is greater than the oper-
and on the right side. The next example evaluates whether 5 is greater than 7; the
result is False.

In  [43] 5 > 7

Out [43] False

The <= operand checks whether the left-side operand is less than or equal to the
right-side operand. Here, we check whether 11 is less than or equal to 11:

In  [44] 11 <= 11

Out [44] True

The complementary >= operand checks whether the left-side operand is greater than
or equal to the right-side operand. The next example checks whether 4 is greater than
or equal to 5:
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In  [45] 4 >= 5

Out [45] False

Pandas enables us to apply comparisons like these to whole columns of data, a topic
we cover in chapter 5.

B.3 Variables
A variable is a name we assign to an object; we can compare it with the address of a
house, because it is a label, a reference, and an identifier. Variable names should be
clear and descriptive, describing the data that the object is storing and the purpose it
serves in our application. revenues_for_quarter4 is a better variable name than r
or r4, for example.

 We assign a variable to an object with the assignment operator, a single equal
sign (=). The next example assigns four variables (name, age, high_school_gpa,
and is_handsome) to four different data types (string, integer, floating-point, and
Boolean):

In  [46] name = "Boris"
         age = 28
         high_school_gpa = 3.7
         is_handsome = True

The execution of a cell with a variable assignment does not yield any output in Jupyter
Notebook, but afterward we are able to use the variable in any cell in the Notebook.
The variable is a substitute for the value it holds:

In  [47] name

Out [47] 'Boris'

A variable name must start with a letter or an underscore. After the first letter, it can
hold only letters, numbers, or underscores.

 As their name suggests, variables can hold values that vary over a program’s execu-
tion. Let’s reassign the age variable to a new value of 35. After we execute the cell, the
age variable’s reference to its former value, 28, will be lost:

In  [48] age = 35
         age

Out [48] 35

We can use the same variable on both sides of the assignment operator. Python always
evaluates the right side of the equal sign first. In the next example, Python adds the
value of age at the start of the cell’s execution, 35, to 10. The resulting sum, 45, is
saved to the age variable:

In  [49] age = age + 10
         age

Out [49] 45
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Python is a dynamically typed language, which means that variables do not know any-
thing about data types. A variable is a placeholder name for any object in the pro-
gram. Only the object knows its data type. Therefore, we can reassign variables from
an object of one type to another. The next example reassigns the high_school_gpa
variable from its original floating-point value of 3.7 to a string of "A+":

In  [50] high_school_gpa = "A+"

Python raises a NameError exception when a variable does not exist in the program:

In  [51] last_name

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-5-e1aeda7b4fde> in <module>
----> 1 last_name

NameError: name 'last_name' is not defined

You’ll typically encounter a NameError exception when you mistype a variable name.
This exception is nothing to fear; correct the spelling, and execute the cell again.

B.4 Functions
A function is a procedure consisting of one or more steps. Think of a function as being
a cooking recipe in a programming language—a series of instructions that yields a
consistent result. Functions enable reusability in software. Because a function captures
a piece of business logic from start to finish, we can reuse it when we have to perform
the same operation multiple times.

 We declare a function and then execute it. In the declaration, we write the steps
that the function should take. In the execution, we run the function. Sticking to our
cooking analogy, declaring a function is equivalent to writing down a recipe, and exe-
cuting a function is equivalent to cooking the recipe. The technical term for execut-
ing a function is calling it or invoking it.

B.4.1 Arguments and return values

Python ships with more than 65 built-in functions. We can also declare our own cus-
tom functions. Let’s dive into an example. The built-in len function returns the
length of a given object. The concept of length varies from data type to data type; for
a string, it’s a count of its characters.

 We invoke a function by entering its name and a pair of opening and closing
parentheses. Much as a cooking recipe can accept ingredients, a function invocation
can accept inputs called arguments. We pass arguments sequentially inside the paren-
theses, separated by commas.

 The len function expects one argument: the object whose length it should calcu-
late. The next example passes a string argument of "Python is fun" to the function:

In  [52] len("Python is fun")

Out [52] 13
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A cooking recipe produces a final output of a meal. Similarly, a Python function pro-
duces a final output called a return value. In the preceding example, len was the invoked
function, "Python is fun" was its single argument, and 13 was the return value.

 That’s all there is to it! A function is a procedure that is invoked with zero or more
arguments and produces a return value.

 Here are three more popular built-in functions in Python:

 int, which converts its argument to an integer
 float, which converts its argument to a floating-point number
 str, which converts its argument to a string

The next three examples showcase these functions in action. The first example invokes
the int function with a string argument of "20" and produces a return value of 20.
Can you identify the arguments and return values for the remaining two functions?

In  [53] int("20")

Out [53] 20

In  [54] float("14.3")

Out [54] 14.3

In  [55] str(5)

Out [55] '5'

Here’s another common error: Python raises a ValueError exception when a func-
tion receives an argument with the right data type but an inappropriate value. In the
next example, the int function receives a string (an appropriate type), but the string
is one from which it is impossible to extract an integer:

In  [56] int("xyz")

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-6-ed77017b9e49> in <module>
----> 1 int("xyz")

ValueError: invalid literal for int() with base 10: 'xyz'

Another popular built-in function is print, which outputs text to the screen. It
accepts any number of arguments. The function often proves to be helpful when we
want to observe a variable’s value throughout a program’s execution. The next exam-
ple invokes the print function four times with the value variable, whose value
changes several times:

In  [57] value = 10
         print(value)

         value = value - 3
         print(value)
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         value = value * 4
         print(value)

         value = value / 2
         print(value)

Out [57] 10
         7
         28
         14.0

If a function accepts multiple arguments, we must separate every two subsequent ones
with a comma. Developers often add a space after the comma for readability.

 When we pass the print function multiple arguments, it outputs all of them in
sequence. In the next example, notice that Python separates the three printed ele-
ments with a space:

In  [58] print("Cherry", "Strawberry", "Key Lime")

Out [58] Cherry Strawberry Key Lime

A parameter is a name given to an expected function argument. Each argument in an
invocation corresponds to a parameter. In previous examples, we passed in arguments
to the print function sequentially without specifying their parameter.

 We have to write parameter names out explicitly for certain arguments. The print
function’s sep (separator) parameter, for example, customizes the string that Python
inserts between every two printed values. We have to explicitly write out the sep
parameter if we’d like to pass it a custom argument. We assign an argument to a func-
tion’s keyword parameter with an equal sign. The next example outputs the same
three strings but instructs the print function to separate them with exclamation
points:

In  [59] print("Cherry", "Strawberry", "Key Lime", sep = "!")

Out [59] Cherry!Strawberry!Key Lime

Let’s come back to the example before the last one. Why were the three values printed
with a space in between every two subsequent values?

 A default argument is a fallback value that Python passes to a parameter if the func-
tion invocation does not explicitly provide one. The sep parameter to the print
function has a default argument of " ". If we invoke the print function without an
argument for the sep parameter, Python will automatically pass in a string with one
space. The following two lines of code produce the same output:

In  [60] # The two lines below are equivalent
         print("Cherry", "Strawberry", "Key Lime")
         print("Cherry", "Strawberry", "Key Lime", sep=" ")

Out [60] Cherry Strawberry Key Lime
         Cherry Strawberry Key Lime
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We call parameters like sep keyword arguments. We have to write their specific parame-
ter name when passing arguments to them. Python requires us to pass keyword argu-
ments after sequential arguments. Here’s another example of a print function
invocation that passes a different string argument to the sep parameter:

In  [61] print("Cherry", "Strawberry", "Key Lime", sep="*!*")

Out [61] Cherry*!*Strawberry*!*Key Lime

The print function’s end parameter customizes the string Python adds to the end of
all output. The parameter’s default argument is "\n", a special character that Python
recognizes as a line break. In the next example, we explicitly pass the same "\n" argu-
ment to the end parameter:

In  [62] print("Cherry", "Strawberry", "Key Lime", end="\n")
         print("Peach Cobbler")

Out [62] Cherry Strawberry Key Lime
         Peach Cobbler

We can pass multiple keyword arguments to a function invocation. The technical rules
still apply: separate every two arguments with a comma. The next example invokes the
print function twice. The first invocation separates its three arguments with a "!"
and ends the output with a "***". Because the first invocation does not force a line
break, the second invocation’s output continues where the first one concludes:

In  [63] print("Cherry", "Strawberry", "Key Lime", sep="!", end="***")
         print("Peach Cobbler")

Out [63] Cherry!Strawberry!Key Lime***Peach Cobbler

Take a second to reflect on the code formatting in the preceding example. Long lines
of code can be difficult to read, especially when we clump multiple parameters
together. The Python community favors several formatting solutions. One option is
placing all arguments on a separate line:

In  [64] print(
             "Cherry", "Strawberry", "Key Lime", sep="!", end="***"
         )

Out [64] Cherry!Strawberry!Key Lime***

Another option is adding a line break between arguments:

In  [65] print(
             "Cherry",
             "Strawberry",
             "Key Lime",
             sep="!",
             end="***",
         )

Out [65] Cherry!Strawberry!Key Lime***
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All three of these code samples are technically valid. There are multiple ways to for-
mat Python code. I use several formatting options throughout the book. My ultimate
goal is readability. You do not have to follow the formatting conventions I use. I will do
my best to communicate which differences are technical and which ones are aesthetic.

B.4.2 Custom functions

We can declare custom functions in our programs. The goal of a function is to capture
a distinct piece of business logic in a single, reusable procedure. A common mantra in
software engineering circles is DRY, an acronym for don’t repeat yourself. This acronym
is a warning that duplication of the same logic or behavior can lead to an unstable
program. The more places you repeat code, the more places you have to edit if
requirements change. A function solves the DRY problem.

 Let’s explore an example. Suppose that we are meteorologists working with
weather data. Our work requires us to convert temperatures in our program from
Fahrenheit to Celsius. There is a simple, consistent formula to the conversion. Writing
a function to convert one temperature from °F to °C is a good idea because we can iso-
late the conversion logic and reuse it as needed.

 We begin a function definition with the def keyword. We follow def with the func-
tion’s name, a pair of opening and closing parentheses, and a colon. Function names
and variable names with multiple words follow a snake_case naming convention.
The convention separates every two words with an underscore, which causes the name
to resemble a snake. Let’s call our function convert_to_fahrenheit:

def convert_to_fahrenheit():

To review, a parameter is a name for an expected function argument. We want the
convert_to_fahrenheit function to accept a single parameter: a Celsius tempera-
ture. Let’s call the parameter celsius_temp:

def convert_to_fahrenheit(celsius_temp):

If we define a parameter when we declare a function, we must pass an argument for
that parameter when invoking it. Thus, we must always provide a value for celsius_
temp whenever we run convert_to_fahrenheit.

 Our next step is defining what the function does. We declare a function’s steps in its
body, an indented section of code below its name. Python uses indentation to establish
relationships between constructs in the program. A function’s body is an example of a
block, a section of code nested within another section of code. According to PEP-8,1 the
Python community’s style guide, we should indent each line in a block with four spaces:

def convert_to_fahrenheit(celsius_temp):
    # This indented line belongs to the function
    # So does this indented line

# This line is not indented, so it does not belong to convert_to_fahrenheit

1 See “PEP 8—Style Guide for Python Code,” https://www.python.org/dev/peps/pep-0008.

https://www.python.org/dev/peps/pep-0008
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We can use a function’s parameters in its body. In our example, we can use the
celsius_temp parameter anywhere in the body of the convert_to_fahrenheit
function.

 We can declare variables in a function body. These variables are called local vari-
ables because they are bound to the scope of the function execution. Python throws
local variables out of memory as soon as the function is done running.

 Let’s write out the logic for the conversion! The formula to convert a Celsius tem-
perature to Fahrenheit is to multiply it by 9/5 and add 32:

def convert_to_fahrenheit(celsius_temp):
    first_step = celsius_temp * (9 / 5)
    fahrenheit_temperature = first_step + 32

At this juncture, our function correctly calculates the Fahrenheit temperature, but it
does not send the evaluation back to the main program. We need to use the return
keyword to mark the Fahrenheit temperature as the final output of the function. We
are returning it to the outside world:

In  [66] def convert_to_fahrenheit(celsius_temp):
             first_step = celsius_temp * (9 / 5)
             fahrenheit_temperature = first_step + 32
             return fahrenheit_temperature

Our function is complete, so let’s test it! We invoke custom functions with a pair of
parentheses, the same syntax we use for Python’s built-in functions. The next example
invokes the convert_to_fahrenheit function with a sample argument of 10.
Python runs through the function body with the celsius_temp parameter set to 10.
The function returns a value of 50.0:

In  [67] convert_to_fahrenheit(10)

Out [67] 50.0

We can provide keyword arguments instead of positional ones. The next example
writes the celsius_temp parameter name out explicitly. The following code is equiv-
alent to the preceding code:

In  [68] convert_to_fahrenheit(celsius_temp = 10)

Out [68] 50.0

Although they are not required, keyword arguments help add clarity to our program.
The preceding example better communicates what the convert_to_fahrenheit
function’s input represents.

B.5 Modules
A module is a single Python file. The Python standard library is a collection of more than
250 modules built into the language to accelerate productivity. The modules assist
with technical operations such as mathematics, audio analysis, and URL requests. To
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reduce a program’s memory consumption, Python does not load these modules by
default. We have to import the specific modules we want manually when our program
requires them.

 The syntax to import built-in modules and external packages is identical: enter the
import keyword, followed by the module or package’s name. Let’s import Python’s
datetime module, which helps us work with dates and times:

In  [69] import datetime

An alias is an alternative name for an import—a shortcut that we can assign to a mod-
ule so we don’t have to write out its complete name when we reference it. The alias is
technically up to us, but certain nicknames have established themselves as favorites
among Python developers. A popular alias for the datetime module, for example, is
dt. We assign aliases with the as keyword:

In  [70] import datetime as dt

Now we can reference the module with dt instead of datetime.

B.6 Classes and objects
All the data types that we’ve explored so far—integers, floats, Booleans, strings, excep-
tions, functions, and even modules—are objects. An object is a digital data structure, a
container for storing, accessing, and manipulating a type of data.

 A class is a blueprint for creating objects. Think of it as being a schematic or tem-
plate from which Python builds the objects.

 We call an object constructed from a class an instance of the class. The act of creat-
ing an object from a class is called instantiation.

 Python’s built-in type function returns the class of the object we pass in as an
argument. The next example invokes the type function twice with two different
strings: "peanut butter" and "jelly". Although their content is unequal, the
strings are made from the same blueprint, the same class, the str class. They are
both strings:

In  [71] type("peanut butter")

Out [71] str

In  [72] type("jelly")

Out [72] str

These examples are fairly simple. The type function is helpful when we are unsure
what kind of object we’re working with. If we invoke a custom function and are unsure
what type of object it returns, we can pass its return value to type to find out.

 A literal is a shorthand syntax that creates an object from a class. One example
we’ve encountered so far is double quotes, which create strings ("hello"). For
more-complex objects, we need to use a different creation process.
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 The datetime module we imported in section B.5 has a date class that models a
date in time. Suppose that we’re trying to represent Leonardo da Vinci’s birthday,
April 15, 1452, as a date object.

 To create an instance from a class, write the class name followed by a pair of paren-
theses. date(), for example, creates a date object from the date class. The syntax is
identical to invoking a function. When instantiating an object, we can sometimes pass
arguments to the constructor, the function that creates the objects. The first three
arguments to the date constructor represent the year, month, and day the date
object will hold. The three arguments are required:

In  [73] da_vinci_birthday = dt.date(1452, 4, 15)
         da_vinci_birthday

Out [73] datetime.date(1452, 4, 15)

Now we have a da_vinci_birthday variable that holds a date object representing
April 15, 1452.

B.7 Attributes and methods
An attribute is a piece of internal data belonging to an object, a characteristic or detail
that exposes information about the object. We access an object’s attributes with dot
syntax. Three sample attributes on a date object are day, month, and year:

In  [74] da_vinci_birthday.day

Out [74] 15

In  [75] da_vinci_birthday.month

Out [75] 4

In  [76] da_vinci_birthday.year

Out [76] 1452

A method is an action or command that we can issue to the object. Think of a method
as being a function that belongs to an object. Attributes make up the object’s state, and
methods represent the object’s behavior. Like a function, a method can accept argu-
ments and produce a return value.

 We invoke a method with a pair of parentheses after its name. Be sure to add a dot
between the object and the method name. One sample method a date object has is
weekday. The weekday method returns the date’s day of the week as an integer. 0
denotes Sunday, and 6 denotes Saturday:

In  [77] da_vinci_birthday.weekday()

Out [77] 3

Leonardo was born on a Wednesday!



365String methods
 The easiness and reusability of methods such as weekday is why date objects exist.
Imagine how difficult it would be to model date logic with a text string. Imagine if
every developer built their own custom solution. Ouch. Python’s developers antici-
pated that users would need to work with dates, so they built a reusable date class to
model that real-world construct.

 The key takeaway is that the Python standard library offers developers many utility
classes and functions to solve common problems. As programs grow in complexity,
however, it becomes difficult to model real-world ideas with only Python’s core
objects. To solve this problem, developers add custom objects to the language. These
objects model business logic pertinent to a specific domain. Developers bundle these
objects into libraries. That’s all pandas is: a bundle of additional classes to solve spe-
cific problems in the domain of data analysis.

B.8 String methods
A string object has its own set of methods. Here are a few examples.

 The upper method returns a new string with all characters in uppercase:

In  [78] "Hello".upper()

Out [78] "HELLO"

We can invoke methods on variables. Recall that a variable is a placeholder name for
an object. Python will substitute the variable for the object that it references. The next
example invokes the upper method on the string that the greeting variable refer-
ences. The output is the same as that of the preceding code example:

In  [79] greeting = "Hello"
         greeting.upper()

Out [79] "HELLO"

There are two categories of objects: mutable and immutable. A mutable object is capa-
ble of change. An immutable object is incapable of change. Strings, numbers, and Bool-
eans are examples of immutable objects; we cannot modify them after we create them.
The string "Hello" will always be the string "Hello". The number 5 will always be
the number 5.

 In the preceding example, the upper method call did not modify the original
"Hello" string assigned to the greeting variable. Rather, the method invocation
returned a new string with all capital letters. We can output the greeting variable to
confirm that the characters have their original casing:

In  [80] greeting

Out [80] 'Hello'

A string is immutable, so its methods will not modify the original object. We’ll explore
some mutable objects starting in section B.9.
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 The complementary lower method returns a new string with all characters in
lowercase:

In  [81] "1611 BROADWAY".lower()

Out [81] '1611 broadway'

There’s even a swapcase method that returns a new string with each character case
inverted. Uppercase letters become lowercase, and lowercase letters become uppercase:

In  [82] "uPsIdE dOwN".swapcase()

Out [82] 'UpSiDe DoWn'

A method can accept arguments. Let’s take a peek at the replace method, which
swaps all occurrences of a substring with a specified character sequence. The function-
ality is similar to the Find and Replace feature in a word processing program. The
replace method accepts two arguments:

 The substring to look for
 The value to replace it with

The next example replaces all occurrences of "S" with "$":

In  [83] "Sally Sells Seashells by the Seashore".replace("S", "$")

Out [83] '$ally $ells $eashells by the $eashore'

In this example,

 "Sally Sells Seashells by the Seashore" is the original string object.
 replace is the method invoked on the string.
 "S" is the first argument passed to the replace method invocation.
 "$" is the second argument passed to the replace method invocation.
 "$ally $ells $eashells by the $eashore" is the return value of the

replace method.

A method’s return value can be of a different data type than the original object. The
isspace method, for example, is invoked on a string but returns a Boolean. The
method returns True if the string consists of only spaces; otherwise, it returns False.

In  [84] "  ".isspace()

Out [84] True

In  [85] "3 Amigos".isspace()

Out [85] False

Strings have a family of methods for removing whitespace. The rstrip (right strip)
method removes whitespace from the end of a string:

In  [86] data = "    10/31/2019  "
         data.rstrip()

Out [86] '    10/31/2019'
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The lstrip (left strip) method removes whitespace from the beginning of a string:

In  [87] data.lstrip()

Out [87] '10/31/2019  '

The strip method removes whitespace from both ends of the string:

In  [88] data.strip()

Out [88] '10/31/2019'

The capitalize method capitalizes the first character of a string. This method often
proves to be helpful for working with lowercase names, places, or organizations:

In  [89] "robert".capitalize()

Out [89] 'Robert'

The title method capitalizes the first letter of every word in a string, using a space to
identify where each word begins and ends:

In  [90] "once upon a time".title()

Out [90] 'Once Upon A Time'

We can invoke multiple methods in sequence on a single line. This technique is called
method chaining. In the next example, the lower method returns a new string object
upon which we invoke the title method. The return value from title is yet
another new string object:

In  [91] "BENJAMIN FRANKLIN".lower().title()

Out [91] 'Benjamin Franklin'

The in keyword checks whether a substring exists in another string. Enter the string
to search for before the keyword and the string to search within after the keyword.
The operation returns a Boolean:

In  [92] "tuna" in "fortunate"

Out [92] True

In  [93] "salmon" in "fortunate"

Out [93] False

The startswith method checks whether a substring exists at the beginning of a string:

In  [94] "factory".startswith("fact")

Out [94] True

The endswith method checks whether a substring exists at the end of a string:

In  [95] "garage".endswith("rage")

Out [95] True
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The count method counts the occurrences of a substring within a string. The next
example counts the number of "e" characters in "celebrate":

In  [96] "celebrate".count("e")

Out [96] 3

The find and index methods locate the index position of a character or substring.
The methods return the first index position at which the argument occurs. Recall that
index positions start counting at 0. The next example searches for the index of the
first "e" in "celebrate". Python locates it at index 1:

In  [97] "celebrate".find("e")

Out [97] 1

In  [98] "celebrate".index("e")

Out [98] 1

What’s the difference between the find and index methods? If the string does not con-
tain the argument, find will return -1, and index will raise a ValueError exception:

In  [99] "celebrate".find("z")

Out [99] -1

In  [100] "celebrate".index("z")

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-5-bf78a69262aa> in <module>
----> 1 "celebrate".index("z")

ValueError: substring not found

Each method exists for a specific situation; neither option is better than the other. If
your program depends on a substring existing within a larger string, for example, you
may use the index method and react to the error. By comparison, if the absence of a
substring does not prohibit your program from executing, you can use the find
method to avoid crashing.

B.9 Lists
A list is a container for storing objects in order. The purpose of lists is twofold: to pro-
vide a “box” to store values and to keep them in sequence. We refer to the items
within a list as elements. In other programming languages, this data structure is often
called an array.

 We declare a list with a pair of opening and closing square brackets. We write our
elements inside the square brackets, separating every two with a comma. The next
example creates a list of five strings:

In  [101] backstreet_boys = ["Nick", "AJ", "Brian", "Howie", "Kevin"]



369Lists
The length of a list is equal to its number of elements. Remember the trusty len func-
tion? It can help us figure how many members are in the greatest boy band of all time:

In  [102] len(backstreet_boys)

Out [102] 5

An empty list is a list without elements. It has a length of 0:

In  [103] []

Out [103] []

A list can store elements of any data type: strings, numbers, floats, Booleans, and
more. A homogeneous list is one in which all elements have the same type. The follow-
ing three lists are homogeneous. The first holds integers, the second holds floating-
points, and the third holds Booleans:

In  [104] prime_numbers = [2, 3, 5, 7, 11]

In  [105] stock_prices_for_last_four_days = [99.93, 105.23, 102.18, 94.45]

In  [106] settings = [True, False, False, True, True, False]

Lists can also store elements of different data types. A heterogeneous list is one in which
elements have different data types. The following list has a string, an integer, a Bool-
ean, and a floating-point number:

In  [107] motley_crew = ["rhinoceros", 42, False, 100.05]

Much as it does for each character in a string, Python assigns each list element an
index position. The index represents an element’s place in line and starts counting
from 0. In the following three-item favorite_foods list,

 "Sushi" occupies index position 0.
 "Steak" occupies index position 1.
 "Barbeque" occupies index position 2.

In  [108] favorite_foods = ["Sushi", "Steak", "Barbeque"]

Two quick notes on list formatting. First, Python permits us to insert a comma after a list’s
last element. The comma does not affect the list whatsoever; it is an alternative syntax:

In  [109] favorite_foods = ["Sushi", "Steak", "Barbeque",]

Second, some Python style guides recommend breaking up long lists so that each ele-
ment occupies a single line. This format also does not affect the list in any technical
way. The syntax looks like this:

In  [110] favorite_foods = [
              "Sushi",
              "Steak",
              "Barbeque",
          ]
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Throughout the examples in this book, I’ve used whatever formatting style I believe
best enhances readability. You are welcome to use whichever format feels best to you.

 We can access a list element by its index position. Pass the index between a pair of
square brackets after the list (or the variable that references it):

In  [111] favorite_foods[1]

Out [111] 'Steak'

In section B.1.2, we introduced a slicing syntax to extract characters from a string. We
can use the same syntax to extract elements from a list. The next example pulls out
the elements from index positions 1 to 3. Remember that in a list slice, the starting
index is inclusive, and the ending index is exclusive:

In  [112] favorite_foods[1:3]

Out [112] ['Steak', 'Barbeque']

We can remove the number before the colon to pull from the beginning of the list.
The next example extracts elements from the start of the list to index 2 (exclusive):

In  [113] favorite_foods[:2]

Out [113] ['Sushi', 'Steak']

We can remove the number after the colon to pull to the end of the list. The next
example extracts elements from index 2 to the end of the list:

In  [114] favorite_foods[2:]

Out [114] ['Barbeque']

Leave out both numbers to create a copy of the list:

In  [115] favorite_foods[:]

Out [115] ['Sushi', 'Steak', 'Barbeque']

Finally, we can provide an optional third number in the square brackets to extract ele-
ments in intervals. The next example pulls elements from index position 0 (inclusive)
to index position 3 (exclusive) in increments of 2:

In  [116] favorite_foods[0:3:2]

Out [116] ['Sushi', 'Barbeque']

All slicing options return a new list.
 Let’s walk through some list methods. The append method adds a new element to

the end of a list:

In  [117] favorite_foods.append("Burrito")
          favorite_foods

Out [117] ['Sushi', 'Steak', 'Barbeque', 'Burrito']
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Do you recall our discussion on mutability versus immutability? A list is an example of
a mutable object, an object that is capable of change. We can add, remove, or replace
elements within a list after we create it. In the preceding example, the append
method mutated the list referenced by the favorite_foods variable. We did not cre-
ate a new list.

 By comparison, a string is an example of an immutable object. When we invoke a
method like upper, Python returns a new string; the original string remains unaf-
fected. Immutable objects cannot change.

 Lists include a variety of mutational methods. The extend method adds multiple
elements to the end of a list. It accepts one argument, a list with the values to add:

In  [118] favorite_foods.extend(["Tacos", "Pizza", "Cheeseburger"])
          favorite_foods

Out [118] ['Sushi', 'Steak', 'Barbeque', 'Burrito', 'Tacos', 'Pizza',
          'Cheeseburger']

The insert method adds an element to the list at a specific index position. Its first
argument is the index where we want to inject the element, and its second argument
is the new element. Python pushes values at and after the specified index position to
the next slot. The next example inserts the string "Pasta" at index position 2. The
list shifts the value "Barbeque" and all subsequent elements up one index position:

In  [119] favorite_foods.insert(2, "Pasta")
          favorite_foods

Out [119] ['Sushi',
           'Steak',
           'Pasta',
           'Barbeque',
           'Burrito',
           'Tacos',
           'Pizza',
           'Cheeseburger']

The in keyword can check whether a list includes an element. "Pizza" exists in our
favorite_foods list, and "Caviar" does not:

In  [120] "Pizza" in favorite_foods

Out [120] True

In  [121] "Caviar" in favorite_foods

Out [121] False

The not in operator confirms the absence of an element from a list. It returns the
inverse Boolean of the in operator:

In  [122] "Pizza" not in favorite_foods

Out [122] False
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In  [123] "Caviar" not in favorite_foods

Out [123] True

The count method counts the number of times an element appears in the list:

In  [124] favorite_foods.append("Pasta")
          favorite_foods

Out [124] ['Sushi',
           'Steak',
           'Pasta',
           'Barbeque',
           'Burrito',
           'Tacos',
           'Pizza',
           'Cheeseburger',
           'Pasta']

In  [125] favorite_foods.count("Pasta")

Out [125] 2

The remove method deletes the first occurrence of an element from the list. Note
that Python does not remove subsequent occurrences of the element:

In  [126] favorite_foods.remove("Pasta")
          favorite_foods

Out [126] ['Sushi',
           'Steak',
           'Barbeque',
           'Burrito',
           'Tacos',
           'Pizza',
           'Cheeseburger',
           'Pasta']

Let’s get rid of the other "Pasta" string at the end of the list. The pop method
removes and returns the last element from the list:

In  [127] favorite_foods.pop()

Out [127] 'Pasta'

In  [128] favorite_foods

Out [128] ['Sushi', 'Steak', 'Barbeque', 'Burrito', 'Tacos', 'Pizza',
           'Cheeseburger']

The pop method also accepts an integer argument with the index position of the
value Python should delete. The next example removes the "Barbeque" value at
index position 2. The "Burrito" string slides into index position 2, and the elements
after it also shift down by one index:

In  [129] favorite_foods.pop(2)

Out [129] 'Barbeque'
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In  [130] favorite_foods

Out [130] ['Sushi', 'Steak', 'Burrito', 'Tacos', 'Pizza', 'Cheeseburger']

A list can hold any object, including other lists. The next example declares a list with
three nested lists. Each nested list contains three integers:

In  [131] spreadsheet = [
              [1, 2, 3],
              [4, 5, 6],
              [7, 8, 9]
          ]

Let’s take a second to reflect on the preceding visual. Can you see any parallels with a
spreadsheet? A nested list is one way we can represent a multidimensional, tabular col-
lection of data. We can view the outermost list as being a worksheet and each internal
list as being a row of data.

B.9.1 List iteration

A list is an example of a collection object. It is capable of storing multiple values—a
collection of values. To iterate means to move over a collection object’s elements one at a
time.

 The most common way to iterate over a list’s items is with a for loop. Its syntax
looks like this:

for variable_name in some_list:
    # Do something

A for loop consists of several components:

 The for keyword.
 A variable name that will store each list element one at a time as the iteration

runs.
 The in keyword.
 The list to iterate over.
 A block of code that Python will run during each iteration. We can use the vari-

able name in this block of code.

As a reminder, a block is a section of indented code. Python uses indentation to associ-
ate constructs in our program. The block below a function name defines what the
function does. Similarly, the block below a for loop defines what happens during
each iteration.

 The next example iterates over a list of four strings, printing the length of each one:

In  [132] for season in ["Winter", "Spring", "Summer", "Fall"]:
              print(len(season))

Out [132] 6
          6
          6
          4



374  APPENDIX B Python crash course
The preceding iteration consists of four loops. The season variable holds the values
"Winter", "Spring", "Summer", and "Fall" in sequence. During each iteration,
we pass the current string to the len function. The len function returns a number,
which we print out.

 Suppose that we want to add the lengths of the strings together. We have to combine
a for loop with some other Python concepts. In the next example, we first initialize a
letter_count variable to hold a cumulative sum. Inside the for loop block, we cal-
culate the length of the current string with the len function and then overwrite the
running total. Finally, we output the value of letter_count after the loop completes:

In  [133] letter_count = 0

          for season in ["Winter", "Spring", "Summer", "Fall"]:
              letter_count = letter_count + len(season)

          letter_count

Out [133] 22

The for loop is the most conventional option for iterating over a list. Python also sup-
ports another syntax, which we discuss in section B.9.2.

B.9.2 List comprehension

List comprehension is a shorthand syntax to create a list from a collection object. Sup-
pose that we have a list of six numbers:

In  [134] numbers = [4, 8, 15, 16, 23, 42]

Let’s say that we want to create a new list with the squares of those numbers. In other
words, we want to apply a consistent operation to each element in the original list.
One solution is to iterate over each integer in numbers, take its square, and add the
result to a new list. As a reminder, the append method adds an element to the end of
a list:

In  [135] squares = []

          for number in numbers:
              squares.append(number ** 2)

          squares

Out [135] [16, 64, 225, 256, 529, 1764]

List comprehension can produce the same list of squares in a single line of code. Its
syntax requires a pair of opening and closing square brackets. Inside the brackets, we
first describe what we’d like to do with each element we iterate over and then the col-
lection from which the iterable items will come.

 The next example still iterates over the numbers list and assigns each list element
to a number variable. We declare what we’d like to do with each number before the
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for keyword. We move the number ** 2 calculation to the beginning and the for
in logic to the end:

In  [136] squares = [number ** 2 for number in numbers]
          squares

Out [136] [16, 64, 225, 256, 529, 1764]

List comprehension is considered to be the more Pythonic way to create a new list
from an existing data structure. The Pythonic way describes the collection of recom-
mended practices adopted by Python developers over time.

B.9.3 Converting a string to a list and vice versa

We’re familiar with lists and strings now, so let’s see how we can use them together.
Suppose that we have a string in our program that holds an address:

In  [137] empire_state_bldg = "20 West 34th Street, New York, NY, 10001"

What if we want to break the address into smaller components: street, city, state, and
zip code? Notice that the string uses a comma to separate the four pieces.

 A string’s split method breaks a string apart by using a delimiter, a sequence of
one or more characters marking a boundary. The next example asks the split
method to split empire_state_building on every occurrence of a comma. The
method returns a list consisting of the smaller strings:

In  [138] empire_state_bldg.split(",")

Out [138] ['20 West 34th Street', ' New York', ' NY', ' 10001']

This code is a step in the right direction. But notice that the last three elements in the
list have a leading space. Although we could iterate over the list’s elements and call
the strip on each one to remove its whitespace, a more optimal solution is to add the
space to the split method’s delimiter argument:

In  [139] empire_state_bldg.split(", ")

Out [139] ['20 West 34th Street', 'New York', 'NY', '10001']

We’ve successfully broken the string into a list of strings.
 The process also works in reverse. Suppose that we stored our address in a list and

want to concatenate the list’s elements into a single string:

In  [140] chrysler_bldg = ["405 Lexington Ave", "New York", "NY", "10174"]

First, we must declare the string that we’d like Python to inject between every two list
elements. Then we can invoke the join method on the string and pass in a list as the
argument. Python will join the list’s elements, separating each two with the delimiter.
The next example uses a delimiter of a comma and a space:

In  [141] ", ".join(chrysler_bldg)

Out [141] '405 Lexington Ave, New York, NY, 10174'
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The split and join methods are helpful for working with text data, which often
needs to be separated and remerged.

B.10 Tuples
A tuple is a similar data structure to a Python list. A tuple also stores elements in order,
but unlike a list, it is immutable. We cannot add, remove, or replace elements within
the tuple after we create it.

 The only technical requirement for defining a tuple is to declare multiple ele-
ments and separate every subsequent two with a comma. The following example
declares a three-element tuple:

In  [142] "Rock", "Pop", "Country"

Out [142] ('Rock', 'Pop', 'Country')

Usually, however, we declare a tuple with a pair of parentheses. The syntax makes it
easier to identify the object visually:

In  [143] music_genres = ("Rock", "Pop", "Country")
          music_genres

Out [143] ('Rock', 'Pop', 'Country')

The len function returns the length of a tuple:

In  [144] len(music_genres)

Out [144] 3

To declare a tuple with one element, we must include a comma after the element.
Python needs the comma to identify the tuple. Compare the differences in the next two
outputs. The first example does not use a comma; Python reads the value as a string.

In  [145] one_hit_wonders = ("Never Gonna Give You Up")
          one_hit_wonders

Out [145] 'Never Gonna Give You Up'

By comparison, the syntax here returns a tuple. Yes, one symbol can make a world of
difference in Python:

In  [146] one_hit_wonders = ("Never Gonna Give You Up",)
          one_hit_wonders

Out [146] ('Never Gonna Give You Up',)

Use the tuple function to create an empty tuple, which is one without elements:

In  [147] empty_tuple = tuple()
          empty_tuple

Out [147] ()

In  [148] len(empty_tuple)

Out [148] 0
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As with a list, you can access tuple elements by index position. As with a list, you can
iterate over tuple elements with a for loop. The only thing you can’t do is modify the
tuple. Because of its immutability, a tuple doesn’t include mutational methods such as
append, pop, and insert.

 If you have a collection of elements in order, and you know that it will not change,
you can prefer a tuple over a list to store it.

B.11 Dictionaries
Lists and tuples are optimal data structures for storing objects in order. We need
another data structure to solve a different kind of problem: establishing associations
between objects.

 Consider a restaurant menu. Each menu item is a unique identifier that we use to
look up a corresponding price. The menu item and its cost are associated. The order
of items is not what’s important; it’s the connection between two pieces of data.

 A dictionary is a mutable, unordered collection of key-value pairs. A pair consists of
a key and a value. Each key serves as an identifier for a value. Keys must be unique.
Values can contain duplicates.

 We declare a dictionary with a pair of curly braces ({}). The following example
creates an empty dictionary:

In  [149] {}

Out [149] {}

Let’s model a sample restaurant menu in Python. Inside the curly braces, we assign a
key to its value with a colon (:). The following example declares a dictionary with one
key-value pair. The string key "Cheeseburger" is assigned the floating-point value
7.99:

In  [150] { "Cheeseburger": 7.99 }

Out [150] {'Cheeseburger': 7.99}

When declaring a dictionary with multiple key-value pairs, separate every two pairs
with a comma. Let’s expand our menu dictionary to hold three key-value pairs. Notice
that the values for the "French Fries" and "Soda" keys are identical:

In  [151] menu = {"Cheeseburger": 7.99, "French Fries": 2.99, "Soda": 2.99}
          menu

Out [151] {'Cheeseburger': 7.99, 'French Fries': 2.99, 'Soda': 2.99}

We can count the number of key-value pairs in a dictionary by passing it to Python’s
built-in len function:

In  [152] len(menu)

Out [152] 3
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We use keys to retrieve values from dictionaries. Place a pair of square brackets with
the key immediately after the dictionary. The syntax is identical to accessing a list ele-
ment by index position. The following example extracts the value for the "French
Fries" key:

In  [153] menu["French Fries"]

Out [153] 2.99

In a list, the index position is always a number. In a dictionary, a key can be any
immutable data type: integers, floats, strings, Booleans, and more.

 Python raises a KeyError exception if the key does not exist in the dictionary.
KeyError is another example of a native Python error:

In  [154] menu["Steak"]

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-19-0ad3e3ec4cd7> in <module>
----> 1 menu["Steak"]

KeyError: 'Steak'

As always, case sensitivity matters. If a single character is mismatched, Python will not be
able to find a key. The key "soda" does not exist in our dictionary. Only "Soda" does:

In  [155] menu["soda"]

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-20-47940ceca824> in <module>
----> 1 menu["soda"]

KeyError: 'soda'

The get method also extracts a dictionary value by using a key:

In  [156] menu.get("French Fries")

Out [156] 2.99

The get method’s advantage is that it returns None if the key does not exist rather
than raise an error. Remember that None is an object that Python uses to represent
the idea of absence or nullness. The None value produces no visual output in Jupyter
Notebook. But we can wrap the invocation in a print function to force Python to
print None’s string representation:

In  [157] print(menu.get("Steak"))

Out [157] None

The second argument to the get method is a custom value to return if the key does
not exist in the dictionary. In the next example, the string "Steak" does not exist as a
key in the menu dictionary, so Python returns 99.99 instead:
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In  [158] menu.get("Steak", 99.99)

Out [158] 99.99

A dictionary is a mutable data structure. We can add key-value pairs to or remove key-
value pairs from the dictionary after we create it. To add a new key-value pair, provide
the key in square brackets, and assign a value to it with the assignment operator (=):

In  [159] menu["Taco"] = 0.99
          menu

Out [159] {'Cheeseburger': 7.99, 'French Fries': 2.99, 'Soda': 1.99,
          'Taco': 0.99}

If the key already exists in the dictionary, Python will overwrite its original value. The
next example changes the value of the "Cheeseburger" key from 7.99 to 9.99:

In  [160] print(menu["Cheeseburger"])
          menu["Cheeseburger"] = 9.99
          print(menu["Cheeseburger"])

Out [160] 7.99
          9.99

The pop method removes a key-value pair from a dictionary; it accepts a key as an
argument and returns its value. Python will raise a KeyError exception if the key
does not exist in the dictionary:

In  [161] menu.pop("French Fries")

Out [161] 2.99

In  [162] menu

Out [162] {'Cheeseburger': 9.99, 'Soda': 1.99, 'Taco': 0.99}

The in keyword checks whether an element exists in the dictionary’s keys:

In  [163] "Soda" in menu

Out [163] True

In  [164] "Spaghetti" in menu

Out [164] False

To check for inclusion among the dictionary’s values, invoke the values method on
the dictionary. The method returns a listlike object that contains the dictionary’s values.
We can use the in operator in combination with the values method’s return value:

In  [165] 1.99 in menu.values()

Out [165] True

In  [166] 499.99 in menu.values()

Out [166] False



380  APPENDIX B Python crash course
The values method returns a different type of object from the lists, tuples, and dic-
tionaries we’ve already seen. We don’t necessarily need to know what the object is,
however. All we care about is how we can work with it. The in operator checks for the
inclusion of a value in an object, and the object returned by the values method
knows how to handle it.

B.11.1 Dictionary Iteration

We should always assume that a dictionary’s key-value pairs are unordered. If you need
a data structure that maintains order, use a list or a tuple. If you need to create associ-
ations between objects, use a dictionary.

 Even if we cannot guarantee a deterministic iteration order, we can still loop over a
dictionary one key-value pair at a time with a for loop. The dictionary’s items
method yields a two-item tuple on each iteration. The tuple holds a key and its respec-
tive value. We can declare multiple variables after the for keyword to store each key
and value. In the next example, the state variable holds each dictionary key, and the
capital variable holds each value:

In  [167] capitals = {
              "New York": "Albany",
              "Florida": "Tallahassee",
              "California": "Sacramento"
          }

          for state, capital in capitals.items():
              print("The capital of " + state + " is " + capital + ".")

          The capital of New York is Albany.
          The capital of Florida is Tallahassee.
          The capital of California is Sacramento.

In the first iteration, Python yields a tuple of ("New York", "Albany"). In the sec-
ond iteration, it yields a tuple of ("Florida", "Tallahassee"), and so on.

B.12 Sets
List and dictionary objects help solve the problems of order and association. A set
assists with another common need: uniqueness. A set is an unordered, mutable collec-
tion of unique elements. It prohibits duplicates.

 We declare a set with a pair of curly braces. We populate the braces with
elements, separating every two with a comma. The next example declares a set of six
numbers:

In  [168] favorite_numbers = { 4, 8, 15, 16, 23, 42 }

Readers with a sharp eye may notice that the curly-brace syntax for declaring a set is
identical to the syntax for declaring a dictionary. Python can distinguish between the
two types of objects based on the presence or absence of key-value pairs.
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 Because Python interprets an empty pair of curly braces as an empty dictionary,
the only way to create an empty set is with the built-in set function:

In  [169] set()

Out [169] set()

Here are some helpful set methods. The add method adds a new element to the set:

In  [170] favorite_numbers.add(100)
          favorite_numbers

Out [170] {4, 8, 15, 16, 23, 42, 100}

Python will add an element to a set only if the set does not already have it. The next
example attempts to add 15 to favorite_numbers. Python sees that 15 already exists
within the set, so the object remains unchanged:

In  [171] favorite_numbers.add(15)
          favorite_numbers

Out [171] {4, 8, 15, 16, 23, 42, 100}

A set has no concept of order. Python will raise a TypeError exception if we attempt
to access a set element by index position:

In  [172] favorite_numbers[2]

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-17-e392cd51c821> in <module>
----> 1 favorite_numbers[2]

TypeError: 'set' object is not subscriptable

Python raises a TypeError exception when we attempt to apply an operation to an
invalid object. Set elements are unordered, so elements do not have index positions.

 In addition to preventing duplicates, sets are ideal for identifying similarities and
differences between two collections of data. Let’s define two sets of strings:

In  [173] candy_bars = { "Milky Way", "Snickers", "100 Grand" }
          sweet_things = { "Sour Patch Kids", "Reeses Pieces", "Snickers" }

The intersection method returns a new set with elements found in both of the
original sets. The & symbol performs the same logic. In the next example, "Snick-
ers" is the only string in common between candy_bars and sweet_things:

In  [174] candy_bars.intersection(sweet_things)

Out [174] {'Snickers'}

In  [175] candy_bars & sweet_things

Out [175] {'Snickers'}
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The union method returns a set that combines all elements of the two sets. The |
symbol performs the same logic. Keep in mind that duplicate values such as "Snick-
ers" will appear only once:

In  [176] candy_bars.union(sweet_things)

Out [176] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Snickers', 'Sour
          Patch Kids'}

In  [177] candy_bars | sweet_things

Out [177] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Snickers', 'Sour
          Patch Kids'}

The difference method returns a set of elements that are present in the set the
method is called on but not present in the set passed in as an argument. We can use
the - symbol as a shortcut. In the next example, "100 Grand" and "Milky Way" are
present in candy_bars but not in sweet_things:

In  [178] candy_bars.difference(sweet_things)

Out [178] {'100 Grand', 'Milky Way'}

In  [179] candy_bars - sweet_things

Out [179] {'100 Grand', 'Milky Way'}

The symmetric_difference method returns a set with elements found in either of
the sets but not both. The ^ syntax accomplishes the same result:

In  [180] candy_bars.symmetric_difference(sweet_things)

Out [180] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Sour Patch Kids'}

In  [181] candy_bars ^ sweet_things

Out [181] {'100 Grand', 'Milky Way', 'Reeses Pieces', 'Sour Patch Kids'}

And that’s all there is to cover! We’ve learned quite a bit of Python: data types, func-
tions, iterations, and more. It’s OK if you don’t remember all the details. Rather, come
back to this appendix whenever you need a refresher on the core mechanics of
Python. We’ll be using and reviewing a lot of these ideas as we work with the pandas
library.



appendix C
NumPy crash course

The open source NumPy (Numerical Python) library is a dependency of pandas that
exposes a powerful ndarray object for storing homogeneous, n-dimensional arrays.
That’s quite a mouthful, so let’s break it down. An array is an ordered collection of
values akin to a Python list. Homogeneous means that the values within the array are of
the same data type. N-dimensional means that the array can hold any number of
dimensions. (We’ll talk about dimensions in section C.1.) NumPy was developed by
data scientist Travis Oliphant, who founded Anaconda, the company that builds the
Python distribution we used to set up our development environment.

 We can use NumPy to generate randomized data sets of any size and shape; in
fact, the official pandas documentation does so extensively. Basic knowledge of the
library will help enhance our understanding of the underlying mechanics of pandas.

C.1 Dimensions
Dimensions refers to the number of reference points needed to extract a single value
from a data structure. Consider a collection of temperatures across several cities on
a given day:

If I asked you to find a specific temperature in this data set, you’d need only one
point of reference: the city’s name (such as “San Francisco”) or its order (such as
“the third city in the list”). Thus, the table depicts a one-dimensional data set.

Temperature

New York 38

Chicago 36

San Francisco 51

Miami 73
383



384  APPENDIX C NumPy crash course
 Compare that table with a data set of temperatures for multiple cities over multiple
days:

How many points of reference do you need now to extract a specific value from this
data set? The answer is 2. We need a city and a day of the week (such as “San Francisco
on Thursday”) or a row number and a column number (such as “row 3 and column
4”). Neither the city nor the weekday is a sufficient identifier by itself, because each
one associates with multiple values in the data set. The combination of a city and a
weekday (or, equivalently, a row and a column) filters the results down to one value;
thus, this data set is two-dimensional.

 A data set’s number of rows and columns does not affect its number of dimensions.
A table with 1 million rows and 1 million columns would still be two-dimensional. We
would still need a combination of a row position and a column position to pull out a
value.

 Every additional point of reference adds another dimension. We might collect
temperatures over two weeks:

Monday Tuesday Wednesday Thursday Friday

New York 38 41 35 32 35

Chicago 36 39 31 27 25

San Francisco 51 52 50 49 53

Miami 73 74 72 71 74

Week 1

Monday Tuesday Wednesday Thursday Friday

New York 38 41 35 32 35

Chicago 36 39 31 27 25

San Francisco 51 52 50 49 53

Miami 73 74 72 71 74

Week 2

Monday Tuesday Wednesday Thursday Friday

New York 40 42 38 36 28

Chicago 32 28 25 31 25

San Francisco 49 55 54 51 48

Miami 75 78 73 76 71
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The city and weekday are no longer sufficient to extract a single value. We now need
three points of reference (Week, City, and Day), so we can classify this data set as
being three-dimensional.

C.2 The ndarray object
Let’s begin by creating a new Jupyter Notebook and importing the NumPy library,
which is typically assigned the alias np:

In  [1] import numpy as np

NumPy excels at generating both random and nonrandom data. Let’s begin with a
simple challenge: creating a sequential range of numbers.

C.2.1 Generating a numeric range with the arange method

The arange function returns a one-dimensional ndarray object with a range of
sequential numeric values. When we invoke arange with one argument, NumPy will
set 0 as the lower bound, the value at which the range begins. The first argument will
set the upper bound, the number at which the range terminates. The upper bound is
exclusive; NumPy will go up to that value but not include it. An argument of 3, for
example, will produce an ndarray holding the values 0, 1, and 2:

In  [2] np.arange(3)

Out [2] array([0, 1, 2])

We can also pass arange two arguments, which will declare the lower and upper
bounds of the range. The lower bound is inclusive; the range will include its value.
The endpoint remains exclusive. In the next example, notice that NumPy includes 2
but not 6:

In  [3] np.arange(2, 6)

Out [3] array([2, 3, 4, 5])

The first two arguments to arange correspond to start and stop keyword parame-
ters. We can write the keyword arguments out explicitly. The preceding and following
code samples produce the same array:

In  [4] np.arange(start = 2, stop = 6)

Out [4] array([2, 3, 4, 5])

The arange function’s optional third parameter, step, sets the interval between
every two values. It helps to think about this concept mathematically. Start at the lower
bound, and add the interval value until you reach the upper bound. The next exam-
ple creates a range from 0 to 111 (exclusive) in gaps of 10:

In  [5] np.arange(start = 0, stop = 111, step = 10)

Out [5] array([  0,  10,  20,  30,  40,  50,  60,  70,  80,  90, 100, 110])
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Let’s save that last ndarray to a tens variable:

In  [6] tens = np.arange(start = 0, stop = 111, step = 10)

Now the tens variable points to an ndarray object that holds 12 numbers.

C.2.2 Attributes on a ndarray object

The NumPy library’s ndarray object has its own set of attributes and methods. As a
reminder, an attribute is a piece of data that belongs to an object. A method is a com-
mand we can send to an object.

 The shape attribute returns a tuple with the array’s dimensions. The length of the
shape tuple is equal to the ndarray’s number of dimensions. The following output
communicates that tens is a one-dimensional array with 12 values:

In  [7] tens.shape

Out [7] (12,)

We can also ask for the ndarray’s number of dimensions with the ndim attribute:

In  [8] tens.ndim

Out [8] 1

The size attribute returns the number of elements in the array:

In  [9] tens.size

Out [9] 12

Next up, let’s see how we can manipulate the shape of the 12 elements in the array.

C.2.3 The reshape method

Currently, our 12-element tens ndarray is one-dimensional. We can access any ele-
ment with one reference point, its position in the array:

In  [10] tens

Out [10] array([  0,  10,  20,  30,  40,  50,  60,  70,  80,  90, 100,
         110])

We may want to manipulate an existing one-dimensional array into a multidimen-
sional one with a different shape. Let’s say that our 12 values represent a collection of
3 daily measurements captured across 4 days. It’s easier to think about the data in a 4
x 3 shape than in a 12 x 1 shape.

 The reshape method uses its arguments to return a new ndarray object with a
specified shape. The next example contorts tens into a new two-dimensional array
with 4 rows and 3 columns:
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In  [11] tens.reshape(4, 3)

Out [11] array([[  0,  10,  20],
                [ 30,  40,  50],
                [ 60,  70,  80],
                [ 90, 100, 110]])

The number of arguments passed to reshape will equal the number of dimensions in
the new ndarray:

In  [12] tens.reshape(4, 3).ndim

Out [12] 2

We must ensure that the product of the arguments equals the number of elements
within the original array. The values 4 and 3 are valid arguments because their prod-
uct is 12, and tens has 12 values. Another valid example is a two-dimensional array
with 2 rows and 6 columns:

In  [13] tens.reshape(2, 6)

Out [13] array([[  5,  15,  25,  35,  45,  55],
                [ 65,  75,  85,  95, 105, 115]])

NumPy raises a ValueError exception if it cannot contort the original array into the
requested shape. In the next example, the library is unable to fit the 12 values in tens
into a 2 x 5 array:

In  [14] tens.reshape(2, 5)

Out [14]

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-68-5b9588276555> in <module>
----> 1 tens.reshape(2, 5)

ValueError: cannot reshape array of size 12 into shape (2,5)

Can an ndarray store more than two dimensions of data? Absolutely. Let’s provide a
third argument to reshape to see it in action. The next example shapes the one-
dimensional tens array into a three-dimensional array with a 2 x 3 x 2 shape:

In  [15] tens.reshape(2, 3, 2)

Out [15] array([[[  5,  15],
                 [ 25,  35],
                 [ 45,  55]],

                [[ 65,  75],
                 [ 85,  95],
                 [105, 115]]])
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Let’s access the ndim attribute on the new array. The data structure does indeed have
three dimensions:

In  [16] tens.reshape(2, 3, 2).ndim

Out [16] 3

We can also pass an argument of -1 to reshape to denote an unknown dimension.
NumPy will infer the correct number of values to populate within that dimension. The
next example passes arguments of 2 and -1. NumPy calculates that the new two-
dimensional array should have a 2 x 6 shape:

In  [17] tens.reshape(2, -1)

Out [17] array([[  0,  10,  20,  30,  40,  50],
                [ 60,  70,  80,  90, 100, 110]])

In the next example, the library calculates that the returned ndarray should have a
2 x 3 x 2 shape:

In  [18] tens.reshape(2, -1, 2)

Out [18] array([[[  0,  10],
                 [ 20,  30],
                 [ 40,  50]],

                [[ 60,  70],
                 [ 80,  90],
                 [100, 110]]])

We can pass only one unknown dimension into a reshape method invocation.
 The reshape method returns a new ndarray object. The original array is not

mutated. Thus, our tens array still has its original 1 x 12 shape.

C.2.4 The randint function

The randint function generates one or more random numbers between a range.
When passed a single argument, it returns a random integer from 0 up to the value.
The next example returns a random value between 0 and 5 (exclusive):

In  [19] np.random.randint(5)

Out [19] 3

We can pass randint two arguments to declare an inclusive lower bound and an
exclusive upper bound. NumPy will select a number from within the range:

In  [20] np.random.randint(1, 10)

Out [20] 9

What if we want to generate an array of random integers? We can pass a third argu-
ment to randint to specify the desired array shape. We can pass either a single inte-
ger or a one-element list to create a one-dimensional array:
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In  [21] np.random.randint(1, 10, 3)

Out [21] array([4, 6, 3])

In  [22] np.random.randint(1, 10, [3])

Out [22] array([9, 1, 6])

To create a multidimensional ndarray, we pass a list specifying the number of values
in each dimension. The following example populates a two-dimensional 3 x 5 array of
values between 1 and 10 (exclusive):

In  [23] np.random.randint(1, 10, [3, 5])

Out [23] array([[2, 9, 8, 8, 7],
                [9, 8, 7, 3, 2],
                [4, 4, 5, 3, 9]])

You can provide any number of values inside the list to create ndarrays with more
dimensions. A list with three values, for example, will create a three-dimensional array.

C.2.5 The randn function

The randn function returns an ndarray with random values from the standard nor-
mal distribution. Each sequential argument to the function sets the number of values
to store in a dimension. If we pass one argument, the ndarray will have one dimen-
sion. The next example creates a 1 x 3 (1 row by 3 column) array:

In  [24] np.random.randn(3)

Out [24] array([-1.04474993,  0.46965268, -0.74204863])

If we pass two arguments to the randn function, the ndarray will have two dimen-
sions, and so on. The next example creates a 2 x 4 two-dimensional array:

In  [25] np.random.randn(2, 4)

Out [25] array([[-0.35139565,  1.15677736,  1.90854535,  0.66070779],
                [-0.02940895, -0.86612595,  1.41188378, -1.20965709]])

The next example creates a 3-dimensional array with a 2 x 4 x 3 shape. We can think
of this shape as being two data sets, each with four rows and three columns:

In  [26] np.random.randn(2, 4, 3)

Out [26] array([[[ 0.38281118,  0.54459183,  1.49719148],
                 [-0.03987083,  0.42543538,  0.11534431],
                 [-1.38462105,  1.54316814,  1.26342648],
                 [ 0.6256691 ,  0.51487132,  0.40268548]],

                [[-0.24774185, -0.64730832,  1.65089833],
                 [ 0.30635744,  0.21157744, -0.5644958 ],
                 [ 0.35393732,  1.80357335,  0.63604068],
                 [-1.5123853 ,  1.20420021,  0.22183476]]])
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The rand family of functions is a phenomenal way to generate fake numeric data. We
can also create fake data of different types and categories such as names, addresses, or
credit cards. For more on that topic, see appendix D.

C.3 The nan object
The NumPy library uses a special nan object to represent a missing or invalid value.
The acronym nan is short for not a number, a generic catch-all term for missing data.
We’ll be seeing nan frequently throughout the book as we import data sets with miss-
ing values into pandas. For now, we can access the nan object directly as a top-level
attribute on the np package:

In  [27] np.nan

Out [27] nan

A nan object is not equal to any value:

In  [28] np.nan == 5

Out [28] False

A nan value is also unequal to another nan. From NumPy’s perspective, nan values are
missing or absent. We cannot say with certainty that they are the same, so we assume
that they are different.

In  [29] np.nan == np.nan

Out [29] False

And that’s it! Those are the most important details about the NumPy library, which
pandas uses underneath its hood.

 In your spare time, take a peek at the pandas documentation (https://pandas
.pydata.org/docs/user_guide/10min.html). You’ll likely see many examples that use
NumPy to generate random data.



appendix D
Generating fake
data with Faker

Faker is a Python library for generating fake data. It specializes in creating lists of
names, phone numbers, street addresses, emails, and the like. In combination with
NumPy, which can generate random numeric data, it can quickly create data sets of
any size, shape, and type. If you’re looking to practice pandas concepts but can’t
find the perfect data set to apply them to, Faker offers a fantastic solution. In this
appendix, we’ll walk through everything you need to know to get started with the
library.

D.1 Installing Faker
First, let’s install the Faker library in our conda environment. In Terminal
(macOS) or Anaconda Prompt (Windows), activate the conda environment you’ve
set up for this book. When I created an environment for appendix A, I called mine
pandas_in_action:

conda activate pandas_in_action

If you’ve forgotten your available Anaconda environments, you can execute conda
info --envs to see a list of them. When the environment is active, install the
Faker library with the conda install command:

conda install faker

When prompted to confirm, enter "Y" for Yes and press Enter. Anaconda will
download and install the library. When the process completes, launch Jupyter Note-
book and create a new Notebook.
391
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D.2 Getting started with Faker
Let’s explore some core features of Faker and then pair it with NumPy to generate a
1,000-row DataFrame. First, we’ll import the pandas and NumPy libraries and assign
them to their respective aliases (pd and np). Let’s also import the faker library:

In  [1] import pandas as pd
        import numpy as np
        import faker

The faker package exports a Faker class (notice the capital F). As a reminder, a class
is a blueprint for an object—a template for a data structure. Series and DataFrame
are two sample classes from the pandas library, and Faker is a sample class from the
Faker library.

 Let’s create an instance of the Faker class with a pair of parentheses and assign
the resulting Faker object to a fake variable:

In  [2] fake = faker.Faker()

A Faker object includes many instance methods, each of which returns a random
value from a given category. The name instance method, for example, returns a string
with a person’s full name:

In  [3] fake.name()

Out [3] 'David Lee'

Due to Faker’s inherent randomness, the return values will likely vary when you exe-
cute the code on your computer. That’s totally fine.

 We can invoke the complementary name_male and name_female methods to
return full names by gender:

In  [4] fake.name_male()

Out [4] 'James Arnold'

In  [5] fake.name_female()

Out [5] 'Brianna Hall'

Use the first_name and last_name methods to return only a first name or last name:

In  [6] fake.first_name()

Out [6] 'Kevin'

In  [7] fake.last_name()

Out [7] 'Soto'

There are also gender-specific first_name_male and first_name_female methods:

In  [8] fake.first_name_male()

Out [8] 'Brian'
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In  [9] fake.first_name_female()

Out [9] 'Susan'

As you can see, Faker’s syntax is simple but powerful. Here’s another example. Sup-
pose that we want to generate some random locations for a data set. The address
method returns a string with a complete address, including a street, city, state, and
postal code:

In  [10] fake.address()

Out [10] '6162 Chase Corner\nEast Ronald, SC 68701'

Note that the address is completely fake; it is not an actual location on a map. Faker
simply follows conventions on what an address usually looks like.

 Notice that Faker separates the street and the remainder of the address with a line
break (\n). You can wrap the return value in a print function call to break the
address across multiple lines:

In  [11] print(fake.address())

Out [11] 602 Jason Ways Apt. 358
         Hoganville, NV 37296

We can generate the individual components of an address with methods such as
street_address, city, state, and postcode:

In  [12] fake.street_address()

Out [12] '58229 Heather Walk'

In  [13] fake.city()

Out [13] 'North Kristinside'

In  [14] fake.state()

Out [14] 'Oklahoma'

In  [15] fake.postcode()

Out [15] '94631'

We can generate business-related data with another batch of methods. The following
methods return a random company, catchphrase, job title, and URL:

In  [16] fake.company()

Out [16] 'Parker, Harris and Sutton'

In  [17] fake.catch_phrase()

Out [17] 'Switchable systematic task-force'

In  [18] fake.job()

Out [18] 'Copywriter, advertising'
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In  [19] fake.url()

Out [19] 'https://www.gutierrez.com/'

Faker also supports email addresses, phone numbers, and credit card numbers:

In  [20] fake.email()

Out [20] 'sharon13@taylor.com'

In  [21] fake.phone_number()

Out [21] '680.402.4787'

In  [22] fake.credit_card_number()

Out [22] '4687538791240162'

The Faker website (https://faker.readthedocs.io/en/master) offers complete docu-
mentation for the Faker object’s instance methods. The library groups methods into
parent categories such as address, automotive, and bank. Figure D.1 shows a sample
page from the Faker documentation.

Figure D.1 A sample documentation page on Faker’s official website

Take some time to explore Faker’s available categories. A little variety can help make
the next fake data set you generate a lot more intriguing.

https://faker.readthedocs.io/en/master
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D.3 Populating a DataFrame with fake values
Now that we’re comfortable using Faker to generate one fake value, let’s use it to pop-
ulate a whole data set. Our goal is to create a 1,000-row DataFrame with four col-
umns: Name, Company, Email, and Salary.

 Here’s how we’ll tackle the problem: we’ll use a for loop to iterate 1,000 times,
and in each iteration, we’ll ask Faker to generate a fake name, company, and email
address. We’ll also ask NumPy to generate a random number to represent the salary.

 We can use Python’s range function for the iteration. The function accepts an
integer argument. It returns an iterable sequence of ascending numbers, starting at 0
and proceeding up to (but not including) the argument. In the next example, we use
a for loop to iterate over a range of values from 0 (inclusive) to 5 (exclusive):

In  [23] for i in range(5):
             print(i)

Out [23] 0
         1
         2
         3
         4

To generate our data set, we’ll use range(1000) to iterate 1,000 times.
 The DataFrame’s class constructor accepts various inputs for its data parameter,

including a list of dictionaries. Pandas maps each dictionary key to a DataFrame col-
umn and each value to the row’s value for that column. Here’s a preview of what we
want our input to look like:

[
    {
         'Name': 'Ashley Anderson',
         'Company': 'Johnson Group',
         'Email': 'jessicabrooks@whitaker-crawford.biz',
         'Salary': 62883
    },
    {
         'Name': 'Katie Lee',
         'Company': 'Ward-Aguirre',
         'Email': 'kennethbowman@fletcher.com',
         'Salary': 102971
    }
    # … and 998 more dictionaries
]

You’ll notice some logical inconsistencies in the Faker-generated data. The first per-
son’s name is Ashley Anderson, for example, but the email is jessicabrooks@whitaker-
crawford.biz. This inconsistency is due to the randomness of Faker. For the following
examples, we’re not going to worry about these imperfections. If we want our data set
to be more “accurate,” however, we can combine Faker with regular Python code to
generate whatever values we desire. We can ask Faker for a first name ("Morgan")
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and last name ("Robinson"), for example, and then concatenate the two strings to
form a more realistic email address ("MorganRobinson@gmail.com"):

In  [24] first_name = fake.first_name_female()
         last_name = fake.last_name()
         email = first_name + last_name + "@gmail.com"
         email

Out [24] 'MorganRobinson@gmail.com'

Back to business. Let’s use list comprehension with the range function to create a list
of 1,000 dictionaries. Within each dictionary, we’ll declare the same four keys:
"Name", "Company", "Email", and "Salary. For the first three values, we’ll invoke
the name, company, and email instance methods on our Faker object. Remember
that Python will invoke these methods on each iteration, so the values will differ each
time. For the "Salary" value, we’ll use NumPy’s randint function to return a ran-
dom integer between 50,000 and 200,000. For a more in-depth tutorial on NumPy
functions, see appendix C.

In  [25] data = [
             { "Name": fake.name(),
               "Company": fake.company(),
               "Email": fake.email(),
               "Salary": np.random.randint(50000, 200000)
             }
             for i in range(1000)
         ]

Our data variable holds a list of 1,000 dictionaries. The last step is passing the list of
dictionaries to the DataFrame constructor at the top level of pandas:

In  [26] df = pd.DataFrame(data = data)
         df

Out [26]

                Name              Company                Email  Salary

0       Deborah Lowe       Williams Group  ballbenjamin@gra...  147540
1     Jennifer Black          Johnson Inc  bryannash@carlso...  135992
2          Amy Reese  Mitchell, Hughes...   ajames@hotmail.com  101703
3     Danielle Moore       Porter-Stevens     logan76@ward.com  133189
4        Jennifer Wu        Goodwin Group    vray@boyd-lee.biz   57486
  …                …                    …                    …       …
995   Joseph Stewart  Rangel, Garcia a...     sbrown@yahoo.com  123897
996   Deborah Curtis  Rodriguez, River...  smithedward@yaho...   51908
997  Melissa Simmons        Stevenson Ltd  frederick96@hous...  108791
998  Tracie Martinez       Morales-Moreno  caseycurry@lopez...  181615
999  Phillip Andrade    Anderson and Sons  anthony23@glover...  198586

1000 rows × 4 columns

And there you have it—a DataFrame with 1,000 rows of random data to practice with.
Feel free to explore the Faker and NumPy documentation to see what other types of
random data you can generate.
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Regular expressions

A regular expression (often abbreviated RegEx) is a search pattern for text. It defines a
logical sequence of characters that the computer should look for in a string.

 Here’s a simple example. You’ve likely used the Find feature in your web
browser at some point. In most web browsers, you can access this feature by press-
ing Ctrl-F in Windows or Command-F in macOS. The browser reveals a dialog box
in which we type a sequence of characters. Then the browser searches for those
characters on the web page. Figure E.1 shows an example of the browser searching
for and finding romance in the page’s content.

Figure E.1 Searching for the text romance by using the Find feature in Google Chrome

Chrome’s Find feature is a simple example of RegEx in action. The tool does have
its limitations. We can search for characters only in the exact order in which they
397
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appear, for example. We can search for the character sequence "cat", but we cannot
declare a condition such as either the letter "c" or "a" or "t". Regular expressions
make this kind of dynamic search possible.

 A regular expression describes how to look for content in a piece of text. We can
search for characters such as letters, digits, or spaces, but we can also use special sym-
bols to declare conditions. Here are a few examples of what we can search for:

 Any two digits in a row
 A sequence of three or more alphabetic characters followed by a space
 The character s, but only at the beginning of a word

In this appendix, we’ll explore how regular expressions work in Python and then
apply our knowledge to a data set in pandas. Entire textbooks and college courses are
dedicated to RegEx, so our hope here is to scratch the surface of this complex field of
study. RegEx is easy to get started with and difficult to master.

E.1 Introduction to Python’s re module
Let’s begin by creating a new Jupyter Notebook. We’ll import pandas and a special
module called re. The re (regular expressions) module is part of Python’s standard
library and is built into the language:

In  [1] import re
        import pandas as pd

The re module has a search function that looks for a substring in a string. The func-
tion accepts two arguments: a search sequence and a string in which to look for it. The
next example looks for the string "flower" within the string "field of flowers":

In  [2] re.search("flower", "field of flowers")

Out [2] <re.Match object; span=(9, 15), match='flower'>

The search function returns a Match object if Python finds the character sequence
in the target string. The Match object stores information on what content matched
the search pattern and where it exists in the target string. The preceding output com-
municates that "flower" was found in a span of characters from index positions 9 to
15. The first index is inclusive, and the second index is exclusive. If we count charac-
ter index positions in "field of flowers", we see that index 9 is the lowercase "f"
in "flowers", and index 15 is the "s" in "flowers".

 The search function returns None if the search pattern does not exist in the target
string. By default, Jupyter Notebook will not output anything for a None value. But we
can wrap the search invocation in a print function to force Jupyter to print the value:

In  [3] print(re.search("flower", "Barney the Dinosaur"))

Out [3] None

The search function returns only the first match in the target string. We can use the
findall function to find all matches. This function accepts the same two arguments—
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a search sequence and a target string—and returns a list of strings that match the search
sequence. In the next example, Python finds the search pattern "flower" twice within
"Picking flowers in the flower field":

In  [4] re.findall("flower", "Picking flowers in the flower field")

Out [4] ['flower', 'flower']

Note that the search is case-sensitive.

E.2 Metacharacters
Now let’s declare a more complex search pattern using regular expressions. We’ll start
by assigning a long string to a sentence variable. The next code sample breaks the
string across multiple lines for readability, but you are welcome to type it in a single
line in Jupyter Notebook:

In  [5] sentence = "I went to the store and bought " \
                   "5 apples, 4 oranges, and 15 plums."

        sentence

Out [5] 'I went to the store and bought 5 apples, 4 oranges, and 15 plums.'

Inside a regular expression, we can declare metacharacters—special symbols that define
search patterns. The \d metacharacter, for example, instructs Python to match any
digit. Let’s say we want to identify all digits in our sentence string. The next example
invokes the findall function with the regular expression "\d" as the search pattern:

In  [6] re.findall("\d", sentence)

Out [6] ['5', '4', '1', '5']

The function’s return value is a list of the four digits in sentence in the order in
which they appear:

 the "5" in "5 apples"
 the "4" in "4 oranges"
 the "1" in "15 plums"
 the "5" in "15 plums"

We’ve learned our first metacharacter! With a simple \d symbol, we’ve created a
search pattern that matches any digit in a target string.

 Two points are worth mentioning before we move forward:

 When a list contains many elements, Jupyter Notebook likes to print each ele-
ment on a separate line. This stylistic approach makes the output easier to read
but also causes it to take up significant space. To force Jupyter to print the list
normally—add line breaks only after a certain threshold of characters has been
output—we’ll wrap our findall function calls inside Python’s built-in print
function from this point on.
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 We’ll pass our RegEx arguments to the findall function as raw strings. Python
interprets each character in a raw string literally. This parsing option prevents
conflicts between regular expressions and escape sequences. Consider the char-
acter sequence \b. It has a symbolic meaning in a plain Python string and a dif-
ferent meaning in a regular expression. When we use a raw string, we instruct
Python to treat \b as a literal backslash character followed by a literal b charac-
ter. This syntax guarantees that Python will parse the regular expression’s
metacharacters correctly.

We declare a raw string with an "r" character before the double quotes. Let’s rewrite
the preceding example with a print function call and a raw string:

In  [7] print(re.findall(r"\d", sentence))

Out [7] ['5', '4', '1', '5']

To declare the inverse of an operation, we swap the letter casing of the metacharacter.
If \d means “match any digit,” for example, \D means "match any nondigit." Nondigit
characters consist of letters, spaces, commas, and symbols. In the next example, we
use \D to identify all nondigit characters in sentence:

In  [8] print(re.findall(r"\D", sentence))

Out [8] ['I', ' ', 'w', 'e', 'n', 't', ' ', 't', 'o', ' ', 't', 'h', 'e', '
        ', 's', 't', 'o', 'r', 'e', ' ', 'a', 'n', 'd', ' ', 'b', 'o',
        'u', 'g', 'h', 't', ' ', ' ', 'a', 'p', 'p', 'l', 'e', 's', ',', '
        ', ' ', 'o', 'r', 'a', 'n', 'g', 'e', 's', ',', ' ', 'a', 'n',
        'd', ' ', ' ', 'p', 'l', 'u', 'm', 's', '.']

Now that you understand the basics of regular expressions, the next step is learning
more metacharacters and building complex search queries. Here’s another example.
The \w metacharacter matches any word character, a category that includes letters,
digits, and underscores:

In  [9] print(re.findall(r"\w", sentence))

Out [9] ['I', 'w', 'e', 'n', 't', 't', 'o', 't', 'h', 'e', 's', 't', 'o',
         'r', 'e', 'a', 'n', 'd', 'b', 'o', 'u', 'g', 'h', 't', '5', 'a',
         'p', 'p', 'l', 'e', 's', '4', 'o', 'r', 'a', 'n', 'g', 'e', 's',
         'a', 'n', 'd', '1', '5', 'p', 'l', 'u', 'm', 's']

The inverse \W metacharacter matches any nonword character. Nonword characters
include spaces, commas, and periods:

In  [10] print(re.findall(r"\W", sentence))

Out [10] [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ',', ' ', ' ', ',', ' ',
         ' ', ' ', '.']

The \s metacharacter searches for any whitespace character:

In  [11] print(re.findall(r"\s", sentence))

Out [11] [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
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The inverse \S metacharacter searches for any nonwhitespace character:

In  [12] print(re.findall(r"\S", sentence))

Out [12] ['I', 'w', 'e', 'n', 't', 't', 'o', 't', 'h', 'e', 's', 't', 'o',
         'r', 'e', 'a', 'n', 'd', 'b', 'o', 'u', 'g', 'h', 't', '5', 'a',
         'p', 'p', 'l', 'e', 's', ',', '4', 'o', 'r', 'a', 'n', 'g', 'e',
         's', ',', 'a', 'n', 'd', '1', '5', 'p', 'l', 'u', 'm', 's', '.']

To search for a specific character, declare it literally in the search pattern. The next
example searches for all occurrences of the letter "t". This syntax is the same one we
used in this appendix’s first examples:

In  [13] print(re.findall(r"t", sentence))

Out [13] ['t', 't', 't', 't', 't']

To search for a sequence of characters, write them in order in the search pattern. The
next example searches for the letters "to" in the sentence string. Python finds it
twice (the "to" word and the "to" in "store"):

In  [14] print(re.findall(r"to", sentence))

Out [14] ['to', 'to']

The \b metacharacter declares a word boundary. A word boundary mandates where a
character must exist relative to a space. The next example searches for "\bt". The
logic translates to “any t character after a word boundary” or, equivalently, “any t
character after a space.” The pattern matches the "t" characters in "to" and "the":

In  [15] print(re.findall(r"\bt", sentence))

Out [15] ['t', 't']

Let’s flip the symbols around. If we use "t\b", we search for “any t character before a
word boundary” or, equivalently, “any t character before a space.” The "t" characters
that Python matches are different. These are the "t" characters at the end of "went"
and "bought":

In  [16] print(re.findall(r"t\b", sentence))

Out [16] ['t', 't']

The inverse \B metacharacter declares a nonword boundary. "\Bt", for example,
means “any t character that does not come after a word boundary” or, equivalently,
“any t character that does not come after a space”:

In  [17] print(re.findall(r"\Bt", sentence))

Out [17] ['t', 't', 't']

The preceding example matched the "t" characters in "went", "store", and
"bought". Python ignored the "t" characters in "to" and "the" because they
appear after a word boundary.
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E.3 Advanced search patterns
In review, a metacharacter is a symbol that designates a search sequence in a regular
expression. Section E.2 explored the \d, \w, \s, and \b metacharacters for digits,
word characters, spaces, and word boundaries. Let’s learn some new metacharacters
and then combine them into a complex search query.

 The dot (.) metacharacter matches any character whatsoever:

In  [18] soda = "coca cola."
         soda

Out [18] 'coca cola.'

In  [19] print(re.findall(r".", soda))

Out [19] ['c', 'o', 'c', 'a', ' ', 'c', 'o', 'l', 'a', '.']

At first glance, this metacharacter may not seem to be particularly helpful, but it works
wonders when paired with other symbols. The regular expression "c.", for example,
searches for the character "c" followed by any character. There are three such
matches in our string:

In  [20] print(re.findall(r"c.", soda))

Out [20] ['co', 'ca', 'co']

What if we want to search for a literal dot in a string? In that case, we have to escape it
with a backslash in the regular expression. The "\." in the next example locates the
period at the end of the soda string:

In  [21] print(re.findall(r"\.", soda))

Out [21] ['.']

Earlier, we saw that we could combine characters to search for them in sequence in
the target string. Here, we search for the exact sequence of "co":

In  [22] print(re.findall(r"co", soda))

Out [22] ['co', 'co']

What if we want to search for either the character "c" or the character "o"? To do so,
we can wrap the characters in a pair of square brackets. The matches will include any
occurrence of either "c" or "o" in the target string:

In  [23] print(re.findall(r"[co]", soda))

Out [23] ['c', 'o', 'c', 'c', 'o']

The order of characters in the square brackets does not affect the result:

In  [24] print(re.findall(r"[oc]", soda))

Out [24] ['c', 'o', 'c', 'c', 'o']
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Suppose that we want to target any characters between "c" and "l". One option
would be to write out the complete sequence of alphabetic characters within the
square brackets:

In  [25] print(re.findall(r"[cdefghijkl]", soda))

Out [25] ['c', 'c', 'c', 'l']

A better solution is to use the dash symbol (-) to declare a range of characters. The
following code sample yields the same list as the preceding code:

In  [26] print(re.findall(r"[c-l]", soda))

Out [26] ['c', 'c', 'c', 'l']

Next, let’s explore how we can target multiple occurrences of characters in a row.
Consider the string "bookkeeper":

In  [27] word = "bookkeeper"
         word

Out [27] 'bookkeeper'

To search for exactly two "e" characters in a row, we can pair them in the search
sequence:

In  [28] print(re.findall(r"ee", word))

Out [28] ['ee']

We can also search for multiple occurrences of a character with a pair of curly braces.
Inside the braces, we declare the number of occurrences to match. In the next exam-
ple, we search for two "e" characters in a row within "bookkeeper":

In  [29] print(re.findall(r"e{2}", word))

Out [29] ['ee']

If we search for three "e" characters in a row with "e{3}", the return value will be an
empty list because there are no sequences of three consecutive "e" characters in
"bookkeeper":

In  [30] print(re.findall(r"e{3}", word))

Out [30] []

We can also enter two numbers inside the curly braces, separated by a comma. The
first value sets the lower bound of occurrences, and the second value sets the upper
bound of occurrences. The next example searches for between one and three occur-
rences of the "e" character in a row. The first match is the sequential "ee" characters
in "keeper", and the second match is the final "e" in "keeper":

In  [31] print(re.findall(r"e{1,3}", word))

Out [31] ['ee', 'e']
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Let’s walk through this example in more detail. The pattern searches for one to three
"e" characters in a row. When Python finds a match, it keeps traversing the string
until the search pattern is violated. The regular expression first looks at the letters
"bookk" individually. None of these letters fits the search pattern, so Python moves
on. Then the pattern locates its first "e". Python cannot mark this match as final yet
because the next character may also be an "e", so, it checks the next character. That
character is indeed another "e", which fits the original search criteria. Python pro-
ceeds to the "p", which does not match the pattern, and declares the match to be
"ee" rather than two individual "e" characters. The same logic repeats for the "e"
closer to the end of the string.

 We’re making good progress, but all the previous examples have been mostly theo-
retical. How can we use RegEx when working with real-world data sets?

 Imagine that we are running a customer-support hotline and storing transcriptions
of phone calls. We may have a message like this one:

In  [32] transcription = "I can be reached at 555-123-4567. "\
                         "Look forward to talking to you soon."

         transcription

Out [32] 'I can be reached at 555-123-4567. Look forward to talking to you 
          soon.'

Let's say we'd like to pull out a phone number from each person’s message, but each
transcription is unique. We can assume, however, that a phone number has a consis-
tent pattern consisting of

1 Three digits
2 A dash
3 Three digits
4 A dash
5 Four digits

The beauty of RegEx is that it can identify this search pattern irrespective of the
string’s contents. The next example declares our most complex regular expression
yet. We simply combine metacharacters and symbols to describe the logic above:

1 \d{3} searches for exactly three digits.
2 - searches for a dash.
3 \d{3} searches for exactly three digits.
4 - searches for a dash.
5 \d{4} searches for exactly four digits.

In  [33] print(re.findall(r"\d{3}-\d{3}-\d{4}", transcription))

Out [33] ['555-123-4567']

Voila!
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 There’s also a convenient + metacharacter that indicates “one or more” of the pre-
ceding characters or metacharacters. \d+, for example, searches for one or more dig-
its in a row. We can use the + symbol to simplify the preceding code. The next regular
expression holds a different search pattern but returns the same result:

1 One or more sequential digits
2 A dash
3 One or more sequential digits
4 A dash
5 One or more sequential digits

In  [34] print(re.findall(r"\d+-\d+-\d+", transcription))

Out [34] ['555-123-4567']

With one line of code, we can extract a telephone number from a dynamic piece of
text—pretty powerful stuff.

E.4 Regular expressions and pandas
In chapter 6, we introduced the StringMethods object for manipulating Series of
strings. The object is available via the str attribute, and many of its methods support
RegEx arguments, which significantly expand their power. Let’s practice these RegEx
concepts on a real data set.

 The ice_cream.csv data set is a collection of ice cream flavors for four popular
brands (Ben & Jerry’s, Haagen-Dazs, Breyers, and Talenti). Each row includes a brand,
a flavor, and a description:

In  [35] ice_cream = pd.read_csv("ice_cream.csv")
         ice_cream.head()

Out [35]

             Brand               Flavor                         Description

0  Ben and Jerry's  Salted Caramel Core  Sweet Cream Ice Cream with Blon...
1  Ben and Jerry's  Netflix & Chilll'd™  Peanut Butter Ice Cream with Sw...
2  Ben and Jerry's         Chip Happens  A Cold Mess of Chocolate Ice Cr...
3  Ben and Jerry's              Cannoli  Mascarpone Ice Cream with Fudge...
4  Ben and Jerry's       Gimme S’more!™  Toasted Marshmallow Ice Cream w...

NOTE ice_cream is a modified version of a data set available from Kaggle
(https://www.kaggle.com/tysonpo/ice-cream-dataset). There are typos and
inconsistencies within the data; we have preserved them so that you can see the
data irregularities that appear in the real world. I encourage you to consider
how you can optimize this data with the techniques you’ll learn in this chapter.

I’m curious how many different chocolate treats we can find in the flavors. Our chal-
lenge is to find all words that immediately follow the string "Chocolate" within the
Description column. We can use the str.extract method on a Series to accom-
plish this task. The method accepts a RegEx pattern and returns a DataFrame with its
matches.

https://www.kaggle.com/tysonpo/ice-cream-dataset


406  APPENDIX E Regular expressions
 Let’s construct our regular expression. We’ll begin with a word boundary (\b).
Then we’ll target the literal text "Chocolate". Next, we’ll mandate a single
whitespace character (\s). Finally, we’ll match one or more word characters in a row
(\w+) to capture all alphanumeric letters until Python encounters a space or period.
Thus, the final expression is "\bChocolate\s\w+)".

 For technical reasons, we have to wrap the regular expression in parentheses when
passing it to the str.extract method. The method supports an advanced syntax
that searches for multiple regular expressions, and the parentheses limit it to one:

In  [36] ice_cream["Description"].str.extract(r"(\bChocolate\s\w+)").head()

Out [36]

                  0

0               NaN
1               NaN
2     Chocolate Ice
3               NaN
4  Chocolate Cookie

So far, so good. Our Series includes matches such as "Chocolate Ice" at index
position 2 and "Chocolate Cookie" at index position 4; it also stores NaN values
wherever it could not find the search pattern in the row. Let’s invoke the dropna
method to remove rows with missing values:

In  [37] (
             ice_cream["Description"]
             .str.extract(r"(\bChocolate\s\w+)")
             .dropna()
             .head()
         )

Out [37]

                   0

2      Chocolate Ice
4   Chocolate Cookie
8      Chocolate Ice
9      Chocolate Ice
13  Chocolate Cookie

We’re getting closer.
 Next, let’s convert the DataFrame to a Series. The str.extract method

returns a DataFrame by default to support the potential of multiple search patterns.
We can use the squeeze method to coerce the single-column DataFrame into a
Series. You may recall the related squeeze parameter from the read_csv import
function; the squeeze method accomplishes the same result:

In  [38] (
             ice_cream["Description"]
             .str.extract(r"(\bChocolate\s\w+)")
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             .dropna()
             .squeeze()
             .head()
         )

Out [38] 2        Chocolate Ice
         4     Chocolate Cookie
         8        Chocolate Ice
         9        Chocolate Ice
         13    Chocolate Cookie
         Name: Chocolate, dtype: object

Our method chaining is getting quite lengthy, so let’s assign the current Series to a
chocolate_flavors variable:

In  [39] chocolate_flavors = (
            ice_cream["Description"]
            .str.extract(r"(\bChocolate\s\w+)")
            .dropna()
            .squeeze()
        )

We ultimately want to identify what ingredients come after "Chocolate". Let’s
invoke the str.split method to split each string by the occurrence of whitespace.
Instead of passing a string with a single space, we’ll provide an argument of a regular
expression here as well. As a reminder, the "\s" metacharacter looks for a single
whitespace:

In  [40] chocolate_flavors.str.split(r"\s").head()

Out [40] 2        [Chocolate, Ice]
         4     [Chocolate, Cookie]
         8        [Chocolate, Ice]
         9        [Chocolate, Ice]
         13    [Chocolate, Cookie]
         Name: 0, dtype: object

The str.get method retrieves a value at a consistent index position from each list in
a Series. In the next example, we retrieve the second element (index position 1) from
each list or, equivalently, the word that follows "Chocolate" in the original string:

In  [41] chocolate_flavors.str.split(r"\s").str.get(1).head()

Out [41] 2        Ice
         4     Cookie
         8        Ice
         9        Ice
         13    Cookie
         Name: Chocolate, dtype: object
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For curiosity’s sake, let’s invoke the value_counts method to see the most frequent
words that follow "Chocolate" across all ice cream flavors. Unsurprisingly, "Ice" is
the winner. "Cookie" comes in at a distant second:

In  [42] chocolate_flavors.str.split(r"\s").str.get(1).value_counts()

Out [42] Ice         11
         Cookie       4
         Chip         3
         Cookies      2
         Sandwich     2
         Malt         1
         Mint         1
         Name: Chocolate, dtype: int64

Regular expressions offer a sophisticated way of searching for patterns in text. I hope
that you’ve gained greater understanding of the benefits of RegEx and how to apply it
to various methods in pandas.
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